
Greg Landsberg 
Strings 2013

Seoul, South Korea
June 27, 2013

LHC: PAST, PRESENT, AND FUTURE
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Outline
✦LHC Performance
✦Highlights from the LHC Run 1
✦Preparations for Run 2
✦Toward High-Luminosity LHC
✦Conclusions
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The LHC 
Playground 

3
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Measure of Our Success
✦ Thank you, the LHC, for spectacular 3 years and ~30/fb 

delivered (and half-a-million Higgs bosons produced)!

90K Higgs bosons 
produced

450K Higgs
bosons produced
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Great Running Efficiency
✦ Fraction of the LHC operations used 

for physics:
๏ 2010: 16%
๏ 2011: 23.7%
๏ 2012: 36.5%

Alick&Macpherson&
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2010 LHC Efficiency
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Excellent Detector Performance
✦ The LHC detectors have been working spectacularly with virtually 

no degradation in performance over the three years of LHC Run 1
๏ In some cases, original losses in performance was recovered

90 95 100 

Pixels'
Strips'
ECAL'
EB'
EE'
ES'

HCAL'
HB'
HE'
HF'
HO'
DT'
RPC'
CSC'

ATLAS Performance in 2012 CMS Status in Feb 2013 (%)

UFRJ 
9 Kazu Akiba SILAFAE  12.12.12 

High Efficiency! 

Over 2/fb acquired this year! More than 3/fb integrated 
 

Operating at 4x the design 
Luminosity / bunch 

All to provide MANY physics results… 
(Most of results presented here 
     with 2011 Data alone) 
 

LHCb Performance in 2012
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Successful Pileup Mitigation
7
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LHC already reached nominal
pileup rate; experiments 

cope well!
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2008-2012: LHC Milestones
8
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2008-2012: LHC Milestones
8

2008

10/09/08
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2008-2012: LHC Milestones
8

2008

10/09/08

2009

28/11/09
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2008-2012: LHC Milestones
8

2008

10/09/08

2009

28/11/09

2010

21/09/10
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2008-2012: LHC Milestones
8

2008

10/09/08
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2010
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2008-2012: LHC Milestones
8

2008

10/09/08

2009

28/11/09

2010
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2011
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2008-2012: LHC Milestones
8
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2013

?
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Three Machines in 
One!

9
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The LHC Legacy
10

✦ The LHC has in fact (allegorically) replaced three machines in one go:
๏ Tevatron (Higgs, BSM searches, top physics, and precision EW 

measurements)
๏ Belle (precision B-physics)
๏ RHIC (heavy-ion physics)

✦ The LHC experiments are very successful in all these three areas
✦ Would not be possible without theoretical and phenomenological 

breakthroughs of the past decade:
๏ Higher-order calculations, modern Monte Carlo generators, reduced PDF 

uncertainties
✦ I’ll present a few highlights of the first three years of the LHC 

operations in flavor physics, heavy-ion physics, and the discovery 
program, with the focus on the latter

✦ I’ll emphasize some possible connections to string theory:
๏ Strongly coupled systems (e.g., heavy-ion physics)
๏ The Higgs story and SUSY searches (including dark matter search)
๏ Searches for extra spatial dimensions
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Flavor Physics
✦ The flavor program at the LHC is lead by the dedicated 

LHCb experiment
๏ ATLAS and CMS are significant contributors in selected topics

✦ Among the highlights of the first three years are:
๏ Observation of the χb(3P) quarkonium state - the first new 

particle discovered at the LHC (ATLAS, PRL 108 (2012) 252002) 
as well as Ξb* baryon (CMS, PRL 108 (2012) 152001)

๏ Measurement of Υ(nS), ψ(2S), and J/ψ polarization (CMS, PRL 
110 (2013) 081802; CMS PAS BPH-13-003)

๏ First evidence for the Bs(μμ) decay (LHCb, PRL 110 (2013) 
021801)

๏ First observation of direct CP violation in Bs decays (LHCb, arXiv:
1304.6173)

๏ Strong constraints on new physics in the bottom and charm 
sectors via precision measurement of a number of rare decays

11
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LHCb: Evidence for Bs(μμ)
✦ The quest of many years to find a deviation from the SM 

predictions in the Bs(μμ) decay is coming to an end with the 
first evidence that the decay rate is consistent with the SM 
model

✦ Still awaits confirmation from
ATLAS and CMS

12
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95 % C.L.
LHCb Collaboration

PRL 110 (2013) 021801

3.5 standard
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Bs Oscillations & CPV 
✦ Most precise  determination 

of Bs oscillation parameters 
using the π±Ds∓ mode

✦ First observation of direct 
CPV in the Bs → Kπ decays

✦ No evidence for large CPV in 
Bs → J/ψφ decays

✦ Previous evidence for CPV in  
charm D → ππ, KK decays is 
not confirmed either13
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LHCb

13-18 May 2013 LHCP2013, Barcelona            A. Poluektov. Mixing and CPV 7

B0, B
s
 oscillation frequency (Δm

d
, Δm

S
)

1 fb-1 sample, 2011

● Flavor-tagged 
B0→D‒π+ and B0→J/ψK*0

Measure time-dependent
mixed/unmixed asymmetry

● Bs→Ds
– π+

combine Ds
-→φπ, K*K, 

KKπ, Kππ, πππ modes

LHCb, PLB 719 (2013) 318

LHCb, arXiv:1304.4741

World-best measurement

HFAG(2012):

LHCb Collaboration
arXiv:1304.4741

13-18 May 2013 LHCP2013, Barcelona            A. Poluektov. Mixing and CPV 14

CP violation in B
s
→Kπ

LHCb, 1 fb-1 (2011)

● Flavour-specific decay B(s)→Kπ

● Previous measurements:
CDF: 

HFAG average
(B factories, CDF): 

LHCb-PAPER-2013-018First observation (>5σ) of CP violation in B
s
 system

See talk by C. Santamarina Rios

at HF1 section for details

CDF public note 10726

The most precise single measurement of CP violation in B0 systemLHCb-PAPER-2013-018
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Heavy-Ion Program
✦ Very successful PbPb (2010, 2011) and pPb (2013) runs brought 

wealth of new data and allowed ALICE, ATLAS, and CMS to 
produce unprecedented and very exciting new results:
๏ Detailed studies of jet quenching in PbPb collisions (ATLAS & CMS)
๏ Elliptic flow and multiparticle correlations including studies of the 

“ridge” in pp, pPb, and PbPb collisions
๏ Υ(2S) and Υ(3S) “melting” in PbPb collisions (CMS)
๏ Number of other unique measurements:

✤ W and Z production in PbPb collisions
✤ Jet-photon correlations in PbPb collisions
✤ Nuclear modification factor for b-tagged jet in PbPb collisions

๏ LHCb is now joining the fun with the J/ψ suppression measurement in 
pPb collisions at forward rapidities

✦ Surprising finding: several phenomena that were only seen in 
PbPb collisions, seem to be pronounced in pPb, particularly when 
one matches the final-state multiplicity with that of PbPb

14
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Suppression of high pt D mesons in Pb–Pb collisions at
√sNN = 2.76 TeV 17
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Figure 5: (colour online) Transverse momentum distributions dN/dpt of prompt D0 (left) and D+ (centre), and
D∗+ (right) mesons in the 0–20% and 40–80% centrality classes in Pb–Pb collisions at √sNN = 2.76 TeV. The
reference pp distributions 〈TAA〉 dσ/dpt are shown as well. Statistical uncertainties (bars) and systematic uncer-
tainties from data analysis (empty boxes) and from feed-down subtraction (full boxes) are shown. For Pb–Pb, the
latter includes the uncertainties from the FONLL feed-down correction and from the variation of the hypothesis on
RpromptAA /Rfeed−downAA . Horizontal error bars reflect bin widths, symbols were placed at the centre of the bin.
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Figure 6: (colour online) RAA for prompt D0, D+, and D∗+ in the 0–20% (left) and 40–80% (right) centrality
classes. Statistical (bars), systematic (empty boxes), and normalization (full box) uncertainties are shown. Hori-
zontal error bars reflect bin widths, symbols were placed at the centre of the bin.

may depend on centrality. For the pt interval 6–12 GeV/c, the suppression increases with increasing
centrality. It is interesting to note that the suppression of prompt D mesons at central rapidity and high
transverse momentum, shown in the right-hand panel of Fig. 7 is very similar, both in size and centrality
dependence, to that of prompt J/ψ mesons in a similar pt range and |y| < 2.4, recently measured by the
CMS Collaboration [25].
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Heavy-Ion Highlights
✦ Some of the many heavy-ion highlights from 

the LHC
✦ Plus many more results with exclusive strange 

and charm hadron identification,as well as 
beauty tagging, completely unique to the LHC 
experiments

15
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jets reconstructed using anti-kt algorithm with various distance
parameters; underlying events subtracted

photons detected by electromagnetic calorimeter,
60GeV < p

T,� < 90GeV

as Monte Carlo used PYTHIA pp collisions embedded into minimum
bias HI data

photons corrected for reconstruction e�ciency (⇠85% in peripheral
events, ⇠65% in central)
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I
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J� for jet energy resolution

Petr Balek ATLAS Heavy Ion Results 19 March 2013 25 / 40
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in pPb collisions
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Υ(2S) and Υ(3S) melting
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central collisions 



 S
lid

e 
G

re
g 

La
nd

sb
er

g 
- L

H
C

: P
as

t, 
Pr

es
en

t &
 F

ut
ur

e 
- S

tri
ng

s 
20

13
, S

eo
ul

… and don’t Forget LHCf & TOTEM

✦ LHCf: measurement of particle production in very forward region (8 < y 
< 15)

✦ Important input to cosmic-ray showering Monte Carlo generation
๏ Latest results prefer EPOS 1.99 for forward π0 pT spectrum description 

✦ TOTEM: elastic, inelastic, and total cross section measurements at 7 
and 8 TeV

16
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The Higgs Story

17
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4th of July Fireworks
18
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A New Boson Discovery
19

ATLAS Collaboration / Physics Letters B 716 (2012) 1–29 13

Fig. 7. Combined search results: (a) The observed (solid) 95% CL limits on the signal
strength as a function of mH and the expectation (dashed) under the background-
only hypothesis. The dark and light shaded bands show the ±1σ and ±2σ uncer-
tainties on the background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson signal hypothe-
sis (µ = 1) at the given mass. (c) The best-fit signal strength µ̂ as a function of mH .
The band indicates the approximate 68% CL interval around the fitted value.

582 GeV. The observed 95% CL exclusion regions are 111–122 GeV
and 131–559 GeV. Three mass regions are excluded at 99% CL,
113–114, 117–121 and 132–527 GeV, while the expected exclu-
sion range at 99% CL is 113–532 GeV.

9.2. Observation of an excess of events

An excess of events is observed near mH =126 GeV in the H →
Z Z (∗) → 4" and H → γ γ channels, both of which provide fully
reconstructed candidates with high resolution in invariant mass, as
shown in Figs. 8(a) and 8(b). These excesses are confirmed by the
highly sensitive but low-resolution H → W W (∗) → "ν"ν channel,
as shown in Fig. 8(c).

The observed local p0 values from the combination of channels,
using the asymptotic approximation, are shown as a function of
mH in Fig. 7(b) for the full mass range and in Fig. 9 for the low
mass range.

The largest local significance for the combination of the 7 and
8 TeV data is found for a SM Higgs boson mass hypothesis of
mH = 126.5 GeV, where it reaches 6.0σ , with an expected value
in the presence of a SM Higgs boson signal at that mass of 4.9σ
(see also Table 7). For the 2012 data alone, the maximum local sig-
nificance for the H → Z Z (∗) → 4", H → γ γ and H → W W (∗) →

Fig. 8. The observed local p0 as a function of the hypothesised Higgs boson mass
for the (a) H → Z Z (∗) → 4", (b) H → γ γ and (c) H → W W (∗) → "ν"ν channels.
The dashed curves show the expected local p0 under the hypothesis of a SM Higgs
boson signal at that mass. Results are shown separately for the

√
s = 7 TeV data

(dark, blue in the web version), the
√

s = 8 TeV data (light, red in the web version),
and their combination (black).

Fig. 9. The observed (solid) local p0 as a function of mH in the low mass range.
The dashed curve shows the expected local p0 under the hypothesis of a SM Higgs
boson signal at that mass with its ±1σ band. The horizontal dashed lines indicate
the p-values corresponding to significances of 1 to 6 σ .

eνµν channels combined is 4.9 σ , and occurs at mH = 126.5 GeV
(3.8σ expected).

The significance of the excess is mildly sensitive to uncertain-
ties in the energy resolutions and energy scale systematic uncer-
tainties for photons and electrons; the effect of the muon energy
scale systematic uncertainties is negligible. The presence of these

CMS Collaboration / Physics Letters B 716 (2012) 30–61 41

Fig. 13. The CLs values for the SM Higgs boson hypothesis as a function of the
Higgs boson mass in the range 110–145 GeV. The background-only expectations are
represented by their median (dashed line) and by the 68% and 95% CL bands. (For
interpretation of the references to colour, the reader is referred to the web version
of this Letter.)

Fig. 14. The observed local p-value for 7 TeV and 8 TeV data, and their combination
as a function of the SM Higgs boson mass. The dashed line shows the expected local
p-values for a SM Higgs boson with a mass mH.

7.1. Significance of the observed excess

The consistency of the observed excess with the background-
only hypothesis may be judged from Fig. 14, which shows a scan of
the local p-value for the 7 and 8 TeV data sets and their combina-
tion. The 7 and 8 TeV data sets exhibit an excess of 3.2σ and 3.8σ
significance, respectively, for a Higgs boson mass of approximately
125 GeV. In the overall combination the significance is 5.0σ for
mH = 125.5 GeV. Fig. 15 gives the local p-value for the five decay
modes individually and displays the expected overall p-value.

The largest contributors to the overall excess in the combina-
tion are the γ γ and ZZ decay modes. They both have very good
mass resolution, allowing good localization of the invariant mass
of a putative resonance responsible for the excess. Their com-
bined significance reaches 5.0σ (Fig. 16). The WW decay mode
has an exclusion sensitivity comparable to the γ γ and ZZ decay
modes but does not have a good mass resolution. It has an excess
with local significance 1.6σ for mH ∼ 125 GeV. When added to
the γ γ and ZZ decay modes, the combined significance becomes
5.1σ . Adding the ττ and bb channels in the combination, the final
significance becomes 5.0σ . Table 6 summarises the expected and
observed local p-values for a SM Higgs boson mass hypothesis of
125.5 GeV for the various combinations of channels.

Fig. 15. The observed local p-value for the five decay modes and the overall com-
bination as a function of the SM Higgs boson mass. The dashed line shows the
expected local p-values for a SM Higgs boson with a mass mH.

Fig. 16. The observed local p-value for decay modes with high mass-resolution
channels, γ γ and ZZ, as a function of the SM Higgs boson mass. The dashed line
shows the expected local p-values for a SM Higgs boson with a mass mH.

Table 6
The expected and observed local p-values, expressed as the corresponding number
of standard deviations of the observed excess from the background-only hypothesis,
for mH = 125.5 GeV, for various combinations of decay modes.

Decay mode/combination Expected (σ ) Observed (σ )

γ γ 2.8 4.1
ZZ 3.8 3.2

ττ + bb 2.4 0.5
γ γ + ZZ 4.7 5.0
γ γ + ZZ + WW 5.2 5.1
γ γ + ZZ + WW + ττ + bb 5.8 5.0

The global p-value for the search range 115–130 (110–145) GeV
is calculated using the method suggested in Ref. [115], and corre-
sponds to 4.6σ (4.5σ ). These results confirm the very low proba-
bility for an excess as large as or larger than that observed to arise
from a statistical fluctuation of the background. The excess consti-
tutes the observation of a new particle with a mass near 125 GeV,
manifesting itself in decays to two photons or to ZZ. These two
decay modes indicate that the new particle is a boson; the two-
photon decay implies that its spin is different from one [135,136].

Phys. Lett. B 716 (2012) 1

Phys. Lett. B 716 (2012) 30
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Higgs: 10 Months After
✦ Just a few highlights:

๏ The existence of new particle has been established beyond any doubts; it is 
a 0++ boson responsible for EWSB, as evident from its relative couplings to 
W/Z vs. γ

๏ It’s properties are consistent with those of the SM Higgs boson within 
(sizable) uncertainties

๏ There is mounting evidence (Tevatron, CMS), that it is couples to at least the 
third generation fermions

20

 [GeV]Hm
115 120 125 130 135

0p

-2410

-2110

-1810

-1510

-1210

-910

-610

-310
1

310

610

910

Observed
SM expected

ATLAS Preliminary

-1Ldt = 13-20.7 fb0 = 8 TeV, s

-1Ldt = 4.6-4.8 fb0 = 7 TeV, s

m0
m2
m4

m6

m8

m10

ATLAS-CONF-2013-034

CMS PAS HIG-13-005



 S
lid

e 

)µSignal strength (

  -1  0 +1

Combined

 4l→ 
(*)

 ZZ→H 

γγ →H 

νlν l→ 
(*)

 WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 125.5 GeVHm

 0.21± = 1.43 µ

ATLAS Preliminary

Figure 3: Measurements of the signal strength parameter µ for mH =125.5 GeV for the individual chan-

nels and for their combination.
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Figure 4: Confidence level intervals in the (µ,mH) plane for the H→ZZ(∗)→ 4! and H→ γγ channels and
their combination, including all systematic uncertainties. The markers indicate the maximum likelihood

estimates (µ̂, m̂H) in the corresponding channels.

is specified. The best-fit value for the global signal strength factor µ does not give any direct information

on the relative contributions from different production modes. Furthermore, fixing the ratios of the

production cross sections to the ratios predicted by the SM may conceal tension between the data and the

SM.

Since several Higgs boson production modes are available at the LHC, results shown in two dimen-

sional plots require either some µi to be fixed or several µi to be related. No direct ttH production has

been observed yet, hence µggH and the very small contribution of µttH have been grouped together as they

scale dominantly with the ttH coupling in the SM and are denoted by the common parameter µggF+ttH .
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Higgs Boson Mass
✦ Higgs boson mass:

๏ ATLAS: MH = 125.5 ± 0.2 +0.5-0.6 GeV (0.43% precision)
๏ CMS:    MH = 125.7 ± 0.3 ± 0.3  GeV (0.34% precision)

✦ The Higgs boson mass has been already measured to a better 
precision than the top (or any other quark!) mass (0.50%)

21 ATLAS-CONF-2013-014 CMS PAS HIG-13-005
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Higgs Boson Signal Strength
✦ Consistency with the SM Higgs boson:

๏ ATLAS: µ = 1.30 ± 0.20 @ 125.5 GeV
๏ CMS:    µ = 0.80 ± 0.14 @ 125.7 GeV

22

Has not been updated to the
latest result of 1.00 ± 0.50

CMS PAS HIG-13-005
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Higgs Boson Signal Strength
✦ Consistency with the SM Higgs boson:

๏ ATLAS: µ = 1.30 ± 0.20 @ 125.5 GeV
๏ CMS:    µ = 0.80 ± 0.14 @ 125.7 GeV

22

Has not been updated to the
latest result of 1.00 ± 0.50

■ HIG-13-012
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Higgs Boson Spin
✦ Both ATLAS and CMS strongly prefer JPC = 0++ over the alternatives

๏ Pseudoscalar 0-+ and tensor 2++ hypotheses have been excluded at >3σ 
level by each experiment

23

p(2+) = 0.6%

6.3 Spin-parity measurements 17

loop with quarks, ttH). Two respective signal strength modifiers (µF, µV) are introduced as
scale factors to the SM expected cross section. A two dimensional fit is performed for the two
signal strength modifiers assuming a mass hypothesis of mH = 125.8 GeV. The likelihood is
profiled for all nuisance parameters and a 68% CL is reported by varying the likelihood by
2D lnL = 2.3. Figure 11 (right) shows the result of the (µV , µF) fit leading to the measurements

µV = 1.0+2.4
�2.3 , (3)

µF = 0.9+0.5
�0.4 . (4)

The measured values are consistent with the expectations from the production of a SM Higgs
boson.

6.3 Spin-parity measurements

It is crucial to determine the spin and quantum numbers of the new boson. We follow a sim-
ilar methodology with a kinematic discriminant which includes the description of the inter-
ference of identical leptons in the 4e and 4µ final states, as discussed in Sec. 4, but instead of
the signal-to-background probability ratio we construct the probability ratio for two signal hy-
potheses. The kinematics of the Higgs or exotic boson decay to the ZZ final state is sensitive
to its spin and properties [39, 72–84]. The full-case study has been presented in Refs. [39, 83].
The separation of the SM Higgs boson model and the pseudoscalar (0�) or minimal coupling
spin-2 resonance produced in gluon fusion (2+mgg) has been presented by CMS [12], with data
strongly disfavouring the pure pseudoscalar hypothesis. We expand here the analysis and test
new spin-parity hypotheses with respect to those covered in Ref. [12] and consider the models
JP = 0+, 0+h , 0�, 2+mgg, 2+mqq̄, 1�, 1+, as detailed in Table 3.

Table 3: List of models used in analysis of spin-parity hypotheses corresponding to the pure
states of the type noted. The expected separation is quoted for two scenarios, when the sig-
nal strength for each hypothesis is pre-determined from the fit to data and when events are
generated with SM expectation for the signal yield (µ=1). The observed separation quotes con-
sistency of the observation with the 0+ model or JP model, and corresponds to the scenario
when the signal strength is pre-determined from the fit to data. The last column quotes CLs
criterion for the JP model.

JP production comment expect (µ=1) obs. 0+ obs. JP CLs
0� gg ! X pseudoscalar 2.6s (2.8s) 0.5s 3.3s 0.16%
0+h gg ! X higher dim operators 1.7s (1.8s) 0.0s 1.7s 8.1%
2+mgg gg ! X minimal couplings 1.8s (1.9s) 0.8s 2.7s 1.5%
2+mqq̄ qq̄ ! X minimal couplings 1.7s (1.9s) 1.8s 4.0s <0.1%
1� qq̄ ! X exotic vector 2.8s (3.1s) 1.4s >4.0s <0.1%
1+ qq̄ ! X exotic pseudovector 2.3s (2.6s) 1.7s >4.0s <0.1%

The discriminant for signal hypothesis testing is constructed using the matrix element likeli-
hood approach discussed in Section 4 as follows

DJP =
PSM

PSM + PJP

=

"
1 +

PJP(mZ1, mZ2, ~W|m4`)

PSM(mZ1, mZ2, ~W|m4`)

#�1

, (5)

where PSM is the probability distribution for the SM Higgs boson hypothesis, PJP is the prob-
ability for an alternative model. As input we use the same kinematic observables as discussed
in Section 4, invariant masses mZ1, mZ2 and angles ~W.
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Figure 18: Variation of the medians of the log-likelihood ratio distribution generated for varying frac-
tions of qq̄ in a mixed qq̄ and ggF production for testing the 2+m hypothesis when assuming the spin-0+

hypothesis. Each distribution is generated with more than 500k Monte Carlo experiments. In each exper-
iment the expected numbers of signal and background events are fixed to the observed yields. The blue
and red data points correspond to the median values for the 0+ and 2+m hypotheses, respectively, for each
fraction. The black points represent the log-likelihood values observed in data. The lines connecting the
points are there to guide the eye.

Table 9: For an assumed 0+ hypothesis H0, the values for the expected and observed p0-values of the
di↵erent tested spin and parity hypotheses H1 for the BDT and JP-MELA analyses. The results are given
combining the

p
s = 8 TeV and

p
s = 7 TeVdata sets. Also given is the observed p0-value where 0+ is the

test hypothesis and the other spins states are the assumed hypothesis (observed⇤). These two observed
p0-values are combined to provide the CLS confidence level for each test hypothesis. The production
mode is assumed to be 100% ggF.

BDT analysis JP-MELA analysis
tested JP for tested 0+ for tested JP for tested 0+ for

an assumed 0+ an assumed JP CLS an assumed 0+ an assumed JP CLS
expected observed observed⇤ expected observed observed⇤

0� p0 0.0037 0.015 0.31 0.022 0.0011 0.0022 0.40 0.004
1+ p0 0.0016 0.001 0.55 0.002 0.0031 0.0028 0.51 0.006
1� p0 0.0038 0.051 0.15 0.060 0.0010 0.027 0.11 0.031
2+m p0 0.092 0.079 0.53 0.168 0.064 0.11 0.38 0.182
2� p0 0.0053 0.25 0.034 0.258 0.0032 0.11 0.08 0.116

from the observed p0-values for each alternative JP hypothesis when 0+ is assumed and the p0-value of
the 0+ hypothesis when assuming the alternatives, i.e. as CLS = p0(alternative JP)/(1 � p0(0+)). The
results are shown for both the BDT analysis and for the JP-MELA analysis. These results correspond to
the combined statistics of

p
s = 8 TeV and

p
s = 7 TeV data sets. The profile likelihood is computed

including all sources of systematic uncertainty, and allowing the signal strength µ to vary.
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Higgs Discovery Implications
✦ Light Higgs boson discovery implies that the SM can not 

be a complete theory up to the Planck scale
✦ Vacuum stability arguments require new physics to come 

at a scale ~1011 GeV or less
๏ Curiously points to a similar scale as suggested by the 

neutrino mass hierarchy via see-saw mechanism
✦ Nevertheless, a metastable vacuum could survive w/o 

new physics
✦ The new boson is light enough to be a MSSM Higgs, but 

yet too heavy to obviously prefer MSSM vs. SM!
๏ Had it been just 10% heavier we would have probably 

stopped talking about low-scale SUSY! 
✦ If we found the SM Higgs boson, we now need to explain 

the EWSB mechanism, i.e. what makes the Higgs 
potential what it is (i.e., explain the origin of the λ term in 
the Lagrangian)
๏ It looks more and more like the SM Higgs boson, but there 

is still room for surprises!
✦ In a sense, a 125 GeV Higgs boson is maximally 

challenging and rich experimentally, but also inflicts 
“maximum pain” theoretically, as it is not so easy to 
accommodate
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Just-So Higgs?
✦ The simultaneous measurement of the Higgs boson and top quark masses allowed 

for the first time to infer properties of the very vacuum we leave in!
๏ We are in a highly fine-tuned situation: the vacuum is at the verge of being either stable 

or metastable!
๏ ~1 GeV in either the top-quark or the Higgs boson mass is all it takes to tip the scales!

✦ Perhaps Nature is trying to tell us something here?
๏ Very important to improve on the precision of top quark mass measurements, including 

various complementary methods and reduction of theoretical uncertainties
๏ Tevatron is still leading with the new combined Mt result, but LHC is catching up quickly!

25

Degrassi et al, arXiv:1205.6497
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What Vacuum Do We Live In?

✦ Stable vacuum?

✦ Metastable vacuum?

✦ Unstable vacuum?

26
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And What About New Physics?
27
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q* mass2.46 TeV , 7 TeV [1112.3580]-1=2.1 fbL

)Q/mν = qQκVLQ mass (charge -1/3, coupling 1.12 TeV , 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL

T mass (isospin doublet)790 GeV , 8 TeV [ATLAS-CONF-2013-018]-1=14.3 fbL

b' mass720 GeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

t' mass656 GeV , 7 TeV [1210.5468]-1=4.7 fbL

 gen. LQ massrd3534 GeV , 7 TeV [1303.0526]-1=4.7 fbL

 gen. LQ massnd2685 GeV , 7 TeV [1203.3172]-1=1.0 fbL

 gen. LQ massst1660 GeV , 7 TeV [1112.4828]-1=1.0 fbL

W' mass1.84 TeV , 8 TeV [ATLAS-CONF-2013-050]-1=14.3 fbL

W' mass430 GeV , 7 TeV [1209.6593]-1=4.7 fbL

W' mass2.55 TeV , 7 TeV [1209.4446]-1=4.7 fbL

Z' mass1.8 TeV , 8 TeV [ATLAS-CONF-2013-052]-1=14.3 fbL

Z' mass1.4 TeV , 7 TeV [1210.6604]-1=4.7 fbL

Z' mass2.86 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

 (C=1)Λ3.3 TeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

 (constructive int.)Λ13.9 TeV , 7 TeV [1211.1150]-1=5.0 fbL

Λ7.6 TeV , 7 TeV [1210.1718]-1=4.8 fbL

=6)δ (DM4.11 TeV , 7 TeV [1210.1718]-1=4.7 fbL

=6)δ (DM1.5 TeV , 7 TeV [1204.4646]-1=1.0 fbL

=6)δ (DM1.25 TeV , 7 TeV [1111.0080]-1=1.3 fbL

 mass
KK

g2.07 TeV , 7 TeV [1305.2756]-1=4.7 fbL

 = 1.0)PlM/kGraviton mass (850 GeV , 8 TeV [ATLAS-CONF-2012-150]-1=7.2 fbL

 = 0.1)PlM/kGraviton mass (1.23 TeV , 7 TeV [1208.2880]-1=4.7 fbL

 = 0.1)PlM/kGraviton mass (2.47 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

-1 ~ RKKM4.71 TeV , 7 TeV [1209.2535]-1=5.0 fbL

-1Compact. scale R1.40 TeV , 7 TeV [1209.0753]-1=4.8 fbL

=3, NLO)δ (HLZ SM4.18 TeV , 7 TeV [1211.1150]-1=4.7 fbL

=2)δ (DM1.93 TeV , 7 TeV [1209.4625]-1=4.6 fbL

=2)δ (DM4.37 TeV , 7 TeV [1210.4491]-1=4.7 fbL

Only a selection of the available mass limits on new states or phenomena shown*

-1 = ( 1 - 20) fbLdt∫
 = 7, 8 TeVs

ATLAS
Preliminary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

✦ The Higgs is there, but so far, no sign of new physics, and it’s not like 
we haven’t looked hard!
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And What About New Physics?
27

q* (qg), dijet
q* (qW)
q* (qZ) 

q* , dijet pair
q* , boosted Z

e*, Λ = 2 TeV
μ*, Λ = 2 TeV

0 1 2 3 4 5 6
Z’SSM (ee, µµ)

Z’SSM (ττ)
Z’ (tt hadronic) width=1.2%

Z’ (dijet)
Z’ (tt lep+jet) width=1.2%

Z’SSM (ll) fbb=0.2
G (dijet)

G (ttbar hadronic)
G (jet+MET) k/M = 0.2

G (γγ) k/M = 0.1
G (Z(ll)Z(qq)) k/M = 0.1

W’ (lν)
W’ (dijet)

W’ (td)
W’→ WZ(leptonic)

WR’ (tb)
WR, MNR=MWR/2

WKK μ = 10 TeV
ρTC, πTC > 700 GeV

String Resonances (qg)
s8 Resonance (gg)

E6 diquarks (qq)
Axigluon/Coloron (qqbar)

gluino, 3jet, RPV
0 1 2 3 4 5 6

gluino, Stopped Gluino
stop, HSCP

stop, Stopped Gluino
stau, HSCP, GMSB

hyper-K, hyper-ρ=1.2 TeV
neutralino, cτ<50cm

0 1 2 3 4 5 6

Ms, γγ, HLZ, nED = 3
Ms, γγ, HLZ, nED = 6
Ms, ll, HLZ, nED = 3
Ms, ll, HLZ, nED = 6

MD, monojet, nED = 3
MD, monojet, nED = 6
MD, mono-γ, nED = 3
MD, mono-γ, nED = 6

MBH, rotating, MD=3TeV, nED = 2
MBH, non-rot, MD=3TeV, nED = 2

MBH, boil. remn., MD=3TeV, nED = 2
MBH, stable remn., MD=3TeV, nED = 2

MBH, Quantum BH, MD=3TeV, nED = 2
0 1 2 3 4 5 6Sh. Rahatlou 1

LQ1, β=0.5
LQ1, β=1.0
LQ2, β=0.5
LQ2, β=1.0

LQ3 (bν), Q=±1/3, β=0.0
LQ3 (bτ), Q=±2/3 or ±4/3, β=1.0

stop (bτ)
0 1 2 3 4 5 6

b’ → tW, (3l, 2l) + b-jet
q’, b’/t’ degenerate, Vtb=1

b’ → tW, l+jets
B’ → bZ (100%)
T’ → tZ (100%)

t’ → bW (100%), l+jets
t’ → bW (100%), l+l

0 1 2 3 4 5 6
C.I. Λ , Χ analysis, Λ+ LL/RR
C.I. Λ , Χ analysis, Λ- LL/RR

C.I., µµ, destructve LLIM
C.I., µµ, constructive LLIM

C.I., single e (HnCM)
C.I., single µ (HnCM)

C.I., incl. jet, destructive
C.I., incl. jet, constructive

0 5 10 15

Heavy
Resonances

4th
Generation

Compositeness

Long
Lived

LeptoQuarks

Extra Dimensions 
& Black Holes

Contact 
Interactions

95% CL EXCLUSION LIMITS (TEV)CMS EXOTICA

✦ The Higgs is there, but so far, no sign of new physics, and it’s not like 
we haven’t looked hard!
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28

Extra Dimensions & Dark Matter
✦ Search for large extra dimensions and dark matter in monojet 

and monophoton final states (a la the direct detection 
experiments):
๏ Limits are somewhat model-dependent as they are sensitive to the 

mass of the mediator; yet competitive
๏ Offer unique sensitivity to DM-gluon couplings

✦ Ever Increasing interest since the recent CoGeNT/CRESST 
and CDMS (arXiv:1304.4279) excesses

Direct Detection (t-channel) Collider Searches (s-channel)
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and monophoton final states (a la the direct detection 
experiments):
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mass of the mediator; yet competitive
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✦ Ever Increasing interest since the recent CoGeNT/CRESST 
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(No) Black Holes at the LHC
✦ If the scale of quantum gravity is ~1 TeV, copious production of black holes at the 

LHC is expected [Giddings/Thomas, PRD 65 (2002) 056010; Dimopoulos/GL, PRL 
87 (2001) 161602]
๏ Could be semi-classical (MBH ≫MPl) or quantum (more likely!)
๏ Production cross section: σ ~ 1/RS2 ~ TeV-2 ~ 100 pb (~σtt) 
๏ Signatures: large (semiclassical) or low (quantum) number of very energetic (~1 TeV) 

particles in the final state after evaporation, mostly jets from quark/gluon fragmentation
✦ Excluded semiclassical and quantum black holes with minimum masses ~5 TeV

29
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Figure 5: (Left) The cross section upper limits at 95% CL from the counting experiments opti-

CMS Collaboration, arXiv:1303.5338
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30

SUSY: the Higgs Aftermath
✦ A 125 GeV Higgs boson is challenging to 

accommodate in (over)constrained 
versions of SUSY, particularly for “natural” 
values of superpartner masses 
๏ Started to constrain some of the simpler 

models
✦ Big question: if SUSY exists, can it still be 

“natural”, i.e. offer a non-fine-tuned 
solution to the hierarchy problem
๏ If not, we would be giving up at least one 

of the three SUSY “miracles”

Arbey et al
arXiv:1207.1348

Mahmoudi et al
arXiv:1211.2794
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SuperSymmetry or SuperCemetery?

✦ Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV - 
or did we?

31
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SuperSymmetry or SuperCemetery?

✦ Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV - 
or did we?

31

Read the fine print!
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What SUSY Have We Excluded?

✦ We set strong limits on squarks and gluinos, and yet we have 
not excluded SUSY
๏ Moreover, we basically 

excluded VERY LITTLE!
✦ We ventured for an 

“easy-SUSY” or 
“lazy-SUSY” and we
basically failed to find it
๏ So what? - Nature could

be tough!
✦ What we probed is a tiny

sliver of multidimensional
SUSY space, simply most 
“convenient” from the 
point of view of theory

32
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What SUSY Have We Excluded?

✦ We set strong limits on squarks and gluinos, and yet we have 
not excluded SUSY
๏ Moreover, we basically 

excluded VERY LITTLE!
✦ We ventured for an 

“easy-SUSY” or 
“lazy-SUSY” and we
basically failed to find it
๏ So what? - Nature could

be tough!
✦ What we probed is a tiny

sliver of multidimensional
SUSY space, simply most 
“convenient” from the 
point of view of theory

32

1616

CMS

M. Kazana M. Kazana ““SUSY at CMS”, Cracow, 07.01.2013SUSY at CMS”, Cracow, 07.01.2013

W
arsaw

 P
L

SUSY – not just one modelSUSY – not just one model

● Many possible variationsMany possible variations

● SUSY breaking mechanism:SUSY breaking mechanism:

gravity-, gauge-, anomaly-mediated, …gravity-, gauge-, anomaly-mediated, …

● Long lived sparticles ?Long lived sparticles ?

● Is R-parity = (-1)Is R-parity = (-1)3(B-L)+2S3(B-L)+2S conserved? conserved?

● If not, If not, RPViolating models RPViolating models 

● Wide range of possible Wide range of possible 

signaturessignatures for SUSY to  for SUSY to 

be searched for be searched for 

and and many ways to hidemany ways to hide

● The goal is to find hints of SUSY particles in the LHC range The goal is to find hints of SUSY particles in the LHC range 

 → → New interpretation of results preferredNew interpretation of results preferred
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Implies: light stops/sbottom,
reasonably light gluinos and

charginos/neutralinos
Likely: long-lived particles,

light neutralino, multi-TeV Z’, ...

33

We are at a SUSY Crossroad

✦ Light 125 GeV Higgs boson strongly prefers SUSY as the fundamental explanation 
of the EWSB mechanism (via soft SUSY-breaking terms and radiative corrections)

✦ But what kind of SUSY?

N. Arkani-Hamed
SavasFest 2012
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Natural SUSY

H̃

t̃L
b̃L

t̃R

g̃

natural SUSY decoupled SUSY

W̃

B̃
L̃i, ẽi

b̃R

Q̃1,2, ũ1,2, d̃1,2

FIG. 1: Natural electroweak symmetry breaking constrains the superpartners on the left to be

light. Meanwhile, the superpartners on the right can be heavy, M � 1 TeV, without spoiling

naturalness. In this paper, we focus on determining how the LHC data constrains the masses of

the superpartners on the left.

the main points, necessary for the discussions of the following sections. In doing so, we will

try to keep the discussion as general as possible, without committing to the specific Higgs

potential of the MSSM. We do specialize the discussion to 4D theories because some aspects

of fine tuning can be modified in higher dimensional setups.

In a natural theory of EWSB the various contributions to the quadratic terms of the Higgs

potential should be comparable in size and of the order of the electroweak scale v ⇠ 246 GeV.

The relevant terms are actually those determining the curvature of the potential in the

direction of the Higgs vacuum expectation value. Therefore the discussion of naturalness

7

Papucci, Ruderman, Weiler
arXiv:1110.6926

✦ If SUSY is natural, we should find it soon:
๏ And we most likely will find it by observing 3rd generation SUSY particles 

first!
✦ Requires shifting of the SUSY search paradigm: going for the third 

generation partners, push gluino reach, and look for EW boson partners
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Gluino-Induced: Summary
✦ Summary of current gluino-induced limits on sbottoms and 

stops
๏ Pretty much reached the kinematic limit of ~1.3 TeV on gluino 

production for large fraction of the parameter space
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Direct EW/Sbottom/Stop Production
36

CMS Collaboration 
arXiv:1303.2985
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SUSY Grand Summary
✦ Closing in on the “natural” SUSY, but may be just short the reach
✦ Can we either find natural new physics or rule out naturalness as the 

guiding light to our quest for the origin of EWSB, dark matter, etc.?
✦ Very important to continue the quest for naturalness in SUSY and 

other BSM theories, which requires to explore the full energy potential 
of the LHC

✦ What would it take?
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV
LHCP 2013

 = 7 TeVs
 = 8 TeVs

lspm⋅-(1-x)motherm⋅ = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

Model γ, τ, µe, Jets miss
TE ]-1 [fbLdt∫ Mass limit Reference

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 )g~)=m(q~m( ATLAS-CONF-2013-047
MSUGRA/CMSSM µ1 e, 4 jets Yes 5.8 )g~)=m(q~m( ATLAS-CONF-2012-104
MSUGRA/CMSSM 0 7-10 jets Yes 20.3 )q~any m( ATLAS-CONF-2013-054

0  1χ
∼q→q~, q~q~ 0 2-6 jets Yes 20.3 ) = 0 GeV0   1χ

∼m( ATLAS-CONF-2013-047
0  1χ
∼qq→g~, g~g~ 0 2-6 jets Yes 20.3 ) = 0 GeV0   1χ

∼m( ATLAS-CONF-2013-047
)±  χ

∼qq→g~ (±  χ
∼Gluino med. µ1 e, 2-4 jets Yes 4.7 ))g~)+m(0  1χ

∼) = 0.5(m(±
χ
∼) < 200 GeV, m(0  1χ

∼m( 1208.4688
0  1χ

∼0  1χ
∼qqqqll(ll)→g~g~  (SS)µ2 e, 3 jets Yes 20.7 ) < 650 GeV0  1χ

∼m( ATLAS-CONF-2013-007
 NLSP)l

~
GMSB ( µ2 e, 2-4 jets Yes 4.7  < 15βtan 1208.4688

 NLSP)l
~

GMSB ( τ1-2 0-2 jets Yes 20.7  >18βtan ATLAS-CONF-2013-026
GGM (bino NLSP) γ2 0 Yes 4.8 ) > 50 GeV0  1χ

∼m( 1209.0753
GGM (wino NLSP) γ + µ1 e, 0 Yes 4.8 ) > 50 GeV0  1χ

∼m( ATLAS-CONF-2012-144
GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 ) > 220 GeV0  1χ

∼m( 1211.1167
GGM (higgsino NLSP)  (Z)µ2 e, 0-3 jets Yes 5.8 ) > 200 GeVH

~
m( ATLAS-CONF-2012-152

Gravitino LSP 0 mono-jet Yes 10.5  eV-4) > 10G
~

m( ATLAS-CONF-2012-147

0  1χ
∼bb→g~ 0 3 b Yes 12.8 ) < 200 GeV0  1χ

∼m( ATLAS-CONF-2012-145
0  1χ
∼tt→g~  (SS)µ2 e, 0-3 b No 20.7 ) < 500 GeV0  1χ

∼m( ATLAS-CONF-2013-007
0  1χ
∼tt→g~ 0 7-10 jets Yes 20.3 ) <200 GeV0  1χ

∼m( ATLAS-CONF-2013-054
0  1χ
∼tt→g~ 0 3 b Yes 12.8 ) < 200 GeV0  1χ

∼m( ATLAS-CONF-2012-145
0  1χ
∼b→1b

~
, 1b

~
1b

~
0 2 b Yes 20.1 ) < 100 GeV0  1χ

∼m( ATLAS-CONF-2013-053
±  1χ
∼t→1b

~
, 1b

~
1b

~
 (SS)µ2 e, 0-3 b Yes 20.7 )0  1χ

∼) = 2 m(±  1χ
∼m( ATLAS-CONF-2013-007
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~
1t
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~
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~
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~
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∼m( ATLAS-CONF-2013-035
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∼m( ATLAS-CONF-2013-035

±  1χ
∼ prod., long-lived ±  1χ

∼±  1χ
∼Direct 0 1 jet Yes 4.7 ) < 10 ns±  1χ

∼(τ1 < 1210.2852
, R-hadronsg~Stable µ0-2 e, 0 Yes 4.7 1211.1597

β, low τ
∼GMSB, stable µ2 e, 0 Yes 4.7  < 20β5 < tan 1211.1597

0  1χ
∼,long-lived G

~
γ→0  1χ

∼GMSB, γ2 0 Yes 4.7 ) < 2 ns0  1χ
∼(τ0.4 < 1304.6310

 (RPV)µ qq→ 0  1χ
∼

µ1 e, 0 Yes 4.4  decoupledg~ < 1 m, τ1 mm < c 1210.7451

µe+→τν
∼+X, τν

∼
→LFV pp µ2 e, 0 - 4.6 =0.05132λ=0.10, ,

311λ 1212.1272
τ)+µe(→τν

∼+X, τν
∼

→LFV pp τ + µ1 e, 0 - 4.6 =0.051(2)33λ=0.10, ,
311λ 1212.1272

Bilinear RPV CMSSM µ1 e, 7 jets Yes 4.7  < 1 mmLSPτ), cg~) = m(q~m( ATLAS-CONF-2012-140
eνµ,eµνee→0  1χ

∼, 0  1χ
∼W→+  1χ

∼, -   1χ
∼+  1χ

∼
µ4 e, 0 Yes 20.7  > 0121λ) > 300 GeV, 0  1χ

∼m( ATLAS-CONF-2013-036
τντ,eeνττ→0  1χ

∼, 0  1χ
∼W→+  1χ

∼, -   1χ
∼+  1χ

∼
τ + µ3 e, 0 Yes 20.7  > 0133λ) > 80 GeV, 0  1χ

∼m( ATLAS-CONF-2013-036
 qqq→ g~ 0 6 jets - 4.6 1210.4813

bs→1t
~

t, 1t
~

→g~  (SS)µ2 e, 0-3 b Yes 20.7 ATLAS-CONF-2013-007

Scalar gluon 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826
)χWIMP interaction (D5, Dirac 0 mono-jet Yes 10.5 ) < 80 GeV, limit of < 687 GeV for D8χm( ATLAS-CONF-2012-147
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ATLAS SUSY Searches* - 95% CL Lower Limits
Status: LHCP 2013

ATLAS Preliminary
-1 = (4.4 -  20.7) fbLdt∫  = 7, 8 TeVs

 theoretical signal cross section uncertainty.σ*Only a selection of the available mass limits on new states or phenomena is shown.   All limits quoted are observed minus 1
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LS1 Consolidations
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LHC Dipole Interconnects
✦ Welding, shunting, installation of spacer and shield
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The Ten-Year Plan
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LS1$

PHYSICS'AT'6.5/7'TeV'

LS2$–$Injector$upgrade$

“ULTIMATE”*PHYSICS*(~2.4*x*1034*cm;2s;1)*

LS3$–$HL'LHC$upgrade$
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✦ 2013-2022: 300-400/fb by 2022
✦ 2023-2033: HL-LHC upgrade with leveling at ~5x1034 cm-2s-1?

Luminosity vs. Time

50ns

25ns 25ns
PU: 25@25ns
       50@50ns

PU: 50@25ns
     100@50ns

From Mike Lamont, CMS Upgrade Workshop, January 17, 2013
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HL-LHC: Need for an Upgrade
✦ By 2022, several machine elements will need to be replaced, including triplets
✦ In addition, the LHC luminosity will saturate by then and doubling time becomes too 

long
✦ Detectors will suffer significant radiation 

damage
✦ Time to upgrade to reach L = 1035 cm-2s-1 (but

run with the luminosity leveling at 5x1034 cm-2s-1)

43

Target#parameters#for##
HLMLHC#run#

Efficiency'is'defined'as'the'
raIo'between'the'annual'
luminosity'target'of'250'FA1'
over'the'potenIal'
luminosity'that'can'be'
reached'with'an'ideal'cycle'
run'Ime'with'no'stop'for'
150'days:'trun='tlev+tdec+tturn.'
The'turnaround'Ime'aWer'a'
beam'dump'is'taken'as'5'
hours,'tdecay'is'3'h'while'tlev'
depends'on'the'total'beam'
current'

baseline'

0.E+00

2.E+34

4.E+34

6.E+34

8.E+34

1.E+35

0 2 4 6 8 10 12

Lu
m

in
os

ity
 (c

m
-2

s-1
)

time (hours)

Nominal

1035 - no levelling

Levelling at 5 10

35

34

Target#parameters#for##
HLMLHC#run#

Efficiency'is'defined'as'the'
raIo'between'the'annual'
luminosity'target'of'250'FA1'
over'the'potenIal'
luminosity'that'can'be'
reached'with'an'ideal'cycle'
run'Ime'with'no'stop'for'
150'days:'trun='tlev+tdec+tturn.'
The'turnaround'Ime'aWer'a'
beam'dump'is'taken'as'5'
hours,'tdecay'is'3'h'while'tlev'
depends'on'the'total'beam'
current'

baseline'



 S
lid

e 
G

re
g 

La
nd

sb
er

g 
- L

H
C

: P
as

t, 
Pr

es
en

t &
 F

ut
ur

e 
- S

tri
ng

s 
20

13
, S

eo
ul

Higgs Signal Strength

Green: ICHEP 2012
Red: 300/fb @ 14 TeV
Black: same, w/o theory
uncertaintiesCMS Note 2012-006
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ATLAS Preliminary (Simulation)
 = 14 TeV:s -1Ldt=300 fb∫ ; -1Ldt=3000 fb∫

 extrapolated from 7+8 TeV-1Ldt=300 fb∫

ATLAS-PHYS-PUB-2012-004

Theory
uncertainty
band

✦ 15% precision has been already  achieved 
in the combination

✦ 10-15% precision per channel is achievable 
w/ 300/fb
๏ Effect of theory uncertainties is mostly 

important in the H(γγ) and H(ZZ) channels
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๏ Typical uncertainty: 15% (κV) – 40% (κF)
✦ Crucial to improve this precision to ~5% level or better 

๏ Many BSM Higgs scenarios predict coupling modification at 
that level

Couplings: Where are we Now?

ATLAS-CONF-2013-034

45

C
M

S 
PA

S 
H

IG
-1

3-
00

5



 S
lid

e 

� V g b t ⌧p
s = 14 �1

�1

pp

CV CF

p
s = 14 �1

�1
p

s = 7

�1

� V g b t ⌧p
s = 14 �1

�1 �1

�

V

g

b

t

⌧

�1

G
re

g 
La

nd
sb

er
g 

- L
H

C
: P

as
t, 

Pr
es

en
t &

 F
ut

ur
e 

- S
tri

ng
s 

20
13

, S
eo

ul ✦ Projections up to ~300/fb (~2022) are reasonably straightforward
✦ Two scenarios considered in CMS:

๏ Scenario 1: same systematics as in 2012 - pessimistic
๏ Scenario 2: theory systematics are halved; the rest scale as 1/√L – 

somewhat optimistic

Couplings at the LHC-14

CMS Note 2012-006

2012 systematics
½ theory, 1/√L exp.

Solid: nominal; dashed: no theory systematics

2σ 
1σ
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ul ✦ Projections further out are subject of large 
uncertainties
๏ The exact detector configurations & even the 

technology are not quite known yet
๏ The running conditions have not been defined yet
๏ Theoretical progress in the next decade is hard to 

gauge
✦ Still, in an optimistic “Scenario 2” the HL-LHC 

would allow to do precision Higgs physics with 
individual couplings measured up to 1-3% precision

✦ Also: searches for exotic/invisible Higgs decay as a 
window on new physics

Couplings: Beyond 300 fb-1

CMS Note 2012-006
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Beyond 300 fb-1: More
✦ Need to go significantly beyond 300 fb-1 to study Higgs couplings to 

the muons and top quarks
๏ Muon is the second-generation fermion: are the Higgs couplings flavor-

universal?
✤ Muons offer a possibly unique measurement (charm tagging is hard!)

๏ Are couplings to the up- and down-type quarks have the same structure?

48

The ttH initial state is of special interest, as it yields a precise measurement of the square of the
top-Yukawa coupling, which is otherwise not easily accessible. Figure 1 shows the expected signal
in the ttH 1-lepton final state and Figure 3(a) shows the expected measurement precision.

diphoton mass [GeV]
100 110 120 130 140 150

Ev
en

ts
 / 

G
eV

0

50

100

150

200

250

300

diphoton mass [GeV]
100 110 120 130 140 150

ATLAS Preliminary (Simulation)
-1dt = 3000 fb L

  ∫
 = 14 TeVs

Ev
en

ts
 / 

G
eV

0

50

100

150

200

250

300 ttH
ZH
WH
VBFgg
diphoton
ttbar

Figure 1: Expected �� invariant mass distribution for the tt̄H,H ! �� channel in the 1-lepton selection
for an assumed integrated luminosity of 3000 fb�1 at

p
s =14 TeV.

• H ! µµ: this channel has also a low signal rate at the LHC with a signal-to-background ratio
of only ⇠ 0.2%. However, the expected narrow signal peak allows a signal extraction at very
high luminosities, resulting in an expected signal significance larger than 6� with 3000 fb�1 for
the inclusive channel. The analysis follows Ref. [9] with changes to maximise the sensitivity
for an inclusive µµ signal. Figure 2 shows the expected signal compared to the large continuous
background and Figure 3(a) shows the expected measurement precision.
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Figure 2: Expected invariant mass distribution for the inclusive H ! µµ channel, for an assumed inte-
grated luminosity of 3000 fb�1 at

p
s =14 TeV. The inset shows the expectation for the H ! µµ signal

after the subtraction of the fitted background.
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for an inclusive µµ signal. Figure 2 shows the expected signal compared to the large continuous
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6σ significance

ATLAS-PHYS-PUB-2012-004H → µµ ttH(γγ)
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Beyond 300 fb-1: More
✦ Need to go significantly beyond 300 fb-1 to study Higgs couplings to 

the muons and top quarks
๏ Muon is the second-generation fermion: are the Higgs couplings flavor-

universal?
✤ Muons offer a possibly unique measurement (charm tagging is hard!)

๏ Are couplings to the up- and down-type quarks have the same structure?
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6σ significance CMS PAS HIG-13-015
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First 8 TeV studies are already under way! H → µµ ttH(γγ)
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ul ✦ There are unique measurements, which require to go far 

beyond 300 fb-1:
๏ Establishing H(µµ) decay at >5σ significance and measurement 

of the Hµµ coupling to ~15% level
๏ Measurement of the Higgs self-coupling (cross section for HH 

production is only 33 fb @ 14 TeV)
๏ Observing how the VV scattering amplitudes unitarize in the 

presence of the Higgs boson
✤ Are there other s-channel resonances involved?

✦ Higgs is not the only case for the HL-LHC
๏ Finding massive new physics or ruling out broad class of 

“natural” new physics model and demonstrating that SM is fine 
tuned

๏ Answering the major question if we have entered the “desert” and 
there are no new weakly or strongly interacting states below a few 
TeV

๏ Probing higher energy scales via precision measurements

Strong Case for the HL-LHC
49
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SUSY beyond LHC-14
50
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CMS Note 2012-006

✦ If we find new physics (e.g., SUSY) at the 
LHC-14, we will need to measure masses 
and decay rates precisely to shed light on:
๏ Gaugino mass unification
๏ Squark/slepton unification
๏ SUSY flavor and CP violation
๏ Baryogenesis 
๏ Neutrinos and leptogenesis
๏ String compactification
๏ …

✦ If SUSY is not found at the LHC-14, how far should we push?
๏ Important to test naturalness to the 

limit
๏ Need to go up to ~1 TeV for stops 

and sbottoms
๏ Also target chargino-neutralino pair 

production up to high masses
✤ The latter is not possible at any 

of the foreseen e+e- colliders
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✦ If we find new physics (e.g., SUSY) at the 
LHC-14, we will need to measure masses 
and decay rates precisely to shed light on:
๏ Gaugino mass unification
๏ Squark/slepton unification
๏ SUSY flavor and CP violation
๏ Baryogenesis 
๏ Neutrinos and leptogenesis
๏ String compactification
๏ …

✦ If SUSY is not found at the LHC-14, how far should we push?
๏ Important to test naturalness to the 

limit
๏ Need to go up to ~1 TeV for stops 

and sbottoms
๏ Also target chargino-neutralino pair 

production up to high masses
✤ The latter is not possible at any 

of the foreseen e+e- colliders
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Conclusions
✦ The LHC is the most successful and amazing particle 

accelerator built so far
✦ The first three years of spectacular performance of the 

machine and the detectors brought in the first major discovery 
and a whole new program of precision measurements and 
searches

✦ The LHC is taking a short break till 2015 to come back at the 
~13 TeV energy to explore the Terascale with a full potential

✦ Running beyond 2022 with much x10 higher integrated 
luminosity (HL-LHC) will be needed for detailed studies of the 
Higgs sector and any new physics to be found beforehand

✦ The LHC is a very young machine, and it has a 20+ year long 
exciting program ahead, which is what we need to fully 
explore the properties and the consequences of the new 
particle the LHC has delivered so far!
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