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IntroducJon	
  

In	
  the	
  last	
  twenty	
  years	
  there	
  has	
  been	
  important	
  
progress	
  in	
  supersymmetric	
  field	
  theory.	
  At	
  the	
  same	
  
Jme,	
  many	
  qualitaJve	
  and	
  quanJtaJve	
  phenomena	
  
remain	
  mysterious.	
  Today,	
  I’d	
  like	
  to	
  discuss	
  an	
  
example	
  of	
  this,	
  which	
  involves	
  a	
  class	
  of	
  theories	
  that	
  
naturally	
  generalizes	
  SQCD	
  and	
  follows	
  an	
  ADE	
  
classificaJon.	
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N=1	
  SQCD	
  is	
  a	
  gauge	
  theory	
  with	
  gauge	
  group	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  flavors	
  of	
  chiral	
  superfields	
  that	
  transform	
  in	
  
the	
  fundamental	
  representaJon	
  of	
  the	
  gauge	
  
group,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  The	
  low	
  energy	
  dynamics	
  of	
  this	
  theory	
  
varies	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  follows:	
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Although	
  the	
  gauge	
  coupling	
  runs	
  with	
  the	
  scale,	
  one	
  
can	
  think	
  of	
  the	
  discrete	
  parameter	
  
	
  
	
  
as	
  a	
  `t	
  Hoob	
  coupling	
  that	
  measures	
  the	
  strength	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
gauge	
  interacJons	
  	
  in	
  the	
  infrared	
  (compare	
  to	
  the	
  `t	
  
Hoob	
  coupling	
  	
  	
  	
  	
  	
  	
  of	
  N=4	
  SYM,	
  and	
  to	
  the	
  discrete	
  
coupling	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  CS	
  theory).	
  	
  	
  

x = Nc/Nf

Nc/k
�



•  For	
  x<1/3,	
  the	
  theory	
  is	
  not	
  asymptoJcally	
  free,	
  
so	
  the	
  IR	
  dynamics	
  is	
  free,	
  like	
  in	
  (massless)	
  QED.	
  

•  For	
  1/3<x<2/3,	
  the	
  gauge	
  interacJons	
  are	
  non-­‐
vanishing	
  in	
  the	
  IR,	
  and	
  the	
  theory	
  approaches	
  a	
  
non-­‐trivial	
  fixed	
  point.	
  As	
  x	
  increases,	
  this	
  fixed	
  
point	
  becomes	
  more	
  strongly	
  coupled,	
  which	
  
means	
  that	
  the	
  scaling	
  dimensions	
  of	
  operators	
  
deviate	
  further	
  from	
  their	
  free	
  values.	
  	
  

•  For	
  x>2/3,	
  the	
  descripJon	
  of	
  the	
  IR	
  theory	
  in	
  
terms	
  of	
  the	
  original	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  degrees	
  of	
  freedom	
  
breaks	
  down	
  and	
  one	
  needs	
  to	
  find	
  an	
  alternaJve	
  
one.	
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Seiberg	
  proposed	
  such	
  a	
  descripJon,	
  in	
  terms	
  of	
  a	
  dual	
  
theory,	
  similar	
  to	
  the	
  original	
  one,	
  with	
  gauge	
  
group	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  similar	
  charged	
  majer,	
  and	
  
singlet	
  meson	
  fields	
  M,	
  dual	
  to	
  the	
  electric	
  gauge	
  
invariant	
  chiral	
  operators	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  are	
  
coupled	
  to	
  the	
  magneJc	
  quarks	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  via	
  the	
  
superpotenJal	
  	
  
	
  
	
  
	
  

SU(Nf �Nc)

M = Q̃Q
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The	
  rank	
  of	
  the	
  magneJc	
  gauge	
  group	
  implies	
  that	
  
the	
  magneJc	
  `t	
  Hoob	
  coupling	
  is	
  	
  
	
  
	
  
	
  
Thus,	
  as	
  the	
  electric	
  theory	
  becomes	
  more	
  strongly	
  
coupled,	
  the	
  magneJc	
  one	
  becomes	
  more	
  weakly	
  
coupled.	
  In	
  parJcular,	
  it	
  provides	
  a	
  weakly	
  coupled	
  
descripJon	
  of	
  the	
  problemaJc	
  region	
  x>2/3.	
  	
  
	
  
Conversely,	
  the	
  electric	
  theory	
  provides	
  a	
  weakly	
  
coupled	
  descripJon	
  of	
  the	
  magneJc	
  theory	
  when	
  
the	
  lajer	
  is	
  strongly	
  coupled.	
  

xm =
Nf �Nc

Nf
= 1� x



N=1	
  SQCD	
  has	
  a	
  family	
  of	
  generalizaJons	
  obtained	
  by	
  
adding	
  to	
  the	
  theory	
  an	
  adjoint	
  chiral	
  superfield	
  X	
  with	
  
superpotenJal	
  	
  
	
  
	
  
with	
  k=1,	
  2,	
  3,	
  …	
  	
  	
  	
  	
  
	
  
For	
  k=1,	
  the	
  adjoint	
  superfield	
  is	
  massive,	
  and	
  can	
  be	
  
integrated	
  out,	
  leading	
  back	
  to	
  SQCD.	
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For	
  k=2,	
  the	
  superpotenJal	
  W	
  is	
  marginal.	
  Gauge	
  
interacJons	
  make	
  it	
  relevant	
  for	
  all	
  x>1/2;	
  thus	
  
adding	
  W	
  to	
  the	
  Lagrangian	
  leads	
  to	
  a	
  non-­‐trivial	
  
fixed	
  point.	
  
	
  
For	
  k>2,	
  the	
  superpotenJal	
  is	
  superficially	
  
irrelevant,	
  however	
  it	
  turns	
  out	
  that	
  for	
  sufficiently	
  
large	
  x,	
  gauge	
  interacJons	
  reduce	
  its	
  dimension	
  
enough	
  that	
  it	
  become	
  relevant	
  in	
  the	
  IR	
  for	
  all	
  k.	
  	
  
	
  
A	
  stable	
  supersymmetric	
  vacuum	
  only	
  exists	
  in	
  the	
  
range	
  	
  
	
  
	
  

x  k



The	
  strong	
  coupling	
  region	
  is	
  bejer	
  described	
  in	
  terms	
  
of	
  a	
  dual	
  theory	
  with	
  the	
  following	
  properJes:	
  
•  Gauge	
  group:	
  

•  Charged	
  majer	
  fields:	
  	
  

•  Gauge	
  singlet	
  mesons:	
  	
  

•  MagneJc	
  superpotenJal:	
  	
  

•  MagneJc	
  `t	
  Hoob	
  coupling:	
  	
  

SU(kNf �Nc)

q, q̃, bX

1. Introduction

Shortly after Seiberg’s work on the infrared behavior of N = 1 supersymmetric QCD,

and in particular his discovery of strong-weak coupling duality in this theory [1], it was

pointed out [2-4] that there is an infinite family of generalizations of SQCD that has similar

properties. These theories have gauge group SU(Nc), Nf flavors of chiral superfields Q, eQ
that transform in the (anti) fundamental representation of the gauge group and a chiral

superfield X that transforms in the adjoint representation, with superpotential

W = s0TrX
k+1 . (1.1)

Here k is a positive integer, and s0 is a coupling. Naively, this coupling is irrelevant for

k > 2 and thus flows to zero in the IR. However it was argued in [2-4] that for su�ciently

small Nf it actually influences the infrared behavior for all k, presumably because the

quantum scaling dimension of the operator (1.1) is reduced by the gauge interaction. The

detailed mechanism for this was not understood until much later, but these theories were

conjectured to have the following properties:

(1) A stable supersymmetric vacuum for

Nc  kNf . (1.2)

(2) A dual description in terms of a “magnetic” theory with gauge group SU(kNf �Nc),

Nf chiral superfields in the (anti) fundamental representation qi, eqi, an adjoint field

bX, and k gauge singlets Mj , j = 1, · · · , k, which transform in the bifundamental

representation of the SU(Nf ) ⇥ SU(Nf ) flavor group. The magnetic superpotential

takes the form

W ⇠ Tr bXk+1 +
kX

j=1

Mjeq bXk�jq (1.3)

where we omitted the coe�cients of the di↵erent terms. The duality relates electric

and magnetic chiral operators,

eQXj�1Q $ Mj , TrXj $ Tr bXj . (1.4)

For k = 1, the electric and magnetic adjoint fields X, bX are massive, and the duality

of [2-4] reduces to that of [1].

1

Mj $ eQXj�1Q

xm = k � x



The	
  study	
  of	
  the	
  theories	
  with	
  the	
  adjoint	
  X	
  revealed	
  a	
  
relaJon	
  to	
  mathemaJcal	
  singulariJes	
  of	
  type	
  	
  	
  	
  	
  	
  	
  .	
  This	
  
point	
  of	
  view	
  was	
  parJcularly	
  helpful	
  when	
  analyzing	
  
deformaJons	
  of	
  the	
  adjoint	
  superpotenJal.	
  
	
  
J.	
  Brodie	
  further	
  developed	
  this	
  relaJon	
  	
  by	
  asking	
  
what	
  happens	
  if	
  one	
  replaces	
  the	
  A-­‐series	
  singularity	
  
with	
  a	
  D-­‐series	
  one.	
  	
  

Ak



There	
  are	
  now	
  two	
  adjoints,	
  X	
  and	
  Y,	
  and	
  superpotenJal	
  
	
  
	
  
	
  
Brodie	
  found	
  a	
  very	
  similar	
  structure	
  to	
  the	
  A-­‐series,	
  but	
  
with	
  important	
  new	
  elements.	
  
	
  	
  

(3) The infrared behavior of these theories appears to be related to the study of math-

ematical singularities, a point of view that was particularly helpful when analyzing

deformations of the superpotential (1.1) [4].

The last point was further developed in [5]. Viewing the superpotential (1.1) as corre-

sponding to an Ak singularity, J. Brodie asked what happens if one replaces it with a

Dk+2 one,

W ⇠ Tr
�
Xk+1 +XY 2

�
. (1.5)

He found a very similar structure to the Ak case. There is again a lower bound on the

number of flavors for which a stable supersymmetric vacuum exists,

Nc  3kNf (1.6)

and a dual description in terms of a magnetic theory with gauge group SU(3kNf � Nc)

with the same charged matter, coupled to 3k singlet mesons

Mlj = eQX l�1Y j�1Q ; l = 1, · · · , k; j = 1, 2, 3 (1.7)

via the superpotential

W ⇠ Tr bXk+1 +Tr bX bY 2 +
kX

`=1

3X

j=1

M`jeq bXk�` bY 3�jq . (1.8)

This example includes two new elements compared to the Ak case. One involves the matrix

nature of the adjoint superfields. Although the superpotentials (1.1), (1.5) look like the

corresponding potential functions in singularity theory, they are functions of Nc ⇥ Nc

matrices rather than single variables. In the Ak case this distinction does not play a major

role, since one can use the gauge symmetry and D-term constraints to diagonalize X, and

view the superpotential (1.1) as a function of its eigenvalues. The D-series involves two

massless adjoints, X and Y , and while one can use the above constraints to diagonalize

one of them, one cannot diagonalize both at the same time. Thus, the D-series is the first

case in which the matrix nature of the variables appearing in the superpotential plays a

non-trivial role.

The second new element in the work of [5] is the notion of quantum constraints on

the chiral ring. Such constraints appeared already in the Ak case (see e.g. [4]), but they

play a more central role in the D-series. Since similar constraints will feature prominently

in our discussion below, we next briefly review the main idea.

2
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The	
  similar	
  part:	
  
	
  
•  For	
  general	
  k,	
  the	
  naively	
  irrelevant	
  superpotenJal	
  for	
  X	
  
actually	
  becomes	
  relevant	
  for	
  sufficiently	
  strong	
  coupling.	
  

•  An	
  upper	
  bound	
  on	
  the	
  coupling	
  x,	
  above	
  which	
  no	
  stable	
  
SUSY	
  vacuum	
  exists,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  

	
  
•  A	
  dual	
  descripJon	
  of	
  	
  the	
  infrared	
  dynamics	
  in	
  terms	
  of	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
gauge	
  theory	
  with	
  gauge	
  group	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  charged	
  
fields	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  singlet	
  mesons	
  	
  

x  3k

SU(3kNf �Nc)

q, eq, bX, bY
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The	
  new	
  elements:	
  
	
  
•  The	
  matrix	
  nature	
  of	
  the	
  adjoint	
  fields	
  X,	
  Y:	
  In	
  the	
  
A	
  series,	
  at	
  low	
  energies	
  one	
  can	
  use	
  the	
  gauge	
  
symmetry	
  and	
  D-­‐term	
  constraints	
  to	
  diagonalize	
  
the	
  adjoint	
  field	
  X,	
  and	
  study	
  the	
  dynamics	
  of	
  the	
  
eigenvalues.	
  In	
  the	
  D	
  series,	
  we	
  have	
  two	
  
massless	
  adjoints,	
  which	
  cannot	
  	
  be	
  diagonalized	
  
at	
  the	
  same	
  Jme.	
  This	
  leads	
  to	
  sJll	
  unresolved	
  
complicaJons	
  in	
  the	
  analysis	
  of	
  the	
  vacuum	
  
structure	
  of	
  the	
  theory	
  in	
  the	
  presence	
  of	
  general	
  
deformaJons	
  of	
  the	
  superpotenJal.	
  



•  Quantum	
  constraints	
  on	
  chiral	
  operators:	
  the	
  F-­‐term	
  
constraints	
  of	
  the	
  D-­‐series	
  superpotenJal	
  are	
  	
  

	
  
Naively,	
  one	
  can	
  use	
  these	
  to	
  construct	
  chiral	
  operators	
  
of	
  the	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  

This	
  looks	
  incompaJble	
  with	
  Brodie’s	
  duality,	
  according	
  
to	
  which	
  only	
  operators	
  with	
  j=1,	
  2,	
  3	
  should	
  survive.	
  

The F-term constraints of the superpotential (1.5) are1

Xk = Y 2 ; {X,Y } = 0 . (1.9)

Chiral operators are constructed from dressed quarks, ⇥Q, where ⇥ = ⇥(X,Y ) is a poly-

nomial in the adjoint fields, which satisfies the constraints (1.9). Superficially, these con-

straints lead to the infinite set

⇥lj = X l�1Y j�1 ; l = 1, · · · , k ; j = 1, 2, · · · . (1.10)

For odd k the set (1.10) is actually further truncated to a finite one, since Y 3 = 0. Indeed,

using the F-term constraints (1.9) one has Y 3 = Y · Y 2 = Y · Xk = �Xk · Y = �Y 3.

Thus, the index j in (1.10) runs only over the values j = 1, 2, 3, in agreement with the

fact that Brodie’s duality only requires mesons with these quantum numbers (1.7), and

baryons made of the corresponding truncated set of dressed quarks.

For even k this truncation appears to be absent, which is puzzling since the duality of

[5] is expected to be valid for both even and odd k (e.g. because one can flow from odd to

even k by deforming the adjoint superpotential by relevant operators). The solution to this

conundrum proposed in [5] was that for even k the constraint Y 3 = 0 appears quantum

mechanically, so that the truncation to j  3 in (1.10) is the same for even and odd k in

the quantum theory, but not in the classical one.

The origin of this quantum constraint in theories with even k is not well understood.

This is related to the fact that the vacuum structure of the theory with a general super-

potential W (X,Y ) obtained by a relevant deformation of the Dk+2 superpotential (1.5) is

not fully understood either. For the Ak case this analysis is easier, essentially because the

single matrix X can be diagonalized [2-4], while for the D-series the non-abelian structure

comes into play.

The understanding of RG flow in theories of the sort described above improved signif-

icantly with the advent of a-maximization [6]. In particular, it was shown in [6,7] that the

gauge theory with one adjoint superfield X and no superpotential indeed has the property

anticipated in [3], that as Nc/Nf increases, the dimension of the chiral operator (1.1) de-

creases in such a way that eventually it becomes relevant for all k(< Nc). It was also shown

1 Here and below we often neglect the contributions of Lagrange multipliers enforcing the

tracelessness of X, Y , which do not change the qualitative structure of what follows. We also pick

a convenient relative normalization of the fields X and Y .

3
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The F-term constraints of the superpotential (1.5) are1

Xk = Y 2 ; {X,Y } = 0 . (1.9)

Chiral operators are constructed from dressed quarks, ⇥Q, where ⇥ = ⇥(X,Y ) is a poly-

nomial in the adjoint fields, which satisfies the constraints (1.9). Superficially, these con-

straints lead to the infinite set

⇥lj = X l�1Y j�1 ; l = 1, · · · , k ; j = 1, 2, · · · . (1.10)

For odd k the set (1.10) is actually further truncated to a finite one, since Y 3 = 0. Indeed,

using the F-term constraints (1.9) one has Y 3 = Y · Y 2 = Y · Xk = �Xk · Y = �Y 3.

Thus, the index j in (1.10) runs only over the values j = 1, 2, 3, in agreement with the

fact that Brodie’s duality only requires mesons with these quantum numbers (1.7), and

baryons made of the corresponding truncated set of dressed quarks.

For even k this truncation appears to be absent, which is puzzling since the duality of

[5] is expected to be valid for both even and odd k (e.g. because one can flow from odd to

even k by deforming the adjoint superpotential by relevant operators). The solution to this

conundrum proposed in [5] was that for even k the constraint Y 3 = 0 appears quantum

mechanically, so that the truncation to j  3 in (1.10) is the same for even and odd k in

the quantum theory, but not in the classical one.

The origin of this quantum constraint in theories with even k is not well understood.

This is related to the fact that the vacuum structure of the theory with a general super-

potential W (X,Y ) obtained by a relevant deformation of the Dk+2 superpotential (1.5) is

not fully understood either. For the Ak case this analysis is easier, essentially because the

single matrix X can be diagonalized [2-4], while for the D-series the non-abelian structure

comes into play.

The understanding of RG flow in theories of the sort described above improved signif-

icantly with the advent of a-maximization [6]. In particular, it was shown in [6,7] that the

gauge theory with one adjoint superfield X and no superpotential indeed has the property

anticipated in [3], that as Nc/Nf increases, the dimension of the chiral operator (1.1) de-

creases in such a way that eventually it becomes relevant for all k(< Nc). It was also shown

1 Here and below we often neglect the contributions of Lagrange multipliers enforcing the

tracelessness of X, Y , which do not change the qualitative structure of what follows. We also pick

a convenient relative normalization of the fields X and Y .
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For	
  odd	
  k	
  it’s	
  actually	
  OK,	
  since	
  one	
  can	
  use	
  the	
  F-­‐term	
  
equaJons	
  to	
  conclude	
  that	
  	
  
	
  
	
  
	
  
For	
  even	
  k,	
  the	
  situaJon	
  is	
  more	
  puzzling.	
  On	
  the	
  one	
  
hand,	
  at	
  least	
  classically	
  the	
  constraint	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  not	
  
valid,	
  but	
  on	
  the	
  other	
  it	
  is	
  required	
  by	
  the	
  duality.	
  	
  
	
  
Brodie	
  	
  proposed	
  that	
  in	
  that	
  case,	
  the	
  constraint	
  
appears	
  quantum	
  mechanically,	
  although	
  its	
  origin	
  is	
  
not	
  well	
  understood.	
  	
  
	
  

Y 3 = Y · Y 2 = Y ·Xk = �Xk · Y = �Y 3 = 0

Y 3 = 0



The	
  understanding	
  of	
  the	
  above	
  theories	
  improved	
  
significantly	
  aber	
  the	
  advent	
  of	
  a-­‐maximizaJon	
  (by	
  K.	
  
Intriligator	
  and	
  B.	
  Wecht)	
  in	
  2003.	
  These	
  authors	
  
classified	
  all	
  possible	
  fixed	
  points	
  that	
  can	
  be	
  obtained	
  
in	
  N=1	
  supersymmetric	
  gauge	
  theory	
  with	
  SU(N)	
  gauge	
  
group	
  and	
  majer	
  in	
  the	
  fundamental	
  and	
  adjoint	
  
representaJons.	
  	
  

ADE	
  



They	
  showed	
  that	
  such	
  fixed	
  points	
  have	
  an	
  ADE	
  
classificaJon:	
  
	
  

in these papers that the properties of adjoint SQCD are consistent with the dualities of

[2-4] and with the a-theorem.

An important step in uncovering the ADE structure underlying the results of [2-5] was

taken in [8]. These authors used the techniques of [6,7] to classify all possible non-trivial

fixed points of N = 1 supersymmetric SU(Nc) gauge theory with Nf fundamentals Qi, eQi

and Na adjoints X↵ that preserve the global SU(Nf ) ⇥ SU(Nf ) symmetry acting on the

quarks. For Na > 3 the gauge theory is not asymptotically free and thus is expected to

be trivial in the infrared. For Na = 3 interacting theories can only occur at Nf = 0 (for

the same reason), which from the general perspective is an isolated case. Thus, to have a

non-trivial infrared behavior for non-zero Nf one must take Na = 2 (or smaller).

The authors of [8] considered models with two adjoint chiral superfields X and Y ,with

superpotential W = W (X,Y ), and a tunable number of fundamentals Nf . Interestingly,

they found that non-trivial fixed points correspond to superpotentials with an ADE struc-

ture,
bO WbO = 0
bA WbA = TrY 2

bD WbD = TrXY 2

bE WbE = TrY 3

Ak WAk = Tr(Xk+1 + Y 2)
Dk+2 WDk+2 = Tr(Xk+1 +XY 2)
E6 WE6 = Tr(Y 3 +X4)
E7 WE7 = Tr(Y 3 + Y X3)
E8 WE8 = Tr(Y 3 +X5) .

(1.11)

These models naturally split into two classes. The first four ( bO, bA, bD, bE) are fixed points

that exist for all Nf satisfying the asymptotic freedom bound,2 Nf < Nc, and can be

thought of as UV ancestors of the rest. We will not discuss them further here. The last

five have an ADE structure very reminiscent of that of mathematical singularities.

The Ak and Dk+2 theories in (1.11) were discussed above. The exceptional ones are

new, and much about them remains mysterious. In particular:

(1) The A and D series fixed points only exist when the number of flavors is above a

certain critical value, Nf � N
(cr)
f , (1.2), (1.6). As we discuss below, there are reasons

to believe that the same is true for the exceptional theories, but the bound is not

known.

2 The b
A theory can be thought of as having one adjoint superfield, X, and thus is asymptoti-

cally free for Nf < 2Nc.
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•  The	
  ADE	
  classificaJon	
  is	
  due	
  to	
  gauge	
  dynamics.	
  

•  The	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  theories	
  are	
  interesJng,	
  but	
  we	
  will	
  
not	
  discuss	
  them	
  further	
  today.	
  

	
  
•  The	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  theories	
  are	
  those	
  reviewed	
  above.	
  	
  

•  	
  Our	
  goal	
  in	
  the	
  rest	
  of	
  this	
  talk	
  will	
  be	
  to	
  try	
  	
  to	
  
understand	
  the	
  excepJonal	
  theories.	
  	
  

	
  

bO, bA, bD, bE

Ak, Dk



The	
  transformaJon	
  properJes	
  of	
  the	
  various	
  gauge	
  
theory	
  fields	
  under	
  the	
  symmetries	
  are:	
  

One might hope to see the quantum constraint Y 3 = 0 explicitly in the index by

expanding it to appropriate order in the fugacities. Unfortunately, the presence or absence

of this constraint is obscured by the appearance of many operators at the same order as

Y 3. We discuss the details in Appendix B.

4. E
7

The E
7

theory is again N = 1 SQCD with two adjoint chiral superfields X,Y , but

with the superpotential

W = TrY 3 +TrY X3 . (4.1)

This determines the R-charges of the fields to be those listed in Table 5. The corresponding

single-particle index (1.5) is given by eq. (3.2) but with rX , rY , rQ taking the values from

Table 5.

Field SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q f f 1 1 1� 1

9

Nc
Nf

eQ f 1 f �1 1� 1

9

Nc
Nf

V adj. 1 1 0 0

X adj. 1 1 0 4

9

Y adj. 1 1 0 2

3

Table 5: The field content of the E
7

electric theory.

In [7] we proposed a magnetic dual description for this theory, that has gauge group

SU(30kNf �Nc), coupled to thirty singlet mesons Mj $ eQ⇥j(X,Y )Q, j = 1, . . . , 30 via a

superpotential similar to (3.4). The specific form of the ⇥j(X,Y )’s as ordered products of

X,Y can be found in [7]. As with the Dk+2

theories with even k, the classical chiral ring is

larger. In particular, the number of operators ⇥j that can be used to make chiral mesons

is larger than thirty (and depends on Nc). In [7] we proposed a quantum constraint on the

chiral ring of the electric theory, that truncates this classical set to the thirty operators

compatible with the duality. To provide further evidence for the validity of this constraint,

we would like to repeat the discussion of the A and D series for this case.
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•  The	
  superpotenJal	
  for	
  the	
  adjoints	
  is	
  
	
  

•  	
  The	
  F-­‐term	
  constraints	
  that	
  follow	
  from	
  this	
  
superpotenJal	
  	
  are	
  

•  Classical	
  chiral	
  meson	
  operators	
  take	
  the	
  
form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  with	
  	
  

One might hope to see the quantum constraint Y 3 = 0 explicitly in the index by

expanding it to appropriate order in the fugacities. Unfortunately, the presence or absence

of this constraint is obscured by the appearance of many operators at the same order as

Y 3. We discuss the details in Appendix B.

4. E
7

The E
7

theory is again N = 1 SQCD with two adjoint chiral superfields X,Y , but

with the superpotential

W = TrY 3 +TrY X3 . (4.1)

This determines the R-charges of the fields to be those listed in Table 5. The corresponding

single-particle index (1.5) is given by eq. (3.2) but with rX , rY , rQ taking the values from

Table 5.

Field SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q f f 1 1 1� 1

9

Nc
Nf

eQ f 1 f �1 1� 1

9

Nc
Nf

V adj. 1 1 0 0

X adj. 1 1 0 4

9

Y adj. 1 1 0 2

3

Table 5: The field content of the E
7

electric theory.

In [7] we proposed a magnetic dual description for this theory, that has gauge group

SU(30kNf �Nc), coupled to thirty singlet mesons Mj $ eQ⇥j(X,Y )Q, j = 1, . . . , 30 via a

superpotential similar to (3.4). The specific form of the ⇥j(X,Y )’s as ordered products of

X,Y can be found in [7]. As with the Dk+2

theories with even k, the classical chiral ring is

larger. In particular, the number of operators ⇥j that can be used to make chiral mesons

is larger than thirty (and depends on Nc). In [7] we proposed a quantum constraint on the

chiral ring of the electric theory, that truncates this classical set to the thirty operators

compatible with the duality. To provide further evidence for the validity of this constraint,

we would like to repeat the discussion of the A and D series for this case.
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where s1, s2 are couplings whose RG evolution depends on Nf , Nc. It is convenient to

define the parameter [7,8]

x =
Nc

Nf
(2.2)

which determines the strength of gauge interactions at long distances. It is of course a

discrete parameter, that takes rational values; one can study the theory in the Veneziano

limit Nf , Nc ! 1, x fixed, in which x becomes continuous. This simplifies some of the

formulae, and is not expected to make a qualitative di↵erence in the dynamics. We will

mostly work with general finite Nf , Nc; some of the numerical results below are stated in

the Veneziano limit.

Since we are interested in interacting IR fixed points, we will study the theory (2.1)

in the asymptotically free range x > 1. As discussed in [8], for all x in this range, the

coupling s1 in the superpotential (2.1) is relevant; turning it on drives the theory to the

bE fixed point in (1.11). The coupling s2 can be relevant or not, depending on the R-

charge of the operator TrY X3 at the bE fixed point. This problem can be addressed using

a-maximization; one finds [8] that in the Veneziano limit this coupling is relevant for

x > xmin ' 4.12. Thus, for 1 < x  xmin, the E7 fixed point coincides with the bE one,

while for larger x the two are distinct.

The E7 fixed point, when it exists, has a global symmetry familiar from the A and

D series models, SU(Nf ) ⇥ SU(Nf ) ⇥ U(1)B ⇥ U(1)R under which the chiral superfields

transform as follows:
Q (Nf , 1, 1, 1�

x

9
)

eQ (1, Nf ,�1, 1� x

9
)

X (1, 1, 0,
4

9
)

Y (1, 1, 0,
2

3
).

(2.3)

The superpotential (2.1) leads to a truncation of the chiral ring. The equations of motion

for X and Y set
Y 2 = X3

X2Y +XYX + Y X2 = 0
(2.4)

where we neglected D-terms and chose a convenient relative normalization of X and Y

(by choosing an appropriate normalization of the Kahler potential). As in the A and D

series, we expect an important role to be played by the dressed quarks ⇥(X,Y )Q, where

6

eQ⇥Q

⇥ = Xn, Y Xn, XY Xn, Y XY Xn



•  One	
  can	
  show	
  that	
  at	
  large	
  coupling	
  the	
  UV	
  
variables	
  in	
  terms	
  of	
  which	
  the	
  theory	
  is	
  
defined	
  must	
  break	
  down,	
  like	
  in	
  the	
  other	
  
examples.	
  

	
  
•  We	
  assume	
  that	
  the	
  strong	
  coupling	
  region	
  is	
  
governed	
  by	
  a	
  dual	
  descripJon	
  similar	
  to	
  the	
  
other	
  cases.	
  



The	
  quantum	
  numbers	
  of	
  the	
  dual	
  fields	
  are	
  
taken	
  to	
  be:	
  
	
  
	
  

Thus, we again assume the existence of a magnetic dual with gauge group SU( eNc) =

SU(↵Nf �Nc) for an unknown integer ↵, and the fields

Field SU( eNc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q f f 1 Nc/fNc 1� 1

9

eNc
Nf

eq f 1 f �Nc/fNc 1� 1

9

eNc
Nf

eV adj. 1 1 0 0

eX adj. 1 1 0 4

9

eY adj. 1 1 0 2

3

Mj , j = 1, . . .↵ 1 f f 0 2rQ + rj

Table 6: The “conjectured” field content of the E
7

magnetic theory.

Here rj are the U(1)R charges of ⇥j and, as before, we do not place any constraints on

them.

The single-letter index of the theory of Table 6 is given by (3.5) with the the appro-

priate R-charges. Taking the large N limit, the analog of (2.9) obtained from reading o↵

the f, g, h functions (1.9) of the electric and magnetic single-letter indices and using (2.8)

now reads
↵X

j=1

trj =
1 + t

1
9 + t

2
9 + . . .+ t

↵�1
9

1 + t
1
9 � t

1
3 � t

4
9 � t

5
9 + t

7
9 + t

8
9

. (4.2)

(4.2) can again only be satisfied with finite ↵ if every root of the denominator on the r.h.s.

coincides with a root of the numerator, which are ↵th roots of unity. However, it is easy

to check that this is in fact the case when ↵ = 30.4 The r.h.s. is then a sum of thirty

terms of the form trj , with the rj coinciding with the meson spectrum found in [7]. This

provides further support for the picture proposed in [7].

Expanding the index to the level of the constraint, one encounters again the same

situation as in the D series, as discussed in Appendix B.

In principle, one can go beyond the Veneziano large N limit, and compare the indices

of the electric and magnetic theories for all Nf , Nc. Following [16,17] and the building

4 Again, we discard solutions with ↵ = 30n for positive integer n > 1.

15



•  The	
  rank	
  of	
  the	
  dual	
  gauge	
  group	
  must	
  take	
  the	
  
general	
  form	
  	
  	
  

	
  
where	
  	
  	
  	
  	
  	
  	
  is	
  the	
  	
  number	
  of	
  gauge	
  singlet	
  mesons	
  in	
  
the	
  magneJc	
  theory.	
  This	
  follows	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  `t	
  
Hoob	
  anomaly	
  matching.	
  	
  This	
  number,	
  as	
  well	
  as	
  
the	
  R-­‐charges	
  of	
  these	
  mesons,	
  	
  	
  	
  	
  	
  ,	
  are	
  kept	
  free.	
  	
  	
  	
  rj

eNc = ↵Nf �Nc

↵
SU(Nf )

3



•  To	
  determine	
  them,	
  we	
  demand	
  that	
  the	
  
superconformal	
  indices	
  of	
  the	
  electric	
  and	
  
magneJc	
  theories	
  coincide.	
  	
  

•  In	
  general,	
  these	
  indices	
  are	
  very	
  complicated	
  
funcJons	
  of	
  the	
  chemical	
  potenJals,	
  but	
  Dolan	
  
and	
  Osborn	
  observed	
  that	
  they	
  simplify	
  
significantly	
  in	
  the	
  large	
  N	
  Veneziano	
  limit.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (See	
  J.	
  Lin’s	
  talk)	
  
	
  
	
  



This	
  gives	
  a	
  constraint	
  of	
  the	
  form	
  
	
  
	
  
	
  
which	
  determines	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  One	
  finds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
and	
  a	
  certain	
  set	
  of	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  can	
  be	
  thought	
  of	
  
as	
  arising	
  from	
  applying	
  the	
  constraint	
  	
  	
  
	
  
	
  
to	
  the	
  full	
  list	
  of	
  operators.	
  	
  
	
  

Thus, we again assume the existence of a magnetic dual with gauge group SU( eNc) =

SU(↵Nf �Nc) for an unknown integer ↵, and the fields

Field SU( eNc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q f f 1 Nc/fNc 1� 1

9

eNc
Nf

eq f 1 f �Nc/fNc 1� 1

9

eNc
Nf

eV adj. 1 1 0 0

eX adj. 1 1 0 4

9

eY adj. 1 1 0 2

3

Mj , j = 1, . . .↵ 1 f f 0 2rQ + rj

Table 6: The “conjectured” field content of the E
7

magnetic theory.

Here rj are the U(1)R charges of ⇥j and, as before, we do not place any constraints on

them.

The single-letter index of the theory of Table 6 is given by (3.5) with the the appro-

priate R-charges. Taking the large N limit, the analog of (2.9) obtained from reading o↵

the f, g, h functions (1.9) of the electric and magnetic single-letter indices and using (2.8)

now reads
↵X

j=1

trj =
1 + t

1
9 + t

2
9 + . . .+ t

↵�1
9

1 + t
1
9 � t

1
3 � t

4
9 � t

5
9 + t

7
9 + t

8
9

. (4.2)

(4.2) can again only be satisfied with finite ↵ if every root of the denominator on the r.h.s.

coincides with a root of the numerator, which are ↵th roots of unity. However, it is easy

to check that this is in fact the case when ↵ = 30.4 The r.h.s. is then a sum of thirty

terms of the form trj , with the rj coinciding with the meson spectrum found in [7]. This

provides further support for the picture proposed in [7].

Expanding the index to the level of the constraint, one encounters again the same

situation as in the D series, as discussed in Appendix B.

In principle, one can go beyond the Veneziano large N limit, and compare the indices

of the electric and magnetic theories for all Nf , Nc. Following [16,17] and the building

4 Again, we discard solutions with ↵ = 30n for positive integer n > 1.
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↵, rj ↵ = 30
rj

which together with (2.12) gives n = 15 and α = 30. Thus, duality relates the electric

gauge group SU(Nc) to the magnetic one SU(30Nf −Nc).

We conclude that if a duality of the sort found in the A and D series is to exist in the

E7 theory, one must impose on the spectrum (2.7) a quantum constraint of the form

aY X6 + bXYX5 = 0 (3.8)

where a, b are constants that are not determined by the above considerations. This con-

straint truncates the infinite set of mesons to a finite set, which is (uniquely) consistent

with such a duality.

An important check of duality in other cases is the matching of ‘t Hooft anomalies for

the global currents. In the electric theory, the non-vanishing anomalies take the form

SU(Nf )
3 Ncd

(3)(Nf )

SU(Nf )
2U(1)R −

x

9
Ncd

(2)(Nf )

SU(Nf )
2U(1)B Ncd

(2)(Nf )

U(1)R −
1

9
(N2

c + 1)

U(1)3R
577

729
(N2

c − 1)−
2

729

N4
c

N2
f

U(1)2BU(1)R −
2

9
N2

c

(3.9)

where d(3)(Nf ) ∼ TrT a{T b, T c}, d(2)(Nf ) ∼ TrT aT b, with the traces taken in the funda-

mental representation.

The anomalies in the magnetic theory can be expressed in terms of rj , the R-charges

of the operators Θj in (3.4). Denoting rj = 2Nj/9, the spectrum we found above contains

one operator each at N = 0, 2, 3, 4, 6, 15, 17, 18, 19, 21, and two operators for each of N =

5, 7−14, 16. The operators with N and 21−N are paired by the magnetic superpotential,

as explained around (3.6).

The SU(Nf )3 anomaly in the magnetic theory is −N̂c + αNf . Its matching with the

first line of (3.9) is the origin of the condition (3.3). The matching of the other anomalies

can be shown to reduce to the three conditions
∑

rj =
α2

9
− α

∑
r2j =

4α3

243
−

2α2

9
−

334α

243
∑

r3j =
2α4

729
−

4α3

81
−

334α2

729
+

496α

81
.

(3.10)
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Thus,	
  we	
  conclude	
  that	
  the	
  dual	
  of	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  theory	
  	
  
has	
  gauge	
  group	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  This	
  proposal	
  
saJsfies	
  a	
  number	
  of	
  detailed	
  consistency	
  	
  condiJons:	
  
	
  
•  There	
  are	
  precisely	
  30	
  mesons,	
  and	
  the	
  list	
  of	
  	
  	
  	
  	
  	
  	
  	
  is	
  
such	
  that	
  	
  one	
  can	
  write	
  a	
  magneJc	
  superpotenJal	
  
for	
  the	
  magneJc	
  meson	
  fields.	
  	
  	
  	
  

	
  
•  `t	
  Hoob	
  anomaly	
  matching	
  is	
  non-­‐trivially	
  saJsfied.	
  	
  

•  PotenJal	
  unitarity	
  violaJons	
  are	
  resolved.	
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Open	
  problems	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  saw	
  that	
  	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  theory	
  has	
  a	
  very	
  
similar	
  structure	
  to	
  the	
  A	
  and	
  D	
  series	
  ones.	
  Using	
  
the	
  superconformal	
  index	
  one	
  can	
  show	
  that	
  	
  this	
  
cannot	
  be	
  the	
  case	
  for	
  the	
  remaining	
  excepJonal	
  
theories.	
  Thus,	
  in	
  these	
  cases	
  there	
  must	
  be	
  
qualitaJve	
  new	
  elements.	
  What	
  are	
  they?	
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•  In	
  some	
  of	
  the	
  theories	
  we	
  found	
  that	
  there	
  must	
  be	
  
quantum	
  constraints	
  on	
  the	
  chiral	
  ring.	
  Can	
  one	
  
derive	
  them?	
  

•  The	
  D	
  and	
  E	
  series	
  seem	
  to	
  involve	
  some	
  type	
  of	
  
matrix	
  singularity	
  theory,	
  which	
  is	
  important	
  for	
  
studying	
  deformaJons	
  of	
  the	
  adjoint	
  superpotenJal.	
  
How	
  does	
  it	
  work?	
  

•  Can	
  one	
  relate	
  the	
  dynamical	
  ADE	
  structure	
  that	
  
arises	
  in	
  these	
  theories	
  to	
  a	
  geometric	
  or	
  algebraic	
  
ADE	
  structure,	
  e.g.	
  by	
  embedding	
  these	
  theories	
  in	
  
string	
  theory?	
  


