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S-duality

SO(32) Het. « > Type |

Het/F-theory duality: see Anderson’s talk
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Effective theories of F-theory

Use F-theory to engineer effective theories:

F-theory

Calabi-Yau geometry | (Geometry Physics N=1 S_UG_RA effective
theories in 6D & 4D
(+ G, flux,...)

Classification of 6D (1,0) SCFTs
via F-theory: see Vafa’s talk

Since F-theory vacua are non-perturbative, they have novel features
e effective theories different from those of pert. vacua
e used for models of particle physics & cosmology

local models:

global models:



Goals of this talk

Develop & extend geometry/physics dictionary of F-theory:

-V - . . . . 1 .
Arithmetic of elliptically fibred CY: Abelian sector of F-theory

Mordell-Weil group effective theories

[Morrison,Vafa]

The Abelian sector of F-theory has been rather unexplored:

onIy few concrete examp|es Few early examples: [Aldazabal,Font,lbanez,Uranga; Klemm Mayr,Vafal

Torsion part: [Aspinwall,Morrison; Mayrhofer,Morrison,Till, Weigand]

A lot of recent progress: [Grimm,Weigand;Esole,Fullwood,Yau;Morrison,Park; Cveti¢,Grimm,DK; Braun,Grimm,Keitel;
Lawrie,Schafer-Nameki; Borchmann,Mayrhofer,Palti,Weigand; Cveti¢,DK,Piragua; Grimm,Kapfer,Keitel;Braun,Grimm,
Keitel; Cvetic,Grassi,DK,Piragua; Borchman,Mayrhofer,Palti,Weigand; Cvetic,DK,Piragua; Cvetic¢,DK,Piragua,Song;
Braun,Collinucci,Valandro; Morrison,Taylor; Kuntzler,Schiafer-Nameki]

Unlike well-studied non-Abelian case

[Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...]
Recently: [Esole,Yau;Marsano,Schafer-Nameki; Morrison,Taylor; Cveti¢,Grimm,DK,Piragua;

Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Palti, Weigand; Hayashi,Lawrie,Morrison,
Schafer-Nameki; Esole,Shao,Yau]



Outline & Results

Systematic construction of Abelian sectors in F-theory

1. Engineering of general rank n Abelian sector in global F-theory
*  Exemplify explicitly for U(1)?> gauge group.

2. Develop toolbox to study such geometries
°  matter spectra in 6D (also with non-Abel. groups).
* Yukawas, 4D chiralities: G,-flux.

3. Application of toolbox:
e CICYinP? (U(1)3 group), elliptic curves in 16 2D toric varieties.

 moduli space of F-theory: U(1)-enhancements.




F-THEORY COMPACTIFICATIONS



F-theory = geometry/physics dictionary

F-theory specified by elliptically fibered Calabi-Yau manifold : X =B

Singularities of elliptic fibration ﬁ setup of intersecting 7-branes

co-dim. one sing. over S
Gauge theory on 7-branes

co-dim. two sing. S NS’
Matter: intersec. 7-branes

AD Yukawa: co-dim three
pt=5NS"NSs”

[Katz,Vafa]

4D chiral matter:
G,-flux




U(1)-GAUGE SYMMETRIES IN F-THEORY



Non-Abelian gauge symmetry in F-theory

Gauge group from singularities of X
1. Weierstrass form for elliptic fibration of X

y? = 1° + fzz* + g2°

2. Severity of singularity over divisor S encoded in B

Singularity type = orders of vanishing of f, g, A=4f3+27g°

3. Singularity type :> structure of tree of P'‘s over S in resolution

resolved /,-singularity:

A

— Cartan generators: KK-reduction along (1,1)-formw; < P}
Cs3 D Aiwi
— Enhancement: light M2-branes on resolving P!’s




U(1)’s in F-theory & the Mordell Weil group

* U(1)’s should arise like Cartans by KK-reduction C3 D A™w,,.
* Forbid enhancement by M2’s: only /,-fibers at codimension 1.

(1,1)-form w,,, €<¥) rational section
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U(1)’s in F-theory & the Mordell Weil group

e U(1)’s should arise like Cartans by KK-reduction C3 D A™w,,,.
° Forbid enhancement by M2’s: only /,-fibers at codimension 1.

U (1,1)-form w,,, €<®) rational section u

1. Rational point Q on elliptic curve E with zero point P

* issolution[zg : yg : 2] in field K of Weierstrass form,
P

y2 — 333 —|—f$24—|—g,26

e Rational points form Abelian group under addition O+R.

E> Mordell-Weil group of rational points H

11



U(1)’s in F-theory & the Mordell Weil group

2. Qon Einduces rational section 5 : B — X of elliptic fibration

* 5 givesrise to asecond copy of B in X: new divisor B, in X

Q (1,1)-form w,,, constructed from divisor B
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U(1)’s in F-theory & the Mordell Weil group

2. Qon Einduces rational section 5 : B — X of elliptic fibration

*  5¢ givesrise to asecond copy of B in X: new divisor B, in X

9 (1,1)-form w,,, constructed from divisor B
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Structure of elliptic fibrations with rational points
Consequences for Weierstrass form: rat. point Q=[zg : yg : 2Q]

1. Implies constraints: relation between f, g
928 = v ~ 7% — frazh
2. Implies singularity at codimension two in B:
- Factorization: (y — yg)(y + yo) = (z — zg)(a” + zoz + f24 + )
- Singularity: yg = fz4 + 325 =0 ) WSF singular at Q

<

* Resolved into /,-fibers:

Q

Q iSection §Q implies U(1)-charged matter, only /,-fiber in codim. 1i
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The task

Provide general construction of ell. curve E with n rational points:
* Solve the constraints in Weierstrass form.

* Provide resolved Calabi-Yau elliptic fibrations.

Q Addressing these points requires departure from Welierstrass form.

14



Elliptic curves with n rational points Q,

Elliptic curve E with points P, Q; has canonical embedding in WP™
E>degree n+1 line bundle M=0(P+Q,+...+Q,) on E: WP determined by

Example n=2: points P, Q, R

1. M=0(P+Q+R) degree three: three sections (u,v,w) = P2coordinates

—>Eis cubic curve in P?[u : v : w].

2. Existence of points P, O, R: E non-generic, cubic has to factorize as
u=>0

3
E R ufo(u, v, w) + H(aiv +bw) =0
i=1
0 Degree two polynomial fo(u, v, w)

j E generic Calabi-Yau in blow-up of P? at points Q, R = dpP,.

15



Explicit examples

n=0: Tate form in P*(1,2,3).

n=1: Ewith P, Qis generic CY in BI;IP*(1,1,2)

n=2: Ewith P, Q, Ris generic CY in dP.,.

n=3: EwithP, Q R, Sis CICY in

n24: Eis Pfaffian varietyin P4 (n=4), E is determinantal (n>4).

Work in progress:

Key properties of this construction:

e CY-elliptic fibrations are automatically smooth.

-
)
-
o
7
-
o
e
O
-
(@)
=3
o

* Forn=0,1,2,3: zero-sectio
E> still valid F-theory background.

16



dPs
TOOLBOX FOR STUDYING F-THEORY
WITH U(1)’S



Construction of CY-elliptic fibrations

lllustration: CY-fibrations X with rank 2 curve in dP,

E C dP, X Related:
three sections l ufs (u, v, w) + vw(37v + Sgw) —0
fromP,Q, R
B
° -coordiantes [u : v : w] and coefficients s, lifted to sections on B.
* CY manifold X topologically determined by divisors )
that can be varied: new degrees of freedom.
For B = P°: B
6
<3
57 = n7HP3 4:
89 — n9Hp3 5

0 2 4n6 8
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Construction of CY-elliptic fibrations

lllustration: CY-fibrations X with rank 2 curve in dP,

E C dP, X Related:

three sections < J ufo(u, v, w) + vw(srv + sow) =0
fromP,Q, R

B

e P%coordiantes [u : v : w] and coefficients s; lifted to sections on B.
* CY manifold X topologically determined by divisors &7 = (s7), S = (59

that can be varied: new degrees of freedom.

For B = P°: 8
6
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89 — 7?,9H]P>3 5
0 |
0 2 4 n6 8

ISpace of all 4D F-theory vacua for fixed fiber E in dP, & base B= ]P>3| 18




Construction of CY-elliptic fibrations

lllustration: CY-fibrations X with rank 2 curve in dP,

E C dP, X Related:
three sections l ufg(u,v,w) 4+ vw(87v + Sgw) — 0
fromP,Q, R

B

« P“coordiantes [u : v : w] and coefficients s; lifted to sections on B.

* CY manifold X topologically determined by divisors &7 = (s7), S = (59

that can be varied: new degrees of freedom.

For B = P°: 8
6 Can construct and
S7 = n7Hps _)j study entire family
Sg = ngHps X of CY’s explicitly.
0 |
0 2 4 n6 8

ISpace of all 4D F-theory vacua for fixed fiber E in dP, & base B= ]P>3| 18




Charged matter: codimension two singularities

All charged matter at codimension two in B
Matter locus: yo = fzé + 3:1:2Q =0
* Problem: is reducible variety with many components.

e We areinterested in irreducible components 4:}' individual matter loci.

:> Need ideal techniques: irred. components described only by prime ideals.

¢  Computationally hard to find ass. prime ideals for polys of high degree.

E> Need bootstrap: some matter loci have geometry/physics interpretation

which makes them easier to find.

1) Matter at loci in B where the sections are ill-defined.

2) Matter at loci characterized by additional constraints
;> matter with multiple U(1)-charges.

19



6D matter spectrum & Anomalies

* Example: EindP, B = P? (n,, ng specify fibration of X over P?)

(q1,92) Multiplicity
(1,0) 54 — 15ng + ng + (12 + ng) ny — 2n7
(0,1) 54 + 2 (6n9 —n3 + 6n; — n%)
(1,1) 54 + 12ng — 2n3 + (ng — 15) ny + n?
(-1,1) ny (3 —ng + nv)
(0,2) ngnz
(—1,-2) ng (3 + ng — n7)

lies! o

* Consistency check: spectrum proven to cancel 6D anom

1)




Non-Abelian gauge groups, codimension 3

1) Can systematically add non-Abel groups to model with U(1)’s:

* Toric tops. [candelas,Font; Bouchard,Skarke; Braun,Grimm,Keitel; Borchmann,Mayrhofer,Palti,Weigand]
° Tate algorithm for other ell. fiber types.  riberinp(1,1,2): [Kuntzier schiter-nameki]
Can still obtain full 6D spectrum, e.g. dP,-fiber with SU(5), arbitrary base B

ﬁ closed formulas for 6D matter multiplicities.  [Cvetic,D.K Piragual

2) Yukawa couplings at codimension 3:

* intersections of three matter loci computed using their prime ideals

w) dP,-fiber, also with SU(5): all gauge invariant Yukawas realized.

in progress: [Cvetic, D.IK., Langacker, Piragua]

21



G,-flux & 4D matter chiralities

3) New ingredient for F-theory on CY 4-folds X,: G,-flux

Geometry: (vertical) G,-flux in HV(Z'Z)(X4,Z/2)
|:> requires computation of primary vertical cohomology of CY 4-fold.

Example: E'in dP,
e H,/22(X,) explicitly computed for family of all X, with B= P3,

G,-flux is M-theory concept: properly studied in M-theory.
3D M-/F-theory duality: F-theory on $* = M-theory

* In 3D effective theory, CS-terms encode information of vertical G,-flux:

@%B = Gy ANwag Nwpg
X4

* M-/F-duality for CS-terms relates G,-flux to 4D chirality of F-theory

— use to compute 4D chiralities. See also:

— use to derive G,-flux conditions for F-theory.
i extend earlier conditions:

22



APPLICATION 1: RANK THREE
CURVES



Elliptic fibrations with three rational points

Similarly explicit results for elliptic fibrations with 3 U(1)’s:
Elliptic curve with rank 3 Mordell-Weil group: CICY in Bl,”
All Calabi-Yau elliptic fibrations of E over given base B classified

e

F-theory vacua ) points in polytopes.

o

Matter representations determined
— 14 representations.

— miraculous structure of singularities: Tri-fundamental matter

*  Matter multiplicities in 6D found for general base B
IZ> 6D Anomalies cancelled. /

24



6D matter spectrum with U(1)3

Charges Multiplicities
(1,1,-1) [88] . [818]
(0;1;2) [89] : [519]
(110;2) [S1~0] : [820]
(-1,0,1) (3] - S — [ss] - [513]
(0,-1,1) [83] - Sz — s8] - [s18]
(-1,-1,-2) [Ss] - So — [s10] - [520]
(0,0,2) S+ Sy — [s19][59]
(1,1,1) AK 5" = 3([p2]")” — 2[K 5187 — 3([pa]") 87 — 2[K 5187 — 3([p2]") S
" —28:87 + 2[K5']Ss + 9([p2]")Ss + 5SSy + 5S7Sy — 852
(1,1,0) 2[K5'] + 3([p2]")? + 2[K5'1S7 + 3([p2]")S7 + 2[K 517 + 3([p2]) S
T +8:57 — 3[K5'So — 9([p2]") Sy — 45:Sy — 45:Sy + 7S2
(1,0,1) 2[K5'? + 3([pa]")” + 2|Kp 5187 + 3([192] )S7 — 3[K5"]S7 + 3([p2]")Sr
T +285:8; + 82 + 2[ ]59 — 9([pa]®) Sy — 557 Sy — 457Sy + 652
(0,1,1) 2[Kp ) + 3([p2l")* — 3y ]57+3([p2] )87+ 82+ 2[K 'S
7t +3([pa]")S7 + 25157 + 2[ 1o — O([pa]')So — 48,80 — 5818y + 657
(1,0,0) 4[K§f]2~—3([12] )? = 2[K 5187 — 3([pa]")S7 + 2[K 5187 — 3([pa]” )57
l ~8:8; — 287 - 2[K 5 ]89 + 9([p2]*) S + 48789 + 58:Sy — 652
(0,1,0) 4[K§ 1> —3([p2]")? + [ 5187 — 3([]02] )87 — 287 — 2[K ;'S
7 3(p)")Sr — 8187 — 2K 515s + 9([pa])Sa + 58180 + 48,8y — 6S2
(0,0,1) AKE'? = 4([pa)")? + 2[K5 ]87 — 4([pa]" )37 — 287 4+ 2[K 5187 — 4([p2])Sr

—25:S; — 282 + 2[K§1]89 + 12([p2]®)Sy 4 65:Sy + 65:Sy — 1082 25



APPLICATION 2: ELLIPTIC CURVES IN
TORIC VARIETIES



Elliptic fibrations with toric elliptic fibers

Elliptic fiber as hypersurface in 2d toric varieties associated to 16 reflexive

polytopes: Fis

F14

FlS

F16

-
®

Applying presented techniques:

Fa
\ For algorithmic approach to toric

models & toric Mordell-Weil,
see:

¢ classify all CY-fibrations with given E & arbitrary base B.

* determine gauge group.

* compute matter spectra: matter reps, 6D multiplicities; 4D Yukawa couplings.

27



Elliptic fibrations with toric elliptic fibers

6 +—

Fi6 su<3&z3
5 | B SR XU Arrow: extremal transitions
Fis Fis Fis SU(2ny u(1) ] ﬁb
(SU(4) x SU(2)?) 2
x /z\ i\ N er
4 SUB) x suR) xu(1) Fyp;p F1y SUR) x U(L)?

PG I

Fio suBG)xsu@) Fg su@?xu@ Fgq su@yxu@? F; u@?

oI

Fe su@xu@)  Fs u@)e

N

dnoub abneb |e10] JO duel
N w
| |
I

I Tsue Fa Fs F,
o1 F
1
| i ! ! .
0 1 2 3

Mordell-Weil rank
 Up torank three Mordell-Weil group, Mordell-Weil torsion, only
multi-sections (need Jacobian fibrations).
* Extremal transitions in fiber = Higgsing in eff. theory: worked out. .



Elliptic fibrations with toric elliptic fibers

6 T Fi6 su(a%
s | U)X SuEr X U Arrow: extremal transitions
F13 F14 F15 SU(Zyzx u(1) . .
A (SU(@) x SU2)%) z in fiber
S \ i\
S
g 4T suexsu@xuw Fq F1p SU@) x UL
S,
§ /l><l \
L
POIVtOpes dual - 3.7 Fig suyxsu@yFysurx vy Fg suyk e By ue
()
. (e}
Sum—rule. é 2 - Fe su@xu@)  Fs u@)e
rank of gauge group ©
of poly +itsdual =6 | i
1 T sue F, F; F,
0+ F,
i i i i >
0 1 2 3

Mordell-Weil rank
 Up torank three Mordell-Weil group, Mordell-Weil torsion, only
multi-sections (need Jacobian fibrations).
* Extremal transitions in fiber = Higgsing in eff. theory: worked out. .,



APPLICATION 3: ENHANCING U(1)?



Higgs-Transitions in F-theory: U(1)'s—=>G,,

Elliptic fibrations with higher rank Mordell-Weil group crucial for
understanding the moduli space of F-theory compactifications.

W) Can we tune complex structure to enhance U(1)’s to non-Abel. G_,?

Rank 1 case understood:

Every 6D F-theory with single U(1) comes from Higgsed SU(2).

SU(2) on Riemann surface 3, M} U(1)
*
rk(MW)=0 tuning moduli rk(MW)=1

Geometrically: transition of vertical divisor into rational section.
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Higgs-Transitions in F-theory: U(1)?—=> G,

Enhancement of U(1)xU(1): different types of possible enhancements

 Reduce MW-rank to zero by merging | ain]omaﬂ points Q, R with origin P
u =10

£ R ufo(u, v, w) —I—I_[1azv+bw ) =20
1=

/

Q@
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Higgs-Transitions in F-theory: U(1)?—=> G,

Enhancement of U(1)xU(1): different types of possible enhancements

 Reduce MW-rank to zero by merging rational points Q, R with origin P
u=20

wfa(u,v,w) + A (a1v + biw)?(azv + bzw) = 0

e rk(MW)=2 -»1: PQ — 0
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Higgs-Transitions in F-theory: U(1)?—> G,

Enhancement of U(1)xU(1): different types of possible enhancements

 Reduce MW-rank to zero by merging rational points Q, R with origin P

ufo(u, v, w) + A A2 (arv + biw)® =0

e rk(MW)=2 »1: PQ — O
e rk(MW)=1—=>0: PR—> 0

This tuned fibration has codimension 1 singularities build in:

1. U(1)xU(1)-> SU(3):set \; = 1, at locus in B
W) L-singularity in E at P=[0,-b,,a,].

2. U(1)xU(1)=> SU(2)xSU(2): set f2(0,—b1,a1) =1
E>i2—ﬁbetr at inB: ufa(u,v,w) =0,

3. general case not rank preserving: U(1)?- SU(3)xSU(2)2. .



ummary

* Construction of elliptic fibrations with Mordell-Weil group.
* Developed toolbox to analyze these models

* 6D matter spectrum & 4D Yukawas: ideal technigues.

* 4D chiralities & G,-flux: CY 4-fold cohomology & flux conditions.
* Applied tools to elliptically fibered CY’s with ell. fibers as

* hypersurface in dP,: U(1)?, also with SU(5)

 complete intersection CY in Bl3(P?): U(1)?

e all hypersurfaces in 16 2d toric varieties.

* U(1)% can be enhanced into G,,, not always in rank preserving way.

B o
 Classification of n>3 U(1)’s |Cvetic, DK, Piragua, Peng Song|: work in progress

* Heterotic dual of F-theory w/ U(1)’s
|Cvetic, Grassi, DK, Piragua, Song|: work in progress
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