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Entanglement generation

A | B| ¢(=0)=va®@yp
cfo P(t) = e Hhp(0)
L H = Ha+ Hy +([as)

How fast can entanglement be generated?

In most physical systems: Local Hamiltonian

Hig = Hep d : UV cutoff



Small incremental entangling conjecture/
theorem

A | B| H=Hs+Hp+ Hep

S, : entanglement
entropy of A

10 | Dur, Vidal et al, Bravyi, Kitaev
Bennett et al, Van Acoleyen,
Marien, Verstraete

)
-5 < cHHH 4= minldo, dp)

d. : dimension of Hilbert space of C

For spin systems:



For more general quantum systems, e.g. a QFT

aSa < 777

dt

In this talks we will describe some hints.



A simple setup: global quenches

1. Start with a QFT in the
ground state.

2. At t=0in a very short time
interval inject a uniform energy
density

* initial state homogeneous, isotropic, S (t) 2
entanglement properties as vacuum A .

3. The system evolves to (thermal) equilibrium

Also a question of interest for thermalization.



ASA(t) = SA(t) — SA(t — O)
AS4(0) = 0

In equilibrium, system behaves macroscopically as a thermal
state, with entanglement entropy disguised as thermal
entropy:

ASZq = SquA V, : volume of region A
Seq : equilibrium entropy density

Essentially all d.o.f. inside A becomes long ranged
entangled with those outside A.



t=0 equilibrium

essentially almost all d.o.f.

no long range long range
entanglement entangled



Previous results in (1+1)-d CFTs
Calabrese and Cardy

2R
AS/ieq | 1. Linear growth with time
i (not too early and too late)
i 2.Slope =1
- 3. Can be reproduced by
* | free particles
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Special techniques in one spatial dimension do not
apply to higher dimensions:

 Equilibration processes: complicated non-
equilibrium many-body dynamics, generally out
of theoretical control.

« Entanglement entropy is notoriously difficult to
calculate even for simple regions in the vacuum of a
free theory, not to mention for general regions in
interacting theories far from equilibrium.



String theory to the rescue!
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Holographic description of quench

- Black hole

-~
I
-

(0 = 7) Arepunoq

guench: thin shell collapse to form a black hole.



Holographic Entanglement entropy

Ryu, Takayanagi
Hubeny, Rangamani, Takayanagi

Area of M
4Gy

Extremal surface: M




Area: AZ

Volume: V4

SA(t)?

R: characteristic size of the region

Interested in long-distance physics: R — o0



Gravity description

Each extremal surface can also be specified by
the location of (and boundary conditions at) the tip.



Large size and critical extremal

surfaces

In general a rather
complicated problem
to determine time
evolution of extremal
surfaces

Critical extremal
surfaces determine
large R, large time
behavior



Four scaling regimes in general
dimensions

In the large size R limit: R > 1/T

— Saturation
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Linear growth

See also

For R >t> 1/T Hartman, Maldacena

ASA(t) = Vg Seq Ast + - - -

Seq : Equilibrium entropy density

independent of shape, holographic theories under
consideration, the nature of equilibrium state, also likely

thermalization processes

vi: dimensionless number characterizing final eq state.



Critical extremal surface for linear growth

The critical extremal surface
runs along a constant
radial slice inside the horizon

2 L’ o 1,9 22
ds = — —hdt —I—?dz + dx
z
Zm . minimum of

h(z)

D: # of spatial dimensions

Vg = (zh/zm)D\/—h(zm) Zh : horizon size

Determined by equilibrium state



Entanglement Tsunami

ASA(t) = VE Seq Ast = Seq (VA — Va—_vpt)

suggests a picture of
tsunami wave of
entanglement, with a
sharp wave front.

d.o.f. in the region covered
A -t by the wave is now entangled
- with those outside A

natural with evolution from a local Hamiltonian



Tsunami velocity

ASA(t) = Vg Seq Asst + - - -

Neutral system (AdS Schwarzschild ):
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O © T G

W N

5



Upper bound on v, ?

v; should be constrained by causality.

In all gravity examples: vE = (2n/2m) "/ —h(2m)
_1)z(n—1) 2D
s) _ (n—1)> _
VB = Vg = N3 "= D11

Null energy condition important



Comparing with free particle
streaming
Assume:

« At t=0, there is a uniform
density of “photons” with only
local entanglement correlations.

« Entanglement spreads when
photons propagate.

Leading to shape independent linear growth,

A Sy (t) = UESquEt -+ .-



For D=1:
Ustreaming — UCFT — Ugravity — 1
HL, Mezei, Suh

Casini

) s <]
streaming \/%F(T—i_l) < E

D > 2

In strongly coupled systems, entanglement tsunami
propagates faster than those from free particles
traveling at speed of light |

g 1 2
D — oo ’USE)%? Ustreaming — (D + 1) >




Bound on entanglement growth?

For any non-equilibrium processes:

1 dSa

%A(t) = Squz dt

dimensionless, can be compared among region A of
different shapes, sizes, and systems of different
number of d.o.f.

Indications from gravity: after local equilibration (t >>1/T)

Ra(t) < vpy)



Comparing with small incremental entangling
conjecture/theorem:

dSa S
dt USE | Seq
ds 4 |
=4 < J|H|(ogd)  d=min(de,dp)

A B
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Future directions

* More examples:

Both holographic and field theoretical
(S)

* More physical intuitionon VUp

* Direct probe of entanglement tsunami
e Continuum limit of small incremental theorem

* Implications for black hole physics



Thank You



Entanglement in the vacuum

1
5 Sa = S5Ot 4 S8

Sshort . short-range entanglement
A " near I, cutoff dependent

Slong . long range entanglement, insensitive to UV
A physics near 2

R: characteristic

1
Vacuum: S;lmg = const or log R cize of A

Long ranged entangled d.o.f. are measure zero.




Entanglement in equilibrium state

The system behaves macroscopically as a thermal state,
with entanglement entropy disguised as thermal entropy:

long,eq __

Seq : equilibrium entropy density

V, : volume of region A

Essentially all d.o.f. inside A becomes long ranged
entangled with those outside A.



