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The talk is based on work (arXiv:1608.00399) with
David Gossman (MSc), Lwazi Nkumane (PhD) and
Laila Tribelhorn (PhD).



Large N limits of matrix models are relevant for
strong coupling limits of non-Abelian gauge theories
and for AdS/CFT.

Difficult problem, but has been solved for the singlet
sector of single matrix models.

Problem reduces to eigenvalue dynamics: HUGE
reduction in degrees of freedom; non-interacting
fermion dynamics; has found clear and convincing
application in the 1/2 BPS LLM sector.
(Brezin, Izykson, Parisi, Zuber; Ginibre; Corley, Jevicki, Ramgoolam;
Berenestein; Lin, Lunin, Maldacena;...)



In this talk we ask if there is a similar eigenvalue
description for a two matrix model and if this has
some AdS/CFT interpretation?

Naive answer: NO! We need to integrate over two
random matrices and we can’t simultaneously
diagonalize them!

Perhaps there is a class of questions (generalizing
the “singlet sector” of one matrix model) that can
be approached using eigenvalue dynamics?



Single Complex Matrix Model:

Use the Schur decomposition Z = U†D U with U a
unitary matrix and D an upper triangular matrix, to
explicitly change variables. A standard argument
then maps eigenvalue dynamics to non-interacting
fermion dynamics.
(Brezin, Izykson, Parisi, Zuber; Ginibre)

We could also construct a basis of operators that
diagonalize the (free) inner product ⇒ Schur
polynomials ⇒ non-interacting fermions

〈χR(Z )χS(Z †)〉 = fRδRS

ψFF ∝ χR(Z )∆(Z )e−
1
2

∑
i zi z̄i

(Corley, Jevicki, Ramgoolam; Berenestein)



Single Complex Matrix Model

Each row of the Schur polynomial can be identified
with fermion ↔ an eigenvalue.

The number of boxes in each row tells us how much
each fermion was excited.

If we were to study a two matrix model, with many
Z s and few Y s the rough outline of the above
picture should still be visible.



Two Matrix Model: Restricted Schurs

For two matrices (Z ,Y ) we can diagonalize the free
field inner product with restricted Schur polynomials

〈χR,(r ,s)ab(Z ,Y )χT ,(t,u)cd(Z †,Y †)〉

= fR
hooksR

hooksrhookss
δRTδrtδsuδacδbd

(Bhattacharrya,Collins,dMK;Collins,dMK,Stephanou)

Operator built using n Z s and m Y s. We have
r ` n, s ` m, R ` n + m. The restricted Schur
polynomials don’t diagonalize the dilatation
operator.



Two Matrix Model: Gauss Graph Operators

Using the restricted Schur polynomials as a
basis, we can diagonalize the dilatation
operator in a limit in which R has order 1
long rows and m� n.

Operators are labeled by graphs - one node
for each row. Directed edges connect nodes -
one Y for each edge.
(da Commarmond, dMK, Jefferies; dMK, Dessein, Giataganas, Mathwin;
dMK, Ramgoolam)



Figure: Each node is a fermion = a giant graviton and
the edges stretching between nodes are open strings
(each edge is a Y ) attached to the giant graviton
branes



Non-interacting fermion description ⇒ consider only
operators labeled by Gauss graphs with no edges
stretching between nodes.

These are the BPS operators.

Figure: Non-interacting fermions are BPS operators



Non-interacting fermion description ⇒ only
Gauss graphs for BPS operators .

⇒ if there is a non-interacting fermion
description at all, it will only describe BPS
operators.

These are associated to sugra solutions of
string theory: only one-particle states
saturating the BPS bound in gravity are
associated to massless particles and lie in the
supergravity multiplet.



Eigenvalue dynamics as a dual to
supergravity has been advocated (using
different reasoning) also by Berenstein; (see:
0507203, 0605220, 0801.2739, 0805.4658, 1001.4509,

1404.7052). These works use a combination of
numerical methods and physical arguments.

We obtain exact analytic statements about
eigenvalue dynamics, from multi-matrix
quantum mechanics. The results agree with
Berenstein.



From direct change of variables:

〈· · · 〉 =

∫
[dZdZ †]e−TrZZ

† · · ·

=

∫ N∏
i=1

dzidz̄ie
−
∑

k zz z̄k∆(z)∆(z̄) · · ·

=

∫ N∏
i=1

dzidz̄i |ψgs(z, z̄)|2 · · ·



ψgs(z, z̄) = ∆(z)e−
1
2

∑
k zz z̄k

∆(z) =

∣∣∣∣∣∣
1 1 · · · 1
z1 z2 · · · zN... ... ... ... ... ...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣
We replaced dZ →

∏N
i=1 dzi ∆(z). Four

important observations:

I identical particles (Z → UZU†)
I correct dimension (if [Z ] = L, need

[ψgs] = LN(N−1))
I correct scaling under Z → e iθZ
I evenly spaced dimensions ⇒ oscillator



Wave function for two matrices must obey:

I N identical particles (Z → UZU† and
Y → UYU†)

I correct dimension (if [Z ] = L = [Y ], need
[Ψgs] = L2N(N−1))

I correct scaling under Z → e iθZ , Y → Y
and Z → Z , Y → e iθY

I evenly spaced dimensions ⇒ oscillator
I wave function must have SO(4) symmetry

which preserves |zi |2 + |yi |2



Guess for the wave function satisfying these
properties:

Ψ(z, y) = ∆(z, y)e−
1
2

∑
k zk z̄k−

1
2

∑
k yk ȳk

∆(z, y) =

∣∣∣∣∣∣∣∣∣∣
yN−1

1 yN−1
2 · · · yN−1

N

z1y
N−2
1 z2y

N−2
2 · · · zNy

N−2
N... ... ... ... ... ...

zN−2
1 y1 zN−1

2 y2 · · · zN−1
N yN

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣



Matrix model computation:

〈Tr(Z J)Tr(Z †J)〉 =
1

J + 1

[
(J + N)!

(N − 1)!
− N!

(N − J − 1)!

]
if J < N and

〈Tr(Z J)Tr(Z †J)〉 =
1

J + 1

(J + N)!

(N − 1)!
if J ≥ N

Eigenvalue computation:∫ N∏
i=1

dzidz̄idyidȳi |Ψ(zi , yi )|2
∑
i

zJi
∑
j

z̄Jj =
1

J + 1

(J + N)!

(N − 1)!

⇒ we correctly reproduce (to all orders in 1/N) all single
traces of dimension N or greater.



We know that we will reproduce both Tr(Z J), Tr(Y J) for
J ≥ N .

There are trace relations implying

Tr(Z J) =
∑
i ,j ,...,k

cij ...kTr(Z
i )Tr(Z j) · · ·Tr(Z k)

i , j , ..., k ≤ N and i + j + · · ·+ k = J so that we also start to
reproduce sums of products of traces of less than N fields.

We can build BPS operators using both Y and Z fields -
symmetrized traces. Are these correlators correctly
reproduced?

OJ,K =
J!

(J + K )!
Tr

(
Y

∂

∂Z

)K

Tr(Z J+K )↔
∑
i

zJi y
K
i



Matrix model computation:

〈OJ,KO†J,K 〉 =
J!K !

(J + K + 1)!

[
(J + K + N)!

(N − 1)!
− N!

(N − J − K − 1)!

]
if J + K < N and

〈OJ,KO†J,K 〉 =
J!K !

(J + K + 1)!

(J + K + N)!

(N − 1)!
if J+K ≥ N

Eigenvalue computation:∫ N∏
i=1

dzidz̄idyidȳi |Ψ(zi , yi )|2
∑
i

zJi y
K
i

∑
j

z̄Jj ȳ
K
j

=
J!K !

(J + K + 1)!

(J + K + N)!

(N − 1)!

⇒ we again correctly reproduce (to all orders in 1/N) all
single traces of a dimension N or greater.



Multitrace correlators are also reproduced exactly, as long as
they have a dimension J + K ≥ N

〈OJ1,K1
OJ2,K2

· · ·OJn,KnO
†
J,K 〉

=
J!K !

(J + K + 1)!

(J + K + N)!

(N − 1)!
δJ1+···+Jn,JδK1+···+Kn,K

=

∫ N∏
i=1

dzidz̄idyidȳi |Ψ(zi , yi )|2
∑
i1

zJ1i1 y
K1

i1
· · ·
∑
in

zJnin y
Kn

in

×
∑
j

z̄Jj ȳ
K
j



Operator with a dimension of order N2: Young diagram R
with N rows and M columns

χR(Z ) = (detZ )M = zM1 zM2 · · · zMN

χR(Z †) = (detZ †)M = z̄M1 z̄M2 · · · z̄MN
The two point correlator of this Schur polynomial is

〈χRχ†R〉 =

∫ N∏
i=1

dzidz̄idyidȳi |Ψ|2|z1|2M |z2|2M · · · |zN |2M

=

N∏
i=1

(i − 1 + M)!

(i − 1)!

which is again the exact answer for this correlator. Not all
Schur polynomials are correctly reproduced!



Local supersymmetric geometries with SO(4)× U(1)
isometries have the form

ds2
10 = −h−2(dt + ω)2 + h2

[
2

Z + 1
2

∂a∂̄bKdz
adz̄b + dy 2

]
+y (eGdΩ2

3 + e−Gdψ2)

y is the product of warp factors for S3 and S1 ⇒ must
impose boundary conditions at y = 0 hypersurface to avoid
singularities: when S3 contracts to zero, we need Z = −1

2 and

when ψ-circle collapses we need Z = 1
2 .

(Donos; Lunin; Chen, Cremonini, Donos, Lin, Lin, Liu, Vaman, Wen)

There is a surface separating these two regions, and hence,
defining the supergravity solution. Is this surface visible in the
eigenvalue dynamics?



At large N we expect a definite eigenvalue distribution. These
eigenvalues will trace out a surface specified by where the
single fermion probability peaks

ρ(z1, z̄1, y1, ȳ1) =

∫ N∏
i=2

dzidz̄idyidȳi |Ψ(z1, · · · , ȳN)|2 (1)

Denote the points lying on this surface by zMM , yMM .
For the AdS5×S5 solution, the supergravity boundary
condition is

|z1|2 + |z2|2 = N − 1 (2)

The surfaces (1) and (2) are mapped into each other by
identifying z1 = zMM , z2 = yMM .



For an LLM annulus geometry (R has N rows and M columns)

Ψ(z , y ) = ∆(z , y )χR(Z )e−
1
2

∑
k zz z̄k−

1
2

∑
k yz ȳk

determines ρ(z1, z̄1, y1, ȳ1).

The supergravity boundary condition is

|z2|2 =
M + N − 1− z1z̄1

z1z̄1 −M + 1

The map between the two surfaces is z2 = yMM√
|zMM |2−M+1

,

z1 = zMM .

⇒ eigenvalues again condense on the surface that defines the
wall between the two boundary conditions, agreeing with a
proposal by Berenstein



Conclusions and questions:

I There is a sector of the two matrix model
described (exactly) by eigenvalue dynamics. In
the dual gravity these states are supergravity
states corresponding to classical geometries.

I The supergravity boundary conditions appear to
match the large N eigenvalue description.

I How could one derive these results? How could
one argue for the relevance/applicability of
eigenvalue dynamics?

I Can this be extended to more matrices?

I Can the eigenvalue dynamics be perturbed by
off diagonal elements to start including stringy
degrees of freedom?



Thanks for your attention!


