Best arm identification in fixed confidence MABs

Confidence intervals and asymptotic optimality

Jayakrishnan Nair

Department of Electrical Engineering, IIT Bombay

Multi-armed bandit problem

Fundamental problem in online learning: Learn the best among a basket of options (a.k.a., arms) via sequential sampling

Example: Learn option (arm) with highest mean reward

Two flavours of Best Arm Identification (BAI) problem

Fixed budget setting

- Agent/algorithm has fixed budget of n samples/pulls
- After seeing n samples, algorithm outputs estimated best arm \hat{a}
- Goal: Design algorithms with the minimal probability of error, i.e., $P(\hat{a} \neq \text{best arm})$

Fixed confidence setting (this talk)

• After each sample, algorithm must choose

continue sampling stop

• If algorithm stops, say at random stopping time τ algorithm and outputs estimated best arm \hat{a} , we require

$$P(\tau < \infty, \hat{a} \neq 1) \leq \delta$$

prescribed error threshold

Algorithms satisfying this requirement are called sound/ δ -PC Goal: Design sound algorithms with the minimal $E[\tau]$

Fixed confidence setting (this talk)

Algorithm in this setting has three components:

- Stopping rule
- Sampling rule
- Recommendation rule

Broadly, two classes of algorithms

Confidence Interval based

Track & Stop style

Confidence Interval based algorithms

- K arms
- Arm i has reward distribution v_i (1-subGaussian), mean reward μ_i
- Bandit instance is $\nu = (\nu_i, 1 \le i \le K)$
- Assume $\mu_1 > \mu_2 \ge \mu_3 \ge \cdots \mu_K$

Confidence Interval based algorithms

- Maintain (algo computable) confidence intervals on mean of each arm
- Use these to guide both sampling as well as stopping

SubGaussian concentration inequality:

$$P(|\hat{\mu}(t) - \mu| > \epsilon) \le 2 \exp\left(-\frac{t\epsilon^2}{2}\right)$$

$$=> P\left(|\hat{\mu}(t) - \mu| > \sqrt{\frac{2\log(^2/\delta_t)}{t}}\right) \le \delta_t$$

$$\hat{\mu}(t)$$

SubGaussian concentration inequality:

$$P(|\hat{\mu}(t) - \mu| > \epsilon) \le 2 \exp\left(-\frac{t\epsilon^2}{2}\right)$$

$$=> P\left(|\hat{\mu}(t) - \mu| > \sqrt{\frac{2\log(^2/\delta_t)}{t}}\right) \le \delta_t$$

(contains μ with high probability)

Vanilla approach:

Set
$$\delta_t^i = \frac{\delta}{2Kt^2}$$

=> *P*(Confidence intervals ever become `invalid')

$$\leq \sum_{i=1}^{K} \sum_{t=1}^{\infty} \delta_t^i \leq \delta$$

=> **All** confidence intervals remain valid **at all times** w.p. $\geq 1 - \delta$

Similar approach works with other arm distribution families

• In each round, sample two arms:

$$a_{top} = \operatorname{argmax} \hat{\mu}_i \& a_{chl} = \operatorname{argmax}_{i \neq a_{top}} UCB_i$$

• In each round, sample two arms:

$$a_{top} = \operatorname{argmax} \hat{\mu}_i \& a_{chl} = \operatorname{argmax}_{i \neq a_{top}} UCB_i$$

• In each round, sample two arms:

$$a_{top} = \operatorname{argmax} \hat{\mu}_i \& a_{chl} = \operatorname{argmax}_{i \neq a_{top}} UCB_i$$

- Stop sampling when $LCB_{a_{top}} > UCB_j$ for all $j \neq a_{top}$
- Recommend arm a_{top}

- LUCB is δ -PC
- With probability $\geq 1 \delta$, number of pulls prior to stopping is

$$\mathcal{O}\left(\sum_i rac{1}{\Delta_i^2} \mathrm{log}\left(rac{K \log(\Delta_i^{-2})}{\delta}
ight)
ight)$$

where $\Delta_i = \mu_1 - \mu_i$ for $i \neq 1$, $\Delta_1 = \Delta_2$

• Similar bound for the average stopping time

Q: How good is this?

Information theoretic lower bound [Kaufmann et. al, 2016]

MAB instance ν

 $ALT(\nu)$ = set of instances with best arm different from ν

Then for any δ -PC algorithm,

$$E[\tau_{\delta}] \ge C(\nu) \log\left(\frac{1}{4\delta}\right),$$

$$C(\nu)^{-1} = \sup_{w \in \Sigma_K} \inf_{\lambda \in ALT(\nu)} \sum_{i} w_i D(\nu_i, \lambda_i)$$
probability simplex

LUCB vs lower bound

Consider 1-Gaussian instance ν ,

$$2\left(\sum_{i} \frac{1}{\Delta_{i}^{2}}\right) \leq C(\nu) \leq 4\left(\sum_{i} \frac{1}{\Delta_{i}^{2}}\right)$$

$$\Rightarrow E[\tau_{\delta}] \geq 2\left(\sum_{i} \frac{1}{\Delta_{i}^{2}}\right) \log\left(\frac{1}{4\delta}\right)$$

Compare with LUCB bound of
$$\mathcal{O}\left(\sum_i \frac{1}{\Delta_i^2} \log\left(\frac{K \log(\Delta_i^{-2})}{\delta}\right)\right)$$

Matches in loose 'order sense', modulo logarithmic factors

Track & Stop [Kaufmann et. al, 2016]

- Algorithm design motivated by lower bound
- Recall:

$$E[\tau_{\delta}] \ge C(\nu) \log \left(\frac{1}{4 \delta}\right),$$

$$C(\nu)^{-1} = \sup_{w \in \Sigma_K} \inf_{\lambda \in ALT(\nu)} \sum_{i} w_i D(\nu_i, \lambda_i)$$

Turns out: Optimal pull fractions given by $w^*(\nu)$

T&S: Sample so as to $track\ w^*(\hat{\nu})$ instead; forced exploration (give all arms \sqrt{t} pulls until time t) => $\hat{\nu} \rightarrow \nu$ (works best for parametric distribution families)

Track & Stop [Kaufmann et. al, 2016]

- Algorithm design motivated by lower bound
- Recall:

$$E[\tau_{\delta}] \ge C(\nu) \log \left(\frac{1}{4 \delta}\right),$$

$$C(\nu)^{-1} = \sup_{w \in \Sigma_K} \inf_{\lambda \in ALT(\nu)} \sum_{i} w_i D(\nu_i, \lambda_i)$$

Turns out: Optimal pull fractions given by $w^*(\nu)$

T&S: Sample so as to $track\ w^*(\hat{\nu})$ instead; forced exploration (give all arms \sqrt{t} pulls until time t) => $\hat{\nu} \rightarrow \nu$ (works best for parametric distribution families)

maximium likelihood under hypothesis that arm *i* beats arm *j*

maximium likelihood under hypothesis that arm j beats arm i

GLR statistic; captures the extent to which observations "support" arm i beating arm j

Stop when $Z_{i,j}(t) > \beta(t, \delta)$ for all $j \neq i$; recommend arm i

(again, works best for parametric distribution families)

Track & Stop [Kaufmann et. al, 2016]

- δ -PC for a suitable choice of $\beta(t, \delta)$
- T&S is known to be asymptotically optimal:

$$\lim_{\delta \to 0} \frac{E[\tau_{\delta}^{I, \alpha \delta}]}{\text{Info. theoretic lower bound}} = 1$$

Sampling rule ensures asymptotic optimality (does not depend on δ) Stopping rule (GLR based) ensures δ -PC

Confidence Intervals v/s T&S

CI based	T&S style
Broadly applicable	Applicable to parametrized distribution families*
Loose (order sense) stopping time bounds; hard to relate to lower bounds	Explicit interpretable stopping time bounds in asymptotic regime ($\delta \downarrow 0$); asymptotic optimality

Q: Do confidence interval based algorithms admit explicit & interpretable guarantees in the $\delta \downarrow 0$ regime?

On the asymptotic optimality of confidence interval based algorithms for fixed confidence MABs

Kushal Kejriwal, Nikhil Karamchandani and J.N.; AAAI, 2025

LUCB

• In round t, $CI_i = [LCB_i, UCB_i] = [\hat{\mu}_i - r_i, \hat{\mu}_i + r_i]$, where

$$r_i \sim \sqrt{\frac{\log(1/\delta)}{N_i(t-1)}}$$

• Sampling rule:

Pull arm a if $N_a(t-1) < \sqrt{t}$ (forced exploration) Else, pull $a_{top} = \operatorname{argmax} \ \hat{\mu}_i \ \& \ a_{chl} = \operatorname{argmax}_{i \neq a_{top}} UCB_i$

• Stopping rule:

$$LCB_{a_{top}} > UCB_j$$
 for all $j \neq a_{top}$

• Recommend: a_{top}

LUCB

• In round t, $CI_i = [LCB_i, UCB_i] = [\hat{\mu}_i - r_i, \hat{\mu}_i + r_i]$, where

$$r_i \sim \sqrt{\frac{\log(1/\delta)}{N_i(t-1)}}$$

• Sampling rule:

Pull arm a if $N_a(t-1) < \sqrt{t}$ (forced exploration)

included for analytical simplicity

Else, pull $a_{top} = \operatorname{argmax} \ \widehat{\mu}_i \ \& \ a_{chl} = \operatorname{argmax}_{i \neq a_{top}} UCB_i$

• Stopping rule:

$$LCB_{a_{top}} > UCB_j$$
 for all $j \neq a_{top}$

• Recommend: a_{top}

Intuition for the $\delta \downarrow 0$ regime

- Say arm 1 is optimal
- Sample path: Sequence of samples for each arm; can look at different 'copies' of the algorithm running in tandem on same sample path for each value of δ

Note: Sampling process itself is not coupled across δ -contrast with T&S

- As $\delta \downarrow 0$, $\tau_{\delta} \uparrow \infty$, $\hat{\mu}_i \rightarrow \mu$ almost surely (law of large numbers)
- All arm pulls $\propto \log\left(\frac{1}{\delta}\right)$
- Almost surely, after a certain point of time, $a_{top} = 1$

Consider 3 armed instance, $\hat{\mu}_i \approx \mu_i \ \forall \ i$ As we sample,

 $+ LCB_1 \uparrow UCB_{a_{chl}} \uparrow$

 a_{chl} alternates between non-optimal arms

UCBs of non-optimal arms align, decrease in sync
LCB of optimal arm 1

At termination, $LCB_1 \approx UCB_i \ \forall \ i \neq 1$

Separation distance M (asymptotically) invariant as $\delta \downarrow 0$

$$N_1(\tau_\delta) \approx \frac{2}{M^2} \log\left(\frac{1}{\delta}\right) \approx \frac{\tau_\delta}{2}$$

$$N_i(\tau_\delta) \approx \frac{2}{(\Delta_i - M)^2} \log\left(\frac{1}{\delta}\right)$$
 for $i \neq 1$

(radius of CI
$$\sim \sqrt{\frac{\log(1/\delta)}{N_i(t-1)}}$$
)

Separation distance M (asymptotically) invariant as $\delta \downarrow 0$

$$N_1(\tau_\delta) \approx \frac{2}{M^2} \log\left(\frac{1}{\delta}\right) \approx \frac{\tau_\delta}{2}$$

$$\tau(\delta) \sim \frac{4}{M^2} \log\left(\frac{1}{\delta}\right)$$

$$N_i(\tau_\delta) \approx \frac{2}{(\Delta_i - M)^2} \log\left(\frac{1}{\delta}\right) \text{ for } i \neq 1$$

$$\frac{1}{M^2} = \sum_{i=2}^{K} \frac{1}{(\Delta_i - M)^2}$$

Theorem: Under LUCB, almost surely,

$$\limsup_{\delta o 0} rac{t(\delta)}{\log(1/\delta)} \leq rac{4}{M^2}, ext{ where } rac{1}{M^2} = \sum_{i=2}^K \left(rac{1}{\Delta_i - M}
ight)^2$$

Additionally,

$$\lim_{\delta o 0}rac{N_j(t(\delta))}{t(\delta)}=egin{cases} rac{1}{2} & j=1\ rac{1}{2}igg(rac{M}{\Delta_j-M}igg)^2 & j
eq 1 \end{cases}$$

Same scaling for expected stopping time as well

Corollary: Under LUCB,

$$\limsup_{\delta o 0} rac{\mathbb{E}(t(\delta))}{\log(1/\delta)} \leq 12 \left(\sum_{i=1}^K rac{1}{\Delta_i^2}
ight)$$

Specializing to a 1-Gaussian instance, recall

$$E[Stopping Time] \ge 2\left(\sum_{i} \frac{1}{\Delta_i^2}\right) \log\left(\frac{1}{4 \delta}\right)$$

 $\Rightarrow E[\tau(\delta)] \leq 6$ (Info. Theoretic lower bound)

LUCB-Greedy

- Variant of LUCB
- Instead of sampling both $a_{top} \ \& \ a_{chl}$, sample the one that most shrinks gap between $LCB_{a_{top}}$ and $UCB_{a_{chl}}$
 - => sample arm with fewer pulls among $a_{top} \ \& \ a_{chl}$

LUCB-Greedy

Analysis similar to that for LUCB

Difference lies in (asymptotic) point of separation between LCBs and UCBs

Theorem: Under LUCB-Greedy, almost surely,

$$\limsup_{\delta o 0}rac{t(\delta)}{\log(1/\delta)}\leq 2M_g, ext{ where } M_g:=\left(rac{8}{\Delta_2^2}+\sum_{i=3}^Krac{1}{\left(\Delta_i-rac{\Delta_2}{2}
ight)^2}
ight)$$

Same scaling for expected stopping time

For 1-Gaussian instances,

$$E[\tau(\delta)] \leq 4$$
 (Information Theoretic lower bound)

Neither of the upper bounds (for LUCB and LUCB-Greedy) dominates the other

Concluding remarks

ullet CI algorithms admit a `fluid' analysis in the asymptotic regime as $\delta\downarrow 0$

Provides a way to better interpret the behavior of these algorithms

Machinery can be used to analyse/design other CI-based algorithms as well

• Second order analysis for rate of convergence? Finite δ bounds?

Concluding remarks

Asymptotic pull fractions important for (asymptotic) optimality

- Alignment of UCBs of non-optimal arms consistent with lower bound
- Only one relevant degree of freedom: what fraction of pulls to give to optimal arm?
- LUCB over-samples optimal arm, LUCB-greedy under-samples it
- Can design optimal intermediate optimal algorithm?

Best arm identification in fixed confidence MABs

Confidence intervals and asymptotic optimality

Jayakrishnan Nair

Department of Electrical Engineering, IIT Bombay