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In gauge/gravity duality the deconfinement transition of a gauge
theory is dual To the formation of a Black Hole in the gravity

bulk [Witten -1998]
We want to describe an intuitive way of understanding this

Duality without referring to a sophisticated duality dictionary
Our initial motivation was to study a simple Matrix Model for a

Black Hole by looking at the deconfinement transition of 4d
N = 4 SYM on an S3 and the Hawking-Page Transition of the

Black hole in the corresponding AdS bulk [Hawking,Page -
1983]

Such a black can be modeled as a long and winding string
[Susskind,Teitelboim - 1993; Horowitz,Polchinski - 1997]
Since we do not assume the dual gravity description, our

argument is applicable to a generic Gauge theories
We do this by paying attention to the behavior of the stringy

degrees of freedom of a gauge theory (the Wilson Lines) as the
gauge theory undergoes a deconfinement transition. This was

achieved through a Monte-Carlo Lattice gauge theory
simulation of the transition
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As concrete example consider (D + 1) pure U(N) YM Theory
on a discrete lattice

H = K + V K =
λN
2

∑
~x

∑
µ

N2∑
α=1

(
Eα
µ,~x

)2

V =
N
λ

∑
~x

∑
µ<ν

(
N − Tr(Uµ,~x Uν,~x+µ̂U †

µ,~x+ν̂U †
ν,~x )
)
.

[Eα
µ,~x ,Uν,~y ] = δµνδ~x~y · ταUν,~y ,

[Eµ,~x ,Eν,~y ] = [Uµ,~x ,Uν,~y ] = [Uµ,~x ,U
†
ν,~y ] = 0. Eα

µ,~x |0〉

WC1WC2 · · ·WCk |0〉 WC = Tr
(
Uµ,~x Uν,~x+µ̂ · · ·Uρ,~x−ρ̂

)
E = K = λ

2 Ltotal (T ). S = Ltotal log(2D − 1).
F = Ltotal (T )

(
λ
2 − T log(2D − 1)

)
. Tc = λ/(2 log(2D − 1)).
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Strictly speaking D+1 YM is dual to a D-dimensional black
brane rather then a black hole as the string condensation fills

the whole D-dimensional space
In order to describe a black hole 0-brane let us consider two

lattice models
First the dimensionally reduced D-matrix model This is the

Eguchi-Kawai model with with continuous time direction
At strong coupling the U(1)D center symmetry is not broken,
then this theory Is then know to be equivalent to the D+1 dim.

YM at large N. In the sense that translationally Invariant
observables are reproduced from the former at leading order

At weak coupling this model is Equivalent to the bosonic part of
The BFSS matrix model of M-theory, which is dual to black
0-branes in type IIA supergravity In the t̀ Hooft large N limit.
For D ≤ 2 this theory exhibits a deconfinement transition,

characterized by the non-vanishing expectation value of the
absolute value of the Polyakov loop. The energy and entropy
are of order N2 and a typical state contains a long winding

string such as Tr (U1U2U †1U †1U †2 . . .)
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The second Model is the tetrahedron Lattice, here the entropy
and temperature scale as

S = Lt otal log 2 and Tc = λ/(2 log 2) This system also
possesses a deconfinement transition with a long string

described as
Tr (U12U23U31U14U42 . . .)



Slattice = − N
2aλ

∑
µ,t

Tr
(

Vt Uµ,t+aV †µ,t Uµ,t + c .c .
)

+
aN
λ

∑
µ 6=ν,t

(
N − Tr(Uµ,t Uν,t U

†
µ,t U

†
ν,t )
)

Stet = − N
2aλ

∑
t

∑
m<n

(
Tr(Vm,t Umn,t+aV †n,t Unm,t ) + c .c .

)
−aN
λ

∑
t

∑
l<m<n

(
(N − Tr(Ulm,t Umn,t Unl ,t )) + c .c .

)
.

Ptet =
1

4N
∑4

m=1 Tr(Vm,t=aVm,t=2a · · ·Vm,t=nt a)

P = 1
N Tr(Vt=aVt=2a · · ·Vt=nt a).

We use the absolute value of P in order to eliminate the U(1)
factor which makes P ’s expectation value trivially vanish.
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The End



[Maldacena,1997] J. M. Maldacena, Adv. Theor. Math.
Phys. 2, 231 (1998).

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and
M. Van Raamsdonk, Adv. Theor. Math. Phys. 8, 603 (2004).

L. Susskind, arXiv:1311.7379 [hep-th].

L. Susskind, arXiv:1402.5674 [hep-th].

S. W. Hawking and D. N. Page, Commun. Math. Phys. 87,
577 (1983).

G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).

L. Susskind, In *Teitelboim, C. (ed.): The black hole*
118-131.
E. Halyo, A. Rajaraman and L. Susskind, Phys. Lett. B 392,
319 (1997).

G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189
(1997).

J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



A. Patel, Nucl. Phys. B 243, 411 (1984).
T. Kalaydzhyan and E. Shuryak, arXiv:1402.7363 [hep-ph].

T. Eguchi and H. Kawai, Phys. Rev. Lett. 48, 1063 (1982).

T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys.
Rev. D 55, 5112 (1997).
B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B 305, 545
(1988).

N. Itzhaki, J. M. Maldacena, J. Sonnenschein and
S. Yankielowicz, Phys. Rev. D 58, 046004 (1998).

George Fishman, Monte Carlo: Concepts, Algorithms,and
Applications, Springer Series in ORFE, 9780387945279,
1996.
Y. Sekino and L. Susskind, JHEP 0810, 065 (2008).

U. W. Heinz, AIP Conf. Proc. 739, 163 (2005).


