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Multi-armed bandit problem

Fundamental problem in online learning: Learn the best among a
basket of options (a.k.a., arms) via sequential sampling
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Example: Learn option (arm) with highest mean reward

Two flavours of Best Arm Identification (BAI) problem



Fixed budget setting

* Agent/algorithm has fixed budget of n samples/pulls

* After seeing n samples, algorithm outputs estimated best arm a

* Goal: Design algorithms with the minimal
probability of error, i.e., P(4 # best arm)



Fixed confidence setting (this talk)
continue sampling
/

~

e After each sample, algorithm must choose
stop

* If algorithm stops, say at random stopping time 7 algorithm and outputs
estimated best arm @, we require

Ptr<oo,d#1)<6

\

prescribed error threshold

Algorithms satisfying this requirement are called sound/6-PC
Goal: Design sound algorithms with the minimal E|t|



Fixed confidence setting (this talk)

Algorithm in this setting has three components:
e Stopping rule
 Sampling rule

e Recommendation rule )
Confidence Interval based

/

Broadly, two classes of algorithms
N
Track & Stop style



Confidence Interval based algorithms

* K arms
* Arm i has reward distribution v; (1-subGaussian), mean reward u;

* Banditinstanceisv = (v;,1 < i < K)
* Assume 1 > Uy = U3z = - Uk



Confidence Interval based algorithms

* Maintain (algo computable) confidence intervals on mean of each arm

e Use these to guide both sampling as well as stopping
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SubGaussian concentration inequality:

P(la(t) —pul > €) < 2exp <—§>

2 10g(2/6t)

=>P | |a(t) —ul >




SubGaussian concentration inequality:

P(la(t) —pul > €) < 2exp <—ﬁ)
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contains u w.p. = 1 — 0;

Vanilla approach:

&
Set &, =5

=> P(Confidence intervals ever become “invalid’)
<YL X216 <9

=> All confidence intervals remain valid at all timesw.p. > 1 -6

Similar approach works with other arm distribution families



Th e I_U C B a |gO rlth m [Ralyanakrishnan et. al, 20137

* In each round, sample two arms:
Atop = ArgMax [; & Agp = argmax;zq, UCB;
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Th e I_U C B a |gO rlth m [Ralyanakrishnan et. al, 20137

* In each round, sample two arms:
Atop = ArgMax [; & Agp = argmax;zq, UCB;
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Th e I_U C B a |gO rlth m [Ralyanakrishnan et. al, 20137

* In each round, sample two arms:
Atop = ArgMax [; & Agp = argmax;zq, UCB;

* Stop sampling when LCBatOp > UCB; forall j # a;y,

* Recommend arm a;y,, ﬁ“‘.-z.
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Th e I_U C B a |gO rlth m [Ralyanakrishnan et. al, 20137

* LUCB is -PC
* With probability = 1 — §, number of pulls prior to stopping is

O(Zélog(KlogéA; )))

where A; = uy —pu;fori #1,A; = A,

* Similar bound for the average stopping time

Q: How good is this?



Information theoretic lower bound ckasmam et . 20161

MAB instance v
ALT (v) = set of instances with best arm different from v

Then for any 60-PC algorithm,

Elts] = C(v) log (4—15> ,

C(V)_l = Sup inf z W; D(Vi,/li)
l

AEALT (v)

WEZK\

probability simplex



LUCB vs lower bound

Consider 1-Gaussian instance v,

2(2%) <C) < 4(2%)

= Elts] = 2 (Z %) log <4—15)

Klog(A;?
Compare with LUCB bound of O (Z Alz log ( °8(A; )))

? 1

Matches in loose 'order sense’, modulo logarithmic factors



Tra C k & StO p [KRaufmann et. al, 20167]

* Algorithm design motivated by lower bound
* Recall:

Elts] = C(v) log (415)

C(v) 1 = Sup inf ZWlD(vl,)l)

\
Turns out: Optimal pull fractions given by w*(v)

T&S: Sample so as to track w*(V) instead;
forced exploration (give all arms \/t pulls until time t)=> ¥ - v
(works best for parametric distribution families)
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Tra C k & StO p [Rautmann et. al, 20167]

Zi,j (t) — log

[\ maximium likelihood

‘max £, (x?)]
Adi>j /1( )

max L (x?t)

| Aij>i ]

under hypothesis that
arm [ beatsarm j

maximium likelihood
under hypothesis that
arm j beatsarm i

GLR statistic; captures the extent to which observations
“support” arm i beating arm j

Stop when Z;;(t) > B(t, 6) for allj # i; recommend arm i

(again, works best for parametric distribution families)



Tra C k & StO p [Rautmann et. al, 20167]

* -PC for a suitable choice of (t, 0)

* T&S is known to be asymptotically optimal:
E[7T&S
I [757" ]
im

5—0 Info. theoretic lower bound

1

Sampling rule ensures asymptotic optimality (does not depend on §)
Stopping rule (GLR based) ensures 6-PC



Confidence Intervals v/s T&S

Cl based T&S style

Broadly applicableé Applicable to parametrized distribution
families™

Loose (order sense) Explicit interpretable stopping time bounds
stopping time bounds; |in asymptotic regime (6 | 0); asymptotic
hard to relate to lower |optimality é

bounds

Q: Do confidence interval based algorithms admit explicit &
intferpretable guarantees in the § | 0 regime?



On the asymptotic optimality of confidence interval based algorithms
for fixed confidence MABs

Kushal Kejriwal, Nikhil Karamchandani and J.N.; AAAl, 2025



LUCB

*Inround t, Cl; = [LCB;,UCB;| = |ji; — r;, fi; + 1;], where
_ log("/s)
g N;(t-1)
 Sampling rule:

Pullarm a if N,(t — 1) < +/t (forced exploration)
Else, pull a;,, = argmax fi; & acp = argmax;.q, UCB;

* Stopping rule:
LCBg,,, > UCB; for all j # aop

* Recommend: a;,,



LUCB

*Inround t, Cl; = [LCB;,UCB;| = |ji; — r;, fi; + 1;], where

_ log("/s)
l Ni(t-1)

 Sampling rule: included for

Pull arm a if N, (t — 1) < +/t (forced exploration) |analytical simplicity

Else, pull a;,, = argmax fi; & acp = argmax;.q, UCB;
e Stopping rule:
LCBawp > UCB; for all j # a¢pp

* Recommend: a;,,



Intuition for the 6 1 0 regime

e Sayarm 1is optimal

« Sample path: Sequence of samples for each arm; can look at different
‘copies’ of the algorithm running in tandem on same sample path for
each value of 0

Note: Sampling process itself is not coupled across § -
contrast with T&S

e Asd 10,75 T oo, fi; » ualmostsurely (law of large numbers)

1
* Allarm pulls < log (E)
* Almost surely, after a certain point of time, a;y, =1
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Consider 3 armed instance, [I; = u; Vi
As we sample,

P LCBl T

UCB, 1
a.p; alternates between non-optimal arms

UCBs of non-optimal arms align,
decrease in sync
LCB of optimal arm T

At termination,
LCBy = UCB;Vi+#1
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2 .
N;(t5) = B log (E) fori # 1

invariant as 04,0

log('/5)

(radius of Cl ~ \/

Ni(t—1)

_ Separation distance M (asymptotically)

)



_ Separation distance M (asymptotically)

—) fori #1 =YK

invariant as 04,0
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1= Z(A M)Z



Theorem: Under LUCB, almost surely,

t(9) 4 1 &S 1 2
1 < = where —— —
T Tog(1/8) = M2z’ T Mz Z_; (Ai - M)
Additionally, -
lim Nj(t((s)) = ¢ 2 2 =
2\A, - M

Same scaling for expected stopping time as well



Corollary: Under LUCB,

. E(t(9)) S
lim sup log(1/0) < 12 (Z F)

d—0 i=1 i

Specializing to a 1-Gaussian instance, recall

1 1
L} L} > _ -
E|Stopping Time] = 2( E A?) log (4 6)

[ l

= E|1(6)] < 6 (Info. Theoretic lower bound)



LUCB-Greedy

e Variant of LUCB

* Instead of sampling both a;,, & a.p,

Achl

sample the one that most shrinks gap between LCB and UCB
Atop

=>sample arm with fewer pulls among a;,, & a.p;



LUCB-Greedy

Analysis similar to that for LUCB
Difference lies in (asymptotic) point of separation between LCBs and UCBs




Theorem: Under LUCB-Greedy, almost surely,

lims t(0) < 2M here M S —I—i

im sup < , where = | —

-0 log(1/9) ’ ’ \A% i—3 ( L ﬁ)2/
i T D

Same scaling for expected stopping time

For 1-Gaussian instances,

E[t(6)] < 4 (Information Theoretic lower bound)

Neither of the upper bounds (for LUCB and LUCB-Greedy)
dominates the other



Concluding remarks

* Cl algorithms admit a “fluid’ analysis in the asymptotic regime as 6 1 0
* Provides a way to better interpret the behavior of these algorithms
* Machinery can be used to analyse/design other Cl-based algorithms as well

* Second order analysis for rate of convergence? Finite 6 bounds?



Concluding remarks

Asymptotic pull fractions important for (asymptotic) optimality
* Alignment of UCBs of non-optimal arms consistent with lower bound

* Only one relevant degree of freedom : what fraction of pulls to give to
optimal arm?

* LUCB over-samples optimal arm, LUCB-greedy under-samples it

* Can design optimal intermediate optimal algorithm?
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