Strings 2014, Princeton 25th of June, 2014

Recent Progress on the Abelian Sector of F-Theory

Denis Klevers

arXiv:1303.6970 [hep-th]: M. Cvetič, D.K., H. Piragua arXiv:1305.3987 [hep-th]: M. Cvetič, A. Grassi, D.K., H. Piragua arXiv:1307.6425 [hep-th]: M. Cvetič, D.K., H. Piragua arXiv:1310.0463 [hep-th]: M. Cvetič, D.K., H. Piragua, P. Song arXiv:1407.nnnn : D.K., D. Mayorga Peña, P. Oehlmann, H. Piragua, J. Reuter arXiv:14nn.nnnn : M. Cvetič, D.K, H. Piragua, W. Taylor

F-theory & U(1)-symmetries

INTRODUCTION

Why F-theory?

F-theory

=

elliptically fibered
 Calabi-Yau manifold

Type IIB

- back-reacted
 (p,q)7-branes
- regions with large
 g_s on non-CY space

g_s on non-CY space

Why F-theory?

Het/F-theory duality: see Anderson's talk

Effective theories of F-theory

<u>Use F-theory to engineer effective theories:</u>

Since F-theory vacua are non-perturbative, they have novel features

- effective theories different from those of pert. vacua
- used for models of particle physics & cosmology

local models: [Donagi,Wijnholt; Beasley,Heckman,Vafa; Bouchard,Heckman,Kane,Seo,Shao,Tavanfar,Vafa; Font,Ibanez; Randall,Simmons-Duffin; Hayashi,Kawano,Tsuchiya,Watari,Yamazaki; Dudas,Palti; Cecotti,Cheng,Heckman,Vafa; Marchesano,Martucci... many works]

global models: [Blumenhagen,Grimm,Jurke,Weigand;Marsano,Saulina,SchäferNameki; Cordova; Grimm,Krause,Weigand... many works]

Goals of this talk

Develop & extend geometry/physics dictionary of F-theory:

Arithmetic of elliptically fibred CY:

Mordell-Weil group

Abelian sector of F-theory effective theories

[Morrison,Vafa]

The Abelian sector of F-theory has been rather **unexplored**:

only few concrete examples Few early examples: [Aldazabal,Font,Ibanez,Uranga; Klemm Mayr,Vafa]

Torsion part: [Aspinwall,Morrison; Mayrhofer,Morrison,Till,Weigand]

A lot of recent progress: [Grimm,Weigand;Esole,Fullwood,Yau;Morrison,Park; Cvetič,Grimm,DK; Braun,Grimm,Keitel; Lawrie,Schäfer-Nameki; Borchmann,Mayrhofer,Palti,Weigand; Cvetič,DK,Piragua; Grimm,Kapfer,Keitel;Braun,Grimm, Keitel; Cvetič,Grassi,DK,Piragua; Borchman,Mayrhofer,Palti,Weigand; Cvetič,DK,Piragua; Cvetič,DK,Piragua,Song; Braun,Collinucci,Valandro; Morrison,Taylor; Kuntzler,Schäfer-Nameki]

Unlike well-studied non-Abelian case

[Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...] Recently: [Esole,Yau;Marsano,Schäfer-Nameki; Morrison,Taylor; Cvetič,Grimm,DK,Piragua; Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Palti,Weigand; Hayashi,Lawrie,Morrison, Schäfer-Nameki; Esole,Shao,Yau]

Outline & Results

Systematic construction of Abelian sectors in F-theory

- 1. Engineering of general rank n Abelian sector in global F-theory
 - Exemplify explicitly for U(1)² gauge group.
- 2. Develop toolbox to study such geometries
 - matter spectra in 6D (also with non-Abel. groups).
 - Yukawas, 4D chiralities: G₄-flux.
- **3.** Application of toolbox:
 - CICY in \mathbb{P}^3 (U(1)³ group), elliptic curves in 16 2D toric varieties.
 - moduli space of F-theory: U(1)-enhancements.

A very brief summary

F-THEORY COMPACTIFICATIONS

F-theory = geometry/physics dictionary

F-theory specified by elliptically fibered Calabi-Yau manifold $\pi: X \rightarrow B$

Structure of elliptic fibrations with Mordell-Weil group

U(1)-GAUGE SYMMETRIES IN F-THEORY

Non-Abelian gauge symmetry in F-theory

[Kodaira;Tate;Vafa;Morrison,Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa]

S

1. Weierstrass form for elliptic fibration of *X*

$$y^2 = x^3 + fxz^4 + gz^6$$

2. Severity of singularity over divisor S encoded in

Singularity type = orders of vanishing of *f*, *g*, $\Delta = 4f^3 + 27g^2$

3. Singularity type \implies structure of tree of \mathbb{P}^1 's over S in resolution

resolved *I*₄-singularity:

- Cartan generators: KK-reduction along (1,1)-form $\omega_i \leftrightarrow \mathbb{P}^1_i$ $C_3 \supset A^i \omega_i$

- **Enhancement**: light M2-branes on resolving \mathbb{P}^1 's

[Witten]

В

- U(1)'s should arise like Cartans by KK-reduction $C_3 \supset A^m \omega_m$.
- Forbid enhancement by M2's: only I₁-fibers at codimension 1.

[Morrison,Vafa II]

- U(1)'s should arise like Cartans by KK-reduction $C_3 \supset A^m \omega_m$.
- Forbid enhancement by M2's: only I₁-fibers at codimension 1.

(1,1)-form ω_m \longleftrightarrow rational section

[Morrison,Vafa II]

- 1. Rational point *Q* on elliptic curve *E* with zero point *P*
 - is solution $[x_Q : y_Q : z_Q]$ in field *K* of Weierstrass form,

$$y^2 = x^3 + fxz^4 + gz^6$$

• Rational points form Abelian group under addition Q+R.

Mordell-Weil group of rational points

2. Q on E induces rational section $\hat{s}_Q : B \to X$ of elliptic fibration

• \hat{s}_Q gives rise to a second copy of *B* in *X*: new divisor B_Q in *X* (1,1)-form ω_m constructed from divisor B_Q .

2. Q on E induces rational section $\hat{s}_Q : B \to X$ of elliptic fibration

• \hat{s}_Q gives rise to a second copy of *B* in *X*: new divisor B_Q in *X* (1,1)-form ω_m constructed from divisor B_Q .

Structure of elliptic fibrations with rational points

- Consequences for Weierstrass form: rat. point $Q = [x_Q : y_Q : z_Q]$
- **1.** Implies constraints: relation between *f*, *g*

$$gz_Q^6 = y_Q^2 - x_Q^3 - fx_Q z_Q^4$$

- 2. Implies singularity at codimension two in B:
 - <u>Factorization</u>: $(y y_Q)(y + y_Q) = (x x_Q)(x^2 + x_Q x + f z_Q^4 + x_Q^2)$
 - <u>Singularity</u>: $y_Q = f z_Q^4 + 3 x_Q^2 = 0$ \Longrightarrow WSF singular at Q

Section \hat{s}_Q implies U(1)-charged matter, only I_1 -fiber in codim. 1

Structure of elliptic fibrations with rational points Consequences for Weierstrass form: rat. point $Q = [x_Q : y_Q : z_Q]$

1. Implies constraints: relation between *f*, *q*

$$gz_Q^6 = y_Q^2 - x_Q^3 - fx_Q z_Q^4$$

- 2. Implies singularity at codimension two in B:
 - <u>Factorization</u>: $(y y_Q)(y + y_Q) = (x x_Q)(x^2 + x_Q x + f z_Q^4 + x_Q^2)$
 - <u>Singularity</u>: $y_Q = f z_Q^4 + 3 x_Q^2 = 0$ \Longrightarrow WSF singular at Q

Section \hat{s}_Q implies U(1)-charged matter, only I_1 -fiber in codim. 1

The task

Provide general construction of ell. curve *E* with *n* rational points:

- Solve the constraints in Weierstrass form.
- Provide resolved Calabi-Yau elliptic fibrations.

Addressing these points requires departure from Weierstrass form.

Elliptic curves with n rational points Q_i

Elliptic curve *E* with points *P*, Q_i has canonical embedding in $W\mathbb{P}^m$

degree n+1 line bundle $M=O(P+Q_1+...+Q_n)$ on $E: W\mathbb{P}^m$ determined by

$$M = \mathcal{O}_{W\mathbb{P}^m}(1)|_E$$

Example *n*=2: points *P*, *Q*, *R*

- 1. M=O(P+Q+R) degree three: three sections $(u,v,w) = \mathbb{P}^2$ -coordinates $\Rightarrow E$ is cubic curve in $\mathbb{P}^2[u:v:w]$.
- 2. Existence of points P, Q, R: E non-generic, cubic has to factorize as

$$uf_2(u,v,w) + \prod_{i=1}^3 (a_iv + b_iw) = 0$$

Degree two polynomial $f_2(u,v,w)$

 \Rightarrow *E* generic Calabi-Yau in blow-up of \mathbb{P}^2 at points *Q*, *R* = *dP*₂.

Explicit examples

- <u>*n=0*</u>: Tate form in $\mathbb{P}^2(1,2,3)$.
- <u>*n=1:*</u> *E* with *P*, *Q* is generic CY in $Bl_1 \mathbb{P}^2(1, 1, 2)$. [Morrison, Park]
- <u>n=2:</u> E with P, Q, R is generic CY in dP₂. [Borchmann,Mayerhofer,Palti,Weigand; Cvetič,D.K.,Piragua]
- <u>*n=3:*</u> E with P, Q, R, S is CICY in $Bl_3 \mathbb{P}^3$. [Cvetič, D.K., Piragua, Song]
- <u> $n \ge 4$ </u>: *E* is **Pfaffian variety** in \mathbb{P}^4 (*n*=4), *E* is determinantal (*n*>4). Work in progress: [Cvetič, D.K., Piragua, Song]

Key properties of this construction:

- CY-elliptic fibrations are automatically smooth.
- For n=0,1,2,3: zero-section \hat{s}_P is non-holomorphic still valid F-theory background.

TOOLBOX FOR STUDYING F-THEORY WITH U(1)'S

Illustration: dP_2 -elliptic fibrations with two rational sections

Construction of CY-elliptic fibrations

[Cvetič, D.K., Piragua; Cvetič, Grassi, D.K., Piragua]

<u>Illustration</u>: CY-fibrations X with rank 2 curve in dP_2

$$E \subset dP_2 \longrightarrow X$$

three sections
from *P*, *Q*, *R*

Related: [Borchmann, Mayrhofer, Palti, Weigand]

$$uf_2(u, v, w) + vw(s_7v + s_9w) = 0$$

- \mathbb{P}^2 -coordiantes [u : v : w] and coefficients s_i lifted to sections on B.
- CY manifold **X** topologically determined by divisors $S_7 = (s_7)$, $S_9 = (s_9)$ that can be varied: new degrees of freedom.

For
$$B = \mathbb{P}^3$$
:
 $\mathcal{S}_7 = n_7 H_{\mathbb{P}^3}$
 $\mathcal{S}_9 = n_9 H_{\mathbb{P}^3}$

Construction of CY-elliptic fibrations

[Cvetič, D.K., Piragua; Cvetič, Grassi, D.K., Piragua]

<u>Illustration</u>: CY-fibrations X with rank 2 curve in dP_2

$$E \subset dP_2 \longrightarrow X$$

three sections
from *P*, *Q*, *R*

Related: [Borchmann, Mayrhofer, Palti, Weigand]

$$uf_2(u, v, w) + vw(s_7v + s_9w) = 0$$

- \mathbb{P}^2 -coordiantes [u : v : w] and coefficients s_i lifted to sections on B.
- CY manifold **X** topologically determined by divisors $S_7 = (s_7)$, $S_9 = (s_9)$ that can be varied: new degrees of freedom.

Construction of CY-elliptic fibrations

[Cvetič, D.K., Piragua; Cvetič, Grassi, D.K., Piragua]

<u>Illustration</u>: CY-fibrations X with rank 2 curve in dP_2

$$E \subset dP_2 \longrightarrow X$$

three sections
from *P*, *Q*, *R*

Related: [Borchmann, Mayrhofer, Palti, Weigand]

$$uf_2(u, v, w) + vw(s_7v + s_9w) = 0$$

- \mathbb{P}^2 -coordiantes [u : v : w] and coefficients s_i lifted to sections on B.
- CY manifold **X** topologically determined by divisors $S_7 = (s_7)$, $S_9 = (s_9)$ that can be varied: new degrees of freedom.

Charged matter: codimension two singularities

[Cvetič, D.K., Piragua; Cvetič, Grassi, D.K., Piragua]

All charged matter at codimension two in B

Matter locus: $y_Q = f z_Q^4 + 3 x_Q^2 = 0$

- Problem: is reducible variety with many components.
- We are interested in irreducible components individual matter loci.
- > Need ideal techniques: irred. components described only by prime ideals.
- Computationally hard to find ass. prime ideals for polys of high degree.

Need <u>bootstrap</u>: some matter loci have geometry/physics interpretation which makes them easier to find.

- 1) Matter at loci in *B* where the sections are ill-defined.
- 2) Matter at loci characterized by <u>additional constraints</u>

matter with **multiple U(1)-charges**.

6D matter spectrum & Anomalies

[Cvetič, D.K., Piragua]

Derived **closed formula for 6D matter multiplicities** for entire class of F-theory vacua **over any base** *B*.

• Example: E in dP_2 , $B = \mathbb{P}^2$ (n₇, n₉ specify fibration of X over \mathbb{P}^2)

(q_1, q_2)	Multiplicity
$\boxed{(1,0)}$	$54 - 15n_9 + n_9^2 + (12 + n_9) n_7 - 2n_7^2$
(0,1)	$54 + 2\left(6n_9 - n_9^2 + 6n_7 - n_7^2\right)$
(1,1)	$54 + 12n_9 - 2n_9^2 + (n_9 - 15)n_7 + n_7^2$
(-1,1)	$n_7 (3 - n_9 + n_7)$
(0,2)	n_9n_7
(-1, -2)	$n_9 (3 + n_9 - n_7)$

<u>Consistency check</u>: spectrum proven to cancel 6D anomalies!

Non-Abelian gauge groups, codimension 3

1) Can systematically add non-Abel groups to model with U(1)'s:

- Toric tops. [Candelas,Font; Bouchard,Skarke; Braun,Grimm,Keitel; Borchmann,Mayrhofer,Palti,Weigand]
- Tate algorithm for other ell. fiber types. Fiber in P(1,1,2): [Kuntzler,Schäfer-Nameki]

Can still obtain full 6D spectrum, e.g. dP₂-fiber with SU(5), arbitrary base B

closed formulas for 6D matter multiplicities. [Cvetič,D.K.,Piragua]

2) Yukawa couplings at codimension 3:

intersections of three matter loci computed using their prime ideals

dP₂-fiber, also with SU(5): all gauge invariant Yukawas realized.

in progress: [Cvetič, D.K., Langacker, Piragua]

G₄-flux & 4D matter chiralities [Cvetič, Grassi, D.K., Piragua]

3) New ingredient for F-theory on CY 4-folds X_4 : G₄-flux

<u>Geometry</u>: (vertical) G_4 -flux in $H_V^{(2,2)}(X_4, \mathbb{Z}/2)$ [Witten]

requires computation of **primary vertical cohomology** of CY 4-fold.

Example: E in dP₂

• $H_V^{(2,2)}(X_4)$ explicitly computed for family of all X_4 with $B = \mathbb{P}^3$.

G₄-flux is **M-theory concept:** properly studied in M-theory.

<u>3D M-/F-theory duality:</u> F-theory on S^1 = M-theory

• In **3D effective theory, CS-terms encode** information of vertical **G**₄-flux:

$$\Theta^M_{AB} = \int_{X_4} G_4 \wedge \omega_A \wedge \omega_B \quad \begin{tabular}{ll} Gukov,Vafa,Witten; \ Haack,Louis \end{tabular}$$

- M-/F-duality for CS-terms relates *G*₄-flux to 4D chirality of F-theory
 - use to compute 4D chiralities.

See also: [Hayashi,Grimm; Cvetič,Grimm,D.K.; Grimm,Kapfer,Keitel; Braun,Grimm,Keitel]

use to derive G₄-flux conditions for F-theory.

extend earlier conditions: [Dasgupta,Rajesh,Sethi]

Application of toolbox

APPLICATION 1: RANK THREE CURVES

Elliptic fibrations with three rational points

Similarly **explicit results** for elliptic fibrations with 3 U(1)'s:

- Elliptic curve with rank 3 Mordell-Weil group: CICY in $Bl_3 \mathbb{P}^3$
- All Calabi-Yau elliptic fibrations of *E* over given base *B* classified

- Matter representations determined
 - 14 representations.
 - miraculous structure of singularities: Tri-fundamental matter
- Matter multiplicities in 6D found for general base B
 6D Anomalies cancelled.

6D matter spectrum with U(1)³

Charges	Multiplicities
(1,1,-1)	$[s_8] \cdot [s_{18}]$
(0,1,2)	$[s_9] \cdot [s_{19}]$
(1,0,2)	$[s_{10}] \cdot [s_{20}]$
(-1,0,1)	$[ilde{s}_3] \cdot ilde{\mathcal{S}}_7 - [s_8] \cdot [s_{18}]$
(0,-1,1)	$[\hat{s}_3]\cdot\hat{\mathcal{S}}_7-[s_8]\cdot[s_{18}]$
(-1,-1,-2)	$[ilde{s}_8] \cdot \mathcal{S}_9 - [s_{10}] \cdot [s_{20}]$
(0,0,2)	$ ilde{\mathcal{S}}_7 \cdot \mathcal{S}_9 - [s_{19}][s_9]$
(1,1,1)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 - 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 - 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\tilde{\mathcal{S}}_7$
	$\frac{-2\delta_7\delta_7 + 2[K_B^{-1}]\delta_9 + 9([p_2]^{\circ})\delta_9 + 5\delta_7\delta_9 + 5\delta_7\delta_9 - 8\delta_9}{12\delta_7\delta_9 + 5\delta_7\delta_9 - 8\delta_9}$
(1,1,0)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 + 2[K_B^{-1}]\mathcal{S}_7 + 3([p_2]^b)\mathcal{S}_7 + 2[K_B^{-1}]\mathcal{S}_7 + 3([p_2]^b)\mathcal{S}_7 + \hat{\mathcal{S}}_7\mathcal{S}_7 - 3[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 4\hat{\mathcal{S}}_7\mathcal{S}_9 - 4\tilde{\mathcal{S}}_7\mathcal{S}_9 + 7\mathcal{S}_9^2$
(1,0,1)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 - 3[K_B^{-1}]\tilde{\mathcal{S}}_7 + 3([p_2]^b)\tilde{\mathcal{S}}_7 + 2\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 + \tilde{\mathcal{S}}_7^2 + 2[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 5\hat{\mathcal{S}}_7\mathcal{S}_9 - 4\tilde{\mathcal{S}}_7\mathcal{S}_9 + 6\mathcal{S}_9^2$
(0,1,1)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 - 3[K_B^{-1}]\hat{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 + \hat{\mathcal{S}}_7^2 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 + 2\hat{\mathcal{S}}_7\hat{\mathcal{S}}_7 + 2[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 4\hat{\mathcal{S}}_7\mathcal{S}_9 - 5\tilde{\mathcal{S}}_7\mathcal{S}_9 + 6\mathcal{S}_9^2$
(1,0,0)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 - 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\tilde{\mathcal{S}}_7 - \hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 2\tilde{\mathcal{S}}_7^2 - 2[K_B^{-1}]\mathcal{S}_9 + 9([p_2]^b)\mathcal{S}_9 + 4\hat{\mathcal{S}}_7\mathcal{S}_9 + 5\tilde{\mathcal{S}}_7\mathcal{S}_9 - 6\mathcal{S}_9^2$
(0,1,0)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 - 2\hat{\mathcal{S}}_7^2 - 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\tilde{\mathcal{S}}_7 - \hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 2[K_B^{-1}]\mathcal{S}_9 + 9([p_2]^b)\mathcal{S}_9 + 5\hat{\mathcal{S}}_7\mathcal{S}_9 + 4\tilde{\mathcal{S}}_7\mathcal{S}_9 - 6\mathcal{S}_9^2$
(0,0,1)	$ \frac{4[K_B^{-1}]^2 - 4([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 4([p_2]^b)\hat{\mathcal{S}}_7 - 2\hat{\mathcal{S}}_7^2 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 4([p_2]^b)\tilde{\mathcal{S}}_7}{-2\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 2\tilde{\mathcal{S}}_7^2 + 2[K_B^{-1}]\mathcal{S}_9 + 12([p_2]^b)\mathcal{S}_9 + 6\hat{\mathcal{S}}_7\mathcal{S}_9 + 6\tilde{\mathcal{S}}_7\mathcal{S}_9 - 10\mathcal{S}_9^2} $ 25

Application of toolbox

APPLICATION 2: ELLIPTIC CURVES IN TORIC VARIETIES

Elliptic fibrations with toric elliptic fibers

[D.K., Mayorga Peña, Oehlmann, Piragua, Reuter] Elliptic fiber as hypersurface in 2d toric varieties associated to 16 reflexive

polytopes:

For algorithmic approach to toric models & toric Mordell-Weil, see: [Braun,Grimm,Keitel]

Applying presented techniques:

- **classify all CY-fibrations** with given *E* & arbitrary base *B*.
- determine gauge group.
- compute matter spectra: matter reps, 6D multiplicities; 4D Yukawa couplings.

Elliptic fibrations with toric elliptic fibers

- Up to rank three Mordell-Weil group, Mordell-Weil torsion, only multi-sections (need Jacobian fibrations).
- Extremal transitions in fiber = **Higgsing in eff. theory**: worked out.

Elliptic fibrations with toric elliptic fibers

- Up to rank three Mordell-Weil group, Mordell-Weil torsion, only multi-sections (need Jacobian fibrations).
- Extremal transitions in fiber = **Higgsing in eff. theory**: worked out.

Application of toolbox

APPLICATION 3: ENHANCING U(1)²

Higgs-Transitions in F-theory: U(1)'s $\rightarrow G_{nA}$

Elliptic fibrations with higher rank Mordell-Weil group crucial for understanding the **moduli space of F-theory** compactifications.

Can we tune complex structure to enhance U(1)'s to non-Abel. G_{nA}?

Rank 1 case understood: [Morrison, Taylor]

Every 6D F-theory with single U(1) comes from Higgsed SU(2).

Geometrically: transition of vertical divisor into rational section.

Higgs-Transitions in F-theory: $U(1)^2 \rightarrow G_{nA}$

[Cvetič, D.K., Piragua, Taylor]

Enhancement of U(1)xU(1): different types of possible enhancements

• Reduce MW-rank to zero by merging rational points Q, R with origin P

$$uf_2(u, v, w) + \prod_{i=1}^3 (a_i v + b_i w) = 0$$

Higgs-Transitions in F-theory: $U(1)^2 \rightarrow G_{nA}$ [Cvetič, D.K., Piragua, Taylor]

Enhancement of U(1)xU(1): different types of possible enhancements

• Reduce MW-rank to zero by merging rational points Q, R with origin P

$$uf_2(u, v, w) + \lambda_1(a_1v + b_1w)^2(a_3v + b_3w) = 0$$

•
$$rk(MW)=2 \rightarrow 1: \overline{PQ} \rightarrow 0$$

Higgs-Transitions in F-theory: $U(1)^2 \rightarrow G_{nA}$ [Cvetič, D.K., Piragua, Taylor]

Enhancement of U(1)xU(1): different types of possible enhancements

• Reduce MW-rank to zero by merging rational points Q, R with origin P

$$uf_2(u, v, w) + \lambda_1 \lambda_2 (a_1 v + b_1 w)^3 = 0$$

•
$$rk(MW)=2 \rightarrow 1: \overline{PQ} \rightarrow 0$$

•
$$rk(MW)=1 \rightarrow 0: \overline{PR} \rightarrow 0$$

This tuned fibration has **codimension 1 singularities** build in:

1. U(1)xU(1) \rightarrow SU(3): set $\lambda_i = 1$, at locus $f_2(0, -b_1, a_1) = 0$ in **B**

 I_3 -singularity in *E* at *P*=[0,-*b*₁,*a*₁].

2. U(1)xU(1) \rightarrow SU(2)xSU(2): set $f_2(0, -b_1, a_1) = 1$

 \downarrow I_2 -fiber at $\lambda_i = 0$ in B: $uf_2(u, v, w) = 0$.

3. general case **not rank preserving**: $U(1)^2 \rightarrow SU(3)xSU(2)^2$.

Summary

- **Construction** of elliptic fibrations with Mordell-Weil group.
- Developed toolbox to analyze these models
 - 6D matter spectrum & 4D Yukawas: ideal techniques.
 - 4D chiralities & G₄-flux: CY 4-fold cohomology & flux conditions.
- Applied tools to elliptically fibered CY's with ell. fibers as
 - hypersurface in dP_2 : U(1)², also with SU(5)
 - complete intersection CY in $\operatorname{Bl}_3(\mathbb{P}^3)$: U(1)³
 - all hypersurfaces in 16 2d toric varieties.
- $U(1)^2$ can be enhanced into G_{nA} , not always in rank preserving way.

Outlook

• Classification of *n>3* U(1)'s

[Cvetič, DK, Piragua, Peng Song]: work in progress

Heterotic dual of F-theory w/ U(1)'s

[Cvetič, Grassi, DK, Piragua, Song]: work in progress

