## Holography for Heavy Operators

#### Robert de Mello Koch

Mandlestam Institute for Theoretical Physics University of the Witwatersrand

August 4, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The talk is based on work (arXiv:1608.00399) with David Gossman (MSc), Lwazi Nkumane (PhD) and Laila Tribelhorn (PhD).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Large N limits of matrix models are relevant for strong coupling limits of non-Abelian gauge theories and for AdS/CFT.

Difficult problem, but has been solved for the singlet sector of single matrix models.

Problem reduces to eigenvalue dynamics: HUGE reduction in degrees of freedom; non-interacting fermion dynamics; has found clear and convincing application in the 1/2 BPS LLM sector. (Brezin, Izykson, Parisi, Zuber; Ginibre; Corley, Jevicki, Ramgoolam; Berenestein; Lin, Lunin, Maldacena;...) In this talk we ask if there is a similar eigenvalue description for a two matrix model and if this has some AdS/CFT interpretation?

Naive answer: NO! We need to integrate over two random matrices and we can't simultaneously diagonalize them!

Perhaps there is a class of questions (generalizing the "singlet sector" of one matrix model) that can be approached using eigenvalue dynamics?

#### Single Complex Matrix Model:

Use the Schur decomposition  $Z = U^{\dagger} D U$  with U a unitary matrix and D an upper triangular matrix, to explicitly change variables. A standard argument then maps eigenvalue dynamics to non-interacting fermion dynamics.

(Brezin, Izykson, Parisi, Zuber; Ginibre)

We could also construct a basis of operators that diagonalize the (free) inner product  $\Rightarrow$  Schur polynomials  $\Rightarrow$  non-interacting fermions

$$\langle \chi_R(Z)\chi_S(Z^{\dagger})\rangle = f_R\delta_{RS}$$

$$\psi_{\mathrm{FF}} \propto \chi_{R}(Z)\Delta(Z)e^{-rac{1}{2}\sum_{i}z_{i}\overline{z}_{i}}$$

(Corley, Jevicki, Ramgoolam; Berenestein)

Single Complex Matrix Model

Each row of the Schur polynomial can be identified with fermion  $\leftrightarrow$  an eigenvalue.

The number of boxes in each row tells us how much each fermion was excited.

If we were to study a two matrix model, with many Zs and few Ys the rough outline of the above picture should still be visible.

Two Matrix Model: Restricted Schurs

For two matrices (Z, Y) we can diagonalize the free field inner product with restricted Schur polynomials

$$\langle \chi_{R,(r,s)ab}(Z,Y)\chi_{T,(t,u)cd}(Z^{\dagger},Y^{\dagger}) \rangle$$

$$= f_{R} \frac{\text{hooks}_{R}}{\text{hooks}_{r}\text{hooks}_{s}} \delta_{RT} \delta_{rt} \delta_{su} \delta_{ac} \delta_{bd}$$

(Bhattacharrya, Collins, dMK; Collins, dMK, Stephanou)

Operator built using n Zs and m Ys. We have  $r \vdash n, s \vdash m, R \vdash n + m$ . The restricted Schur polynomials don't diagonalize the dilatation operator.

Two Matrix Model: Gauss Graph Operators

Using the restricted Schur polynomials as a basis, we can diagonalize the dilatation operator in a limit in which R has order 1 long rows and  $m \ll n$ .

Operators are labeled by graphs - one node for each row. Directed edges connect nodes one Y for each edge.

(da Commarmond, dMK, Jefferies; dMK, Dessein, Giataganas, Mathwin; dMK, Ramgoolam)



Figure: Each node is a fermion = a giant graviton and the edges stretching between nodes are open strings (each edge is a Y) attached to the giant graviton branes Non-interacting fermion description  $\Rightarrow$  consider only operators labeled by Gauss graphs with no edges stretching between nodes.

These are the BPS operators.



### Figure: Non-interacting fermions are BPS operators

Non-interacting fermion description  $\Rightarrow$  only Gauss graphs for BPS operators .

 $\Rightarrow$  if there is a non-interacting fermion description at all, it will only describe BPS operators.

These are associated to sugra solutions of string theory: only one-particle states saturating the BPS bound in gravity are associated to massless particles and lie in the supergravity multiplet. Eigenvalue dynamics as a dual to supergravity has been advocated (using different reasoning) also by Berenstein; (see: 0507203, 0605220, 0801.2739, 0805.4658, 1001.4509, 1404.7052). These works use a combination of numerical methods and physical arguments.

We obtain exact analytic statements about eigenvalue dynamics, from multi-matrix quantum mechanics. The results agree with Berenstein. From direct change of variables:

$$\langle \cdots \rangle = \int [dZdZ^{\dagger}]e^{-\operatorname{Tr} ZZ^{\dagger}} \cdots$$

$$= \int \prod_{i=1}^{N} dz_{i} d\overline{z}_{i} e^{-\sum_{k} z_{z} \overline{z}_{k}} \Delta(z) \Delta(\overline{z}) \cdots$$

$$= \int \prod_{i=1}^{N} dz_{i} d\overline{z}_{i} |\psi_{gs}(z, \overline{z})|^{2} \cdots$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$\psi_{\mathrm{gs}}(z, \bar{z}) = \Delta(z) e^{-rac{1}{2}\sum_{k} z_{z} \bar{z}_{k}}$$
 $\Delta(z) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & \cdots & z_{N} \\ \vdots & \vdots & \vdots & \vdots \\ z_{1}^{N-1} & z_{2}^{N-1} & \cdots & z_{N}^{N-1} \end{vmatrix}$ 

We replaced  $dZ \rightarrow \prod_{i=1}^{N} dz_i \Delta(z)$ . Four important observations:

- ullet identical particles  $(Z 
  ightarrow UZU^{\dagger})$
- correct dimension (if [Z] = L, need  $[\psi_{gs}] = L^{N(N-1)}$ )
- correct scaling under  $Z 
  ightarrow e^{i\theta} Z$
- evenly spaced dimensions  $\Rightarrow$  oscillator

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

Wave function for two matrices must obey:

- *N* identical particles  $(Z \rightarrow UZU^{\dagger})$  and  $Y \rightarrow UYU^{\dagger}$
- correct dimension (if [Z] = L = [Y], need  $[\Psi_{gs}] = L^{2N(N-1)}$ )
- correct scaling under  $Z \to e^{i\theta}Z, Y \to Y$ and  $Z \to Z, Y \to e^{i\theta}Y$
- evenly spaced dimensions  $\Rightarrow$  oscillator
- ▶ wave function must have SO(4) symmetry which preserves |z<sub>i</sub>|<sup>2</sup> + |y<sub>i</sub>|<sup>2</sup>

Guess for the wave function satisfying these properties:

$$\Psi(z,y) = \Delta(z,y)e^{-\frac{1}{2}\sum_k z_k \bar{z}_k - \frac{1}{2}\sum_k y_k \bar{y}_k}$$



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Matrix model computation:

$$\langle \operatorname{Tr}(Z^J)\operatorname{Tr}(Z^{\dagger J})\rangle = \frac{1}{J+1} \Big[ \frac{(J+N)!}{(N-1)!} - \frac{N!}{(N-J-1)!} \Big]$$

if J < N and

$$\langle \operatorname{Tr}(Z^J)\operatorname{Tr}(Z^{\dagger J}) \rangle = \frac{1}{J+1} \frac{(J+N)!}{(N-1)!} \quad \text{if} \quad J \ge N$$

Eigenvalue computation:

$$\int \prod_{i=1}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi(z_i, y_i)|^2 \sum_i z_i^J \sum_j \bar{z}_j^J = \frac{1}{J+1} \frac{(J+N)!}{(N-1)!}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\Rightarrow$  we correctly reproduce (to all orders in 1/N) all single traces of dimension N or greater.

We know that we will reproduce both  $\operatorname{Tr}(Z^J)$ ,  $\operatorname{Tr}(Y^J)$  for  $J \ge N$ .

There are trace relations implying

$$\operatorname{Tr}(Z^{J}) = \sum_{i,j,\dots,k} c_{ij\dots k} \operatorname{Tr}(Z^{i}) \operatorname{Tr}(Z^{j}) \cdots \operatorname{Tr}(Z^{k})$$

 $i, j, ..., k \leq N$  and  $i + j + \cdots + k = J$  so that we also start to reproduce sums of products of traces of less than N fields.

We can build BPS operators using both Y and Z fields - symmetrized traces. Are these correlators correctly reproduced?

$$\mathcal{O}_{J,K} = \frac{J!}{(J+K)!} \operatorname{Tr}\left(Y\frac{\partial}{\partial Z}\right)^{K} \operatorname{Tr}(Z^{J+K}) \leftrightarrow \sum_{i} z_{i}^{J} y_{i}^{K}$$

Matrix model computation:

$$\langle \mathcal{O}_{J,K} \mathcal{O}_{J,K}^{\dagger} \rangle = \frac{J!K!}{(J+K+1)!} \left[ \frac{(J+K+N)!}{(N-1)!} - \frac{N!}{(N-J-K-1)!} \right]$$

if J + K < N and

$$\langle \mathcal{O}_{J,K} \mathcal{O}_{J,K}^{\dagger} \rangle = \frac{J!K!}{(J+K+1)!} \frac{(J+K+N)!}{(N-1)!} \quad \text{if} \quad J+K \ge N$$

Eigenvalue computation:

$$\int \prod_{i=1}^{N} dz_{i} d\bar{z}_{i} dy_{i} d\bar{y}_{i} |\Psi(z_{i}, y_{i})|^{2} \sum_{i} z_{i}^{J} y_{i}^{K} \sum_{j} \bar{z}_{j}^{J} \bar{y}_{j}^{K}$$
$$= \frac{J!K!}{(J+K+1)!} \frac{(J+K+N)!}{(N-1)!}$$

⇒ we again correctly reproduce (to all orders in 1/N) all single traces of a dimension N or greater.

Multitrace correlators are also reproduced exactly, as long as they have a dimension  $J+K\geq N$ 

$$\langle O_{J_{1},K_{1}}O_{J_{2},K_{2}}\cdots O_{J_{n},K_{n}}O_{J,K}^{\dagger} \rangle$$

$$= \frac{J!K!}{(J+K+1)!} \frac{(J+K+N)!}{(N-1)!} \delta_{J_{1}+\dots+J_{n},J}\delta_{K_{1}+\dots+K_{n},K}$$

$$= \int \prod_{i=1}^{N} dz_{i}d\bar{z}_{i}dy_{i}d\bar{y}_{i}|\Psi(z_{i},y_{i})|^{2} \sum_{i_{1}} z_{i_{1}}^{J_{1}}y_{i_{1}}^{K_{1}}\cdots \sum_{i_{n}} z_{i_{n}}^{J_{n}}y_{i_{n}}^{K_{n}}$$

$$\times \sum_{j} \bar{z}_{j}^{J}\bar{y}_{j}^{K}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Operator with a dimension of order  $N^2$ : Young diagram R with N rows and M columns

$$\chi_R(Z) = (\det Z)^M = z_1^M z_2^M \cdots z_N^M$$

$$\chi_{\mathcal{R}}(Z^{\dagger}) = (\det Z^{\dagger})^{\mathcal{M}} = ar{z}_1^{\mathcal{M}} ar{z}_2^{\mathcal{M}} \cdots ar{z}_N^{\mathcal{M}}$$

The two point correlator of this Schur polynomial is

$$\langle \chi_R \chi_R^{\dagger} \rangle = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi|^2 |z_1|^{2M} |z_2|^{2M} \cdots |z_N|^{2M}$$

$$=\prod_{i=1}^{N}\frac{(i-1+M)!}{(i-1)!}$$

which is again the exact answer for this correlator. Not all Schur polynomials are correctly reproduced!

Local supersymmetric geometries with  $SO(4) \times U(1)$  isometries have the form

$$ds_{10}^2 = -h^{-2}(dt+\omega)^2 + h^2 \Big[ rac{2}{Z+rac{1}{2}} \partial_a \bar{\partial}_b K dz^a dar{z}^b + dy^2 \Big] + y(e^G d\Omega_3^2 + e^{-G} d\psi^2)$$

y is the product of warp factors for  $S^3$  and  $S^1 \Rightarrow$  must impose boundary conditions at y = 0 hypersurface to avoid singularities: when  $S^3$  contracts to zero, we need  $Z = -\frac{1}{2}$  and when  $\psi$ -circle collapses we need  $Z = \frac{1}{2}$ . (Donos; Lunin; Chen, Cremonini, Donos, Lin, Lin, Liu, Vaman, Wen)

There is a surface separating these two regions, and hence, defining the supergravity solution. Is this surface visible in the eigenvalue dynamics?

At large N we expect a definite eigenvalue distribution. These eigenvalues will trace out a surface specified by where the single fermion probability peaks

$$\rho(z_1, \bar{z}_1, y_1, \bar{y}_1) = \int \prod_{i=2}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi(z_1, \cdots, \bar{y}_N)|^2 \quad (1)$$

Denote the points lying on this surface by  $z^{MM}$ ,  $y^{MM}$ . For the AdS<sub>5</sub>×S<sup>5</sup> solution, the supergravity boundary condition is

$$z^{1}|^{2} + |z^{2}|^{2} = N - 1$$
(2)

The surfaces (1) and (2) are mapped into each other by identifying  $z^1 = z^{MM}$ ,  $z^2 = y^{MM}$ .

For an LLM annulus geometry (R has N rows and M columns)

$$\Psi(z,y) = \Delta(z,y)\chi_R(Z)e^{-\frac{1}{2}\sum_k z_z \bar{z}_k - \frac{1}{2}\sum_k y_z \bar{y}_k}$$

determines  $\rho(z_1, \overline{z}_1, y_1, \overline{y}_1)$ .

The supergravity boundary condition is

$$|z^2|^2 = rac{M+N-1-z^1ar{z}^1}{z^1ar{z}^1-M+1}$$

The map between the two surfaces is  $z^2 = \frac{y^{MM}}{\sqrt{|z^{MM}|^2 - M + 1}}$ ,  $z^1 = z^{MM}$ .

 $\Rightarrow$  eigenvalues again condense on the surface that defines the wall between the two boundary conditions, agreeing with a proposal by Berenstein

Conclusions and questions:

- There is a sector of the two matrix model described (exactly) by eigenvalue dynamics. In the dual gravity these states are supergravity states corresponding to classical geometries.
- The supergravity boundary conditions appear to match the large N eigenvalue description.
- How could one derive these results? How could one argue for the relevance/applicability of eigenvalue dynamics?
- Can this be extended to more matrices?
- Can the eigenvalue dynamics be perturbed by off diagonal elements to start including stringy degrees of freedom?

# Thanks for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>