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Multi-armed bandit problem

Fundamental problem in online learning: Learn the best among a 
basket of options (a.k.a., arms) via sequential sampling

Example: Learn option (arm) with highest mean reward

unknown reward distributions

Two flavours of Best Arm Identification (BAI) problem



Fixed budget setting

• Agent/algorithm has fixed budget of 𝑛 samples/pulls 

• After seeing 𝑛 samples, algorithm outputs estimated best arm ො𝑎

• Goal: Design algorithms with the minimal 
 probability of error, i.e., 𝑃 ො𝑎 ≠ best arm



Fixed confidence setting (this talk)

• After each sample, algorithm must choose

• If algorithm stops, say at random stopping time 𝜏 algorithm and outputs 
 estimated best arm ො𝑎, we require

𝑃 𝜏 < ∞, ො𝑎 ≠ 1 ≤ 𝛿

Algorithms satisfying this requirement are called sound/𝜹-PC
Goal: Design sound algorithms with the minimal 𝑬[𝝉]

continue sampling

stop

prescribed error threshold



Fixed confidence setting (this talk)

Algorithm in this setting has three components:
• Stopping rule
• Sampling rule
• Recommendation rule

Broadly, two classes of algorithms

Confidence Interval based

Track & Stop style



Confidence Interval based algorithms

• 𝐾 arms

• Arm 𝑖 has reward distribution 𝜈𝑖 (1-subGaussian), mean reward 𝜇𝑖

• Bandit instance is 𝜈 = (𝜈𝑖 , 1 ≤ 𝑖 ≤ 𝐾)

• Assume 𝜇1 > 𝜇2 ≥ 𝜇3 ≥ ⋯ 𝜇𝐾



Confidence Interval based algorithms

• Maintain (algo computable) confidence intervals on mean of each arm

• Use these to guide both sampling as well as stopping

  



SubGaussian concentration inequality:

𝑃 Ƹ𝜇 𝑡 − 𝜇 > 𝜖 ≤ 2 exp −
𝑡𝜖2
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SubGaussian concentration inequality:

𝑃 Ƹ𝜇 𝑡 − 𝜇 > 𝜖 ≤ 2 exp −
𝑡𝜖2

2

=> 𝑃 ො𝜇 𝑡 − 𝜇 >
2 log ൗ2

𝛿𝑡

𝑡
≤ 𝛿𝑡

Ƹ𝜇(𝑡)

confidence interval
(contains 𝜇 with high probability)

upper confidence bound
(UCB)

lower confidence bound
(LCB)



Ƹ𝜇(𝑡)

contains 𝜇 w.p. ≥ 1 − δt

2 log ൗ2
𝛿𝑡

𝑡

Vanilla approach:

Set 𝛿𝑡
𝑖 =

𝛿

2𝐾𝑡2

=> 𝑃 Confidence intervals ever become `invalid′

        ≤ σ𝑖=1
𝐾 σ𝑡=1

∞ 𝛿𝑡
𝑖 ≤ 𝛿

=> All confidence intervals remain valid at all times w.p. ≥ 1 − 𝛿

Similar approach works with other arm distribution families



The LUCB algorithm [Kalyanakrishnan et. al, 2013]

• In each round, sample two arms:
𝑎𝑡𝑜𝑝 = argmax Ƹ𝜇𝑖  & 𝑎𝑐ℎ𝑙 = argmax𝑖≠𝑎𝑡𝑜𝑝 𝑈𝐶𝐵𝑖

𝑎𝑡𝑜𝑝 𝑎𝑐ℎ𝑙
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The LUCB algorithm [Kalyanakrishnan et. al, 2013]

• In each round, sample two arms:
𝑎𝑡𝑜𝑝 = argmax Ƹ𝜇𝑖  & 𝑎𝑐ℎ𝑙 = argmax𝑖≠𝑎𝑡𝑜𝑝 𝑈𝐶𝐵𝑖

• Stop sampling when LCB𝑎𝑡𝑜𝑝
> UCB𝑗  for all 𝑗 ≠ 𝑎𝑡𝑜𝑝

• Recommend arm 𝑎𝑡𝑜𝑝



The LUCB algorithm [Kalyanakrishnan et. al, 2013]

• LUCB is 𝛿-PC

• With probability ≥ 1 − 𝛿, number of pulls prior to stopping is

 where Δ𝑖 = 𝜇1 − 𝜇𝑖 for 𝑖 ≠ 1, Δ1 = Δ2

• Similar bound for the average stopping time

Q: How good is this?



Information theoretic lower bound [Kaufmann et. al, 2016] 

MAB instance 𝜈

𝐴𝐿𝑇 𝜈 = set of instances with best arm different from 𝜈

Then for any 𝛿-PC algorithm, 

𝐸 𝜏𝛿 ≥ 𝐶 𝜈  log
1

4 𝛿
,

𝐶 𝜈 −1 = sup
𝑤 ∈ Σ𝐾

inf
𝜆∈𝐴𝐿𝑇(𝜈)

෍

𝑖

𝑤𝑖  𝐷(𝜈𝑖 , 𝜆𝑖)

probability simplex



LUCB vs lower bound

Consider 1-Gaussian instance 𝜈,

2 ෍

𝑖

1

Δ𝑖
2 ≤ 𝐶 𝜈 ≤ 4 ෍

𝑖

1

Δ𝑖
2

⇒ 𝐸 𝜏𝛿 ≥ 2 ෍

𝑖

1

Δ𝑖
2 log

1

4 𝛿

Compare with LUCB bound of

Matches in loose ‘order sense’, modulo logarithmic factors 



Track & Stop [Kaufmann et. al, 2016]

• Algorithm design motivated by lower bound

• Recall:

𝐸 𝜏𝛿 ≥ 𝐶 𝜈  log
1

4 𝛿
,

𝐶 𝜈 −1 = sup
𝑤 ∈ Σ𝐾

inf
𝜆∈𝐴𝐿𝑇(𝜈)

෍

𝑖

𝑤𝑖  𝐷(𝜈𝑖 , 𝜆𝑖)

Turns out: Optimal pull fractions given by 𝑤∗ 𝜈  

T&S: Sample so as to track 𝑤∗ Ƹ𝜈  instead; 

 forced exploration (give all arms 𝑡 pulls until time 𝑡) =>  Ƹ𝜈 → 𝜈 

(works best for parametric distribution families)
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Track & Stop [Kaufmann et. al, 2016]

Stop when Zi,j t > β(t, δ) for all j ≠ i; recommend arm i

𝑍𝑖,𝑗 𝑡 = log
max
𝜆: 𝑖≻𝑗

ℒ𝜆 𝑥𝑡

max
𝜆:𝑗≻𝑖

ℒ𝜆 𝑥𝑡

maximium likelihood 
under hypothesis that 

arm 𝑖 beats arm 𝑗

maximium likelihood 
under hypothesis that 

arm 𝑗 beats arm 𝑖

GLR statistic; captures the extent to which observations 
 “support” arm 𝑖 beating arm 𝑗

(again, works best for parametric distribution families)



Track & Stop [Kaufmann et. al, 2016]

• 𝛿-PC for a suitable choice of β(t, δ)

• T&S is known to be asymptotically optimal:

lim
𝛿→0

𝐸[𝜏𝛿
𝑇&𝑆]

Info. theoretic lower bound
= 1

Sampling rule ensures asymptotic optimality (does not depend on 𝛿)

Stopping rule (GLR based) ensures 𝛿-PC



Confidence Intervals v/s T&S

CI based T&S style

Broadly applicable Applicable to parametrized distribution 
families* 

Loose (order sense) 
stopping time bounds; 
hard to relate to lower 
bounds

Explicit interpretable stopping time bounds 
in asymptotic regime (𝛿 ↓ 0); asymptotic 
optimality

Q: Do confidence interval based algorithms admit explicit & 
 interpretable guarantees in the 𝛿 ↓ 0 regime?

 



On the asymptotic optimality of confidence interval based algorithms 
for fixed confidence MABs

Kushal Kejriwal, Nikhil Karamchandani and J.N.; AAAI, 2025



LUCB

• In round 𝑡, 𝐶𝐼𝑖 = 𝐿𝐶𝐵𝑖 , 𝑈𝐶𝐵𝑖 = ො𝜇𝑖 − 𝑟𝑖 , ො𝜇𝑖 + 𝑟𝑖 , where 

  𝑟𝑖 ∼
log ൗ1

𝛿

𝑁𝑖(𝑡−1)

• Sampling rule: 

 Pull arm 𝑎 if 𝑁𝑎 𝑡 − 1 < 𝑡 (forced exploration)

 Else, pull 𝑎𝑡𝑜𝑝 = argmax ො𝜇𝑖  & 𝑎𝑐ℎ𝑙 = argmax𝑖≠𝑎𝑡𝑜𝑝 𝑈𝐶𝐵𝑖

• Stopping rule:

 LCB𝑎𝑡𝑜𝑝
> UCB𝑗  for all 𝑗 ≠ 𝑎𝑡𝑜𝑝

• Recommend: 𝑎𝑡𝑜𝑝
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included for 
analytical simplicity



Intuition for the 𝛿 ↓ 0 regime

• Say arm 1 is optimal

• Sample path: Sequence of samples for each arm; can look at different 
`copies’ of the algorithm running in tandem on same sample path for 
each value of 𝛿

 Note: Sampling process itself is not coupled across 𝛿 – 
  contrast with T&S

• As 𝛿 ↓ 0, 𝜏𝛿 ↑ ∞, ො𝜇𝑖 → 𝜇 almost surely (law of large numbers)

• All arm pulls ∝ log
1

𝛿

• Almost surely, after a certain point of time, 𝑎𝑡𝑜𝑝 = 1



Consider 3 armed instance, Ƹ𝜇𝑖 ≈ 𝜇𝑖  ∀ 𝑖
As we sample, 
𝐿𝐶𝐵1  ↑ 
𝑈𝐶𝐵𝑎𝑐ℎ𝑙

↑ 

𝑎𝑐ℎ𝑙 alternates between non-optimal arms

UCBs of non-optimal arms align, 
 decrease in sync
LCB of optimal arm ↑

At termination,
𝐿𝐶𝐵1 ≈ 𝑈𝐶𝐵𝑖  ∀ 𝑖 ≠ 1 



Separation distance 𝑀 (asymptotically)
 invariant as 𝛿↓0

(radius of CI ∼
log ൗ1

𝛿

𝑁𝑖(𝑡−1)
)

𝑁1 𝜏𝛿 ≈
2

𝑀2 log
1

𝛿
≈

𝜏𝛿

2
 

𝑁𝑖 𝜏𝛿 ≈
2

Δ𝑖−𝑀 2 log
1

𝛿
 for 𝑖 ≠ 1 



Separation distance 𝑀 (asymptotically)
 invariant as 𝛿↓0

𝑁1 𝜏𝛿 ≈
2

𝑀2 log
1

𝛿
≈

𝜏𝛿

2
 

𝑁𝑖 𝜏𝛿 ≈
2

Δ𝑖−𝑀 2 log
1

𝛿
 for 𝑖 ≠ 1 

𝜏 𝛿 ∼
4

𝑀2 log
1

𝛿
 

1

𝑀2 = σ𝑖=2
𝐾 1

(Δ𝑖−𝑀)2 



Theorem: Under LUCB, almost surely,

Additionally, 

Same scaling for expected stopping time as well



Corollary: Under LUCB, 

Specializing to a 1-Gaussian instance, recall

𝐸[Stopping Time] ≥ 2 ෍

𝑖

1

Δ𝑖
2 log

1

4 𝛿

⇒ 𝐸 𝜏 𝛿 ≤ 6 (Info. Theoretic lower bound)



LUCB-Greedy

• Variant of LUCB

• Instead of sampling both 𝑎𝑡𝑜𝑝 & 𝑎𝑐ℎ𝑙,

 sample the one that most shrinks gap between 𝐿𝐶𝐵𝑎𝑡𝑜𝑝
 and U𝐶𝐵𝑎𝑐ℎ𝑙

 => sample arm with fewer pulls among 𝑎𝑡𝑜𝑝 & 𝑎𝑐ℎ𝑙



LUCB-Greedy

Analysis similar to that for LUCB

Difference lies in (asymptotic) point of separation between LCBs and UCBs



Theorem: Under LUCB-Greedy, almost surely,

 

For 1-Gaussian instances,

 
𝐸 𝜏 𝛿 ≤ 𝟒 (Information Theoretic lower bound)

Same scaling for expected stopping time

Neither of the upper bounds (for LUCB and LUCB-Greedy) 
dominates the other



Concluding remarks

• CI algorithms admit a `fluid’ analysis in the asymptotic regime as 𝛿 ↓ 0

• Provides a way to better interpret the behavior of these algorithms 

• Machinery can be used to analyse/design other CI-based algorithms as well

• Second order analysis for rate of convergence? Finite 𝛿 bounds?



Concluding remarks

Asymptotic pull fractions important for (asymptotic) optimality
• Alignment of UCBs of non-optimal arms consistent with lower bound

• Only one relevant degree of freedom : what fraction of pulls to give to 
optimal arm?

• LUCB over-samples optimal arm, LUCB-greedy under-samples it

• Can design optimal intermediate optimal algorithm?
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