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The talk is based on work (arXiv:1608.00399) with
David Gossman (MSc), Lwazi Nkumane (PhD) and
Laila Tribelhorn (PhD).



Large N limits of matrix models are relevant for
strong coupling limits of non-Abelian gauge theories
and for AdS/CFT.

Difficult problem, but has been solved for the singlet
sector of single matrix models.

Problem reduces to eigenvalue dynamics: HUGE
reduction in degrees of freedom; non-interacting
fermion dynamics; has found clear and convincing
application in the 1/2 BPS LLM sector.

(Brezin, lzykson, Parisi, Zuber; Ginibre; Corley, Jevicki, Ramgoolam;
Berenestein; Lin, Lunin, Maldacena;...)



In this talk we ask if there is a similar eigenvalue
description for a two matrix model and if this has

some AdS/CFT interpretation?

Naive answer: NO! We need to integrate over two
random matrices and we can't simultaneously
diagonalize them!

Perhaps there is a class of questions (generalizing
the “singlet sector” of one matrix model) that can
be approached using eigenvalue dynamics?



Single Complex Matrix Model:

Use the Schur decomposition Z = UT D U with U a
unitary matrix and D an upper triangular matrix, to
explicitly change variables. A standard argument
then maps eigenvalue dynamics to non-interacting

fermion dynamics.
(Brezin, lzykson, Parisi, Zuber; Ginibre)

We could also construct a basis of operators that
diagonalize the (free) inner product = Schur
polynomials = non-interacting fermions

(Xr(Z)xs(Z")) = frérs

wFF X XR(Z)A(Z)e_% > ZiZi

(Corley, Jevicki, Ramgoolam; Berenestein)



Single Complex Matrix Model

Each row of the Schur polynomial can be identified
with fermion <+ an eigenvalue.

The number of boxes in each row tells us how much
each fermion was excited.

If we were to study a two matrix model, with many
Zs and few Y's the rough outline of the above
picture should still be visible.



Two Matrix Model: Restricted Schurs

For two matrices (Z, Y') we can diagonalize the free
field inner product with restricted Schur polynomials

<XR,(r,s)ab(Z7 Y)XT,(t,u)cd(ZTy YT)>

hooksgr

= IR
hooks, hooks;
(Bhattacharrya,Collins,dMK;Collins,dMK,Stephanou)
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Operator built using n Zs and m Y's. We have
r=n stEm, R n+ m. The restricted Schur

polynomials don't diagonalize the dilatation
operator.



Two Matrix Model: Gauss Graph Operators

Using the restricted Schur polynomials as a
basis, we can diagonalize the dilatation
operator in a limit in which R has order 1
long rows and m < n.

Operators are labeled by graphs - one node
for each row. Directed edges connect nodes -
one Y for each edge.

(da Commarmond, dMK, Jefferies; dMK, Dessein, Giataganas, Mathwin;
dMK, Ramgoolam)



Figure: Each node is a fermion = a giant graviton and
the edges stretching between nodes are open strings

(each edge is a Y) attached to the giant graviton
branes



Non-interacting fermion description = consider only
operators labeled by Gauss graphs with no edges
stretching between nodes.

These are the BPS operators.
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Figure: Non-interacting fermions are BPS operators



Non-interacting fermion description = only
Gauss graphs for BPS operators .

= if there is a non-interacting fermion

description at all, it will only describe BPS
operators.

These are associated to sugra solutions of
string theory: only one-particle states
saturating the BPS bound in gravity are
associated to massless particles and lie in the
supergravity multiplet.



Eigenvalue dynamics as a dual to
supergravity has been advocated (using

different reasoning) also by Berenstein; (see:
0507203, 0605220, 0801.2739, 0805.4658, 1001.4509,

1404.7052). These works use a combination of
numerical methods and physical arguments.

We obtain exact analytic statements about
eigenvalue dynamics, from multi-matrix
quantum mechanics. The results agree with
Berenstein.



From direct change of variables:

() = /[dZdZT]e—TrZZT o
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We replaced dZ — []Y, dz; A(z). Four
important observations:

~ identical particles (Z — UZUT)
» correct dimension (if [Z] = L, need
[5] = LM"7V)

» correct scaling under Z — €7
» evenly spaced dimensions = oscillator



Wave function for two matrices must obey:

» N identical particles (Z — UZU' and
Y — UYU")

» correct dimension (if [Z] = L = [Y], need
[W,.] — L2M0VD)

» correct scaling under Z — €’Z, Y — Y
and Z = Z, Y = %Y

» evenly spaced dimensions = oscillator

~ wave function must have SO(4) symmetry
which preserves |z]? + |y;|?



Guess for the wave function satisfying these
properties:

\U(z,y) = A(z,y)e_%zkzkfk—%zkykﬁ
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Matrix model computation:

1 (J+ N NI

()2 = T (WD~ (T D)
if J < N and

(Te(Z7)TH(ZH)) = Jilifvtl\ll;: it >N

Eigenvalue computation:

N

Az dyidiiu(z 2SS g~ L N

/l_lldz,dz,dy,dyl|\li(2nyl)| Zzi sz “J+1(N—1)!
i= ! J

= we correctly reproduce (to all orders in 1/N) all single
traces of dimension N or greater.



We know that we will reproduce both Tr(Z”7), Tr(Y) for
J>N.

There are trace relations implying
= ) GuTe(Z)Ta(Z) - Ta(Z¥)
’J?"‘?

i,j,...k <Nandi+j+ -+ k= J so that we also start to
reproduce sums of products of traces of less than N fields.

We can build BPS operators using both Y and Z fields -
symmetrized traces. Are these correlators correctly
reproduced?
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Matrix model computation:

JK [+ K+ N) N!

_ B !
OukOs) = TrKkTD | (N=1) (N—J-K=1)
if J+ K < N and

JIKL (J+ K+ N)!

1 >
JrK+Dl (N_1) it JrKz N

(OJ,KOLJ =

Eigenvalue computation:

N
/ [ dzdzidyidziviz, )2 S z/vK S 27K
i=1 i J

JKI (J+ K+ N)
U+ K+l (N-1)

= we again correctly reproduce (to all orders in 1/N) all
single traces of a dimension N or greater.




Multitrace correlators are also reproduced exactly, as long as
they have a dimension J + K > N

<OJ17K1 OJ27K2 e OJmKn Oj,K>
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Operator with a dimension of order N?: Young diagram R
with N rows and M columns

XR(Z) = (det Z)" = 2)'2}" .- ;]

XR(Z") = (det ZYWW = 27" .. 2]}

The two point correlator of this Schur polynomial is

<XRXR /Hdzldzld)//d)/l’w’ ’ZIIZM’ZZFM ’ZN|2M

i=1
N
_H I—1+M
(i —1)!

which is again the exact answer for this correlator. Not all
Schur polynomials are correctly reproduced!



Local supersymmetric geometries with SO(4) x U(1)
isometries have the form

2

1
2

+y(e°dQZ + e~ Cdy?)

y is the product of warp factors for S3 and S! = must

impose boundary conditions at y = 0 hypersurface to avoid

singularities: when S3 contracts to zero, we need Z = —% and

when 1)-circle collapses we need Z = %
(Donos; Lunin; Chen, Cremonini, Donos, Lin, Lin, Liu, Vaman, Wen)

ds?y = —h2(dt + w)? + h? 0,05Kdz?d2" + dy?|

There is a surface separating these two regions, and hence,
defining the supergravity solution. Is this surface visible in the
eigenvalue dynamics?



At large N we expect a definite eigenvalue distribution. These
eigenvalues will trace out a surface specified by where the
single fermion probability peaks

p(z1, 21,1, 01) = /Hdz,dz,dy,dy,|\l/(zl, =)7N)|2 (1)

=2

Denote the points lying on this surface by zMM yMM

For the AdSsxS® solution, the supergravity boundary
condition is
2P+ |2 =N -1 (2)

The surfaces (1) and (2) are mapped into each other by

identifying z! = zMM 22 = yMM



For an LLM annulus geometry (R has N rows and M columns)
V(z,y) = Az, y)xr(Z)e s 2on 52 T
determines p(z1, Z1, y1, V1)

The supergravity boundary condition is

M+N-—1-2z71

|22|2 = 151
zzZV - M +1
MM
The map between the two surfaces is z2 = —X—,
v |ZMM|2— M+1
zl = zMM

= eigenvalues again condense on the surface that defines the
wall between the two boundary conditions, agreeing with a
proposal by Berenstein



Conclusions and questions:

» There is a sector of the two matrix model
described (exactly) by eigenvalue dynamics. In

the dual gravity these states are supergravity
states corresponding to classical geometries.

» The supergravity boundary conditions appear to
match the large N eigenvalue description.

» How could one derive these results? How could
one argue for the relevance/applicability of

eigenvalue dynamics?

» Can this be extended to more matrices?

» Can the eigenvalue dynamics be perturbed by
off diagonal elements to start including stringy
degrees of freedom?



Thanks for your attention!



