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In Praise of 3-d CFTs

They describe second-order phase transitions
that occur in many 3-d statistical systems.

A famous example is the critical 3-d Ising
model described by the long-distance limit of
the 3-d Euclidean ¢* QFT.
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Emergent Global Symmetries

Renormalization Group flow can lead to IR fixed
points with enhanced symmetry.

The minimal 3-d Yukawa theory for one Majorana
fermion and one real pseudo-scalar was
conjectured to have “emergent supersymmetry.”

Scott Thomas, unpublished seminar at KITP.

The fermion mass is forbidden by the time
reversal symmetry.

After tuning the pseudo-scalar mass to zero, the
theory is conjectured to flow to a /N=1
supersymmetric 3-d CFT.



Superconformal Theory

The UV lagrangian may be taken as
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Has cubic superpotent|a| W ~ AY? in terms of the
superfield s =5 +9y+ Logy

Some evidence for its existence from the
conformal bootstrap (but requires tuning of some

ope rator dimenSiOnS). lliesiu, Kos, Poland, Pufu, Simmons-Duffin,
Yacoby; Bashkirov

Condensed matter realization has been
proposed: emergent SUSY may arise at the

boundary of a topological superconductor. crover,
Sheng, Vishwanath



The Gross-Neveu Model
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In 2 dimensions it has some similarities with
the 4-dimensional QCD.

It is asymptotically free and exhibits dynamical
mass generation.

Similar physics in the 2-d O(N) non-linear
sigma model with N>2.

In dimensions slightly above 2 both the O(N)

and GN models have weakly coupled UV fixed
points.



2+ € expansion

The beta function and fixed- pomt coupllng are
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N = N;trl = 4N, is the number of 2-component
Majorana fermions.

Can develop 2+¢ expansions for operator scaling
dimenSionS, €.8. Gracey; Kivel, Stepanenko, Vasiliev

+ Oty |

o1 1 N-1 (N—1)(N=6) 4 .
Ay ==+ e > — 2+ O(e).,
P T TN o s —ap ¢ O
| N N(N - | ;
A, =1— R € — ! €2 + ( b s + O(e*) | o~ )

N2 T aN—opt TIN—2p

Similar expansions in the O(N) sigma model with N>2.

Brezin, Zinn-Justin



4-¢ expansion

 The O(N) sigma model is in the same
universality class as the O(N) model:
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* |t has a weakly coupled Wilson-Fisher IR fixed
noint in 4-¢ dimensions.

e Using the two € expansions, the scalar CFTs
with various N may be studied in the range
2<d<4. This is an excellent practical tool for
CFTs in d=3.



The Gross-Neveu-Yukawa Model

* The GN model is in the same universality class

as the GNY model Zinn-Justin; Hasenfratz, Hasenfratz, Jansen, Kuti,
Shen
1

Lony = 5(3;,;0)2 + U PO + gro? + ﬂjzfl

* |R stable fixed point in 4-€ dimensions
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e Operator scaling dimensions
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e Using the two € expansions, we can study the
Gross-Neveu CFTs in the range 2<d<4.



Sphere Free Energy in Continuous d

A natural quantity to consider is Giombi, Ik

e

F =sin(nd/2)log Zga = — sin(nwd/2)F
* |In odd d, this reduces to ik, pufu, safdi

d+1
2

F=(=1)%F=(=1)7 log Zsa

* Inevend, -log Z has a pole in dimensional
regularization whose coefficient is the Weyl a-
anomaly. The multiplication by sin(zd/2) removes it.

 F smoothly interpolates between a-anomaly
coefficients in even and F-values” in odd d.

* Gives the universal entanglement entropy across d-2
dimensional sphere. Casini, Huerta, Myers



Free Conformal Scalar and Fermion
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Sphere Free Energy for the O(N) Model

* At the Wilson-Fisher fixed point it is necessary to include
the curvature terms in the Lagrangian rei Giombi, IK, Tarnopolsky
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* The 4-¢ expansion then gives
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* The 2+¢ expansion in the O(N) sigma model is plagued by

IR divergences. It has not been developed yet, but we

know the value in d=2 and can use it in the Pade
extrapolations.



Sphere Free Energy for the GN CFT

* The 4-¢ expansion
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* The 2+¢ expansion is under good control; no
IR divergences:
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* |tis a pleasure to Pade.
* Once again,

Fuv > FIg




Summary for the 3-d GN CFTs

N 3 4 5 6 8 20 100
Ay (Pade[4:2]) 1.066 | 1.048 | 1.037 | 1.029 | 1.021 | 1.007 | 1.0013
A, (Pade[4,2]) 0.688 | 0.753 | 0.798 | 0.829 | 0.87 | 0.946 | 0.989
AR (Pade[1,5]) 2.285 | 2.148 | 2.099 | 2.075 | 2.052 | 2.025 | 2.008
F/(NFy) (Padeyy) | 1.091 | 1.060 | 1.044 | 1.034 | 1.024 | 1.008 | 1.0014
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The Minimal Case: N=1

For a single Majorana doublet the GN quartic
interaction vanishes. Cannot use the 2+¢
expansion to describe an interacting CFT.

We have developed the 4-¢ expansion by

continuing the GNY model to N=1.
VNZ 132N +36 equals 13.
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GNY model with N=1

Consistent with the emergent SUSY relation!

39f = gy = 3\°




More Evidence of SUSY for N=1
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Consistent with the SUSY relation
1
Apz = Ay +5 =48, +1

We conjecture that it holds exactly for d< 4.

May be tested at higher orders in €. This requires doing
Yukawa theory at 3 loops and beyond.

Pade to d=3 gives A, ~ 0.58%8 which seems close to the
bootstrap result. lliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby



Continuation to d=2

..-"M;i:_'ﬁ N =1SCFT

* Gives an interacting
superconformal theory.

* Likely the tri-critical Ising
model with c=7/10.

* Pade extrapolation gives

A, ~0217 close to dimension i
1/5 of the energy operator : 3 T
in the (4,5) minimal model.

* Pade also gives F/r ~o068
close to ¢c=0.7.




Models with U(1) Chiral Symmetry

e The Nambu-Jona-Lasinio (also known as the
chiral Gross-Neveu) model

TR T g R AY n [N\ 2
Lo = 0 % + 5 ((507)° = (75¢7)°)

has U(1) chiral symmetry «, — ciosy,

* |ts UV completion in 2<d<4 is the Nambu-
Jona-Lasinio-Yukawa model. zinn-ustin

* [t contains a complex scalar ¢ = ¢, +io,

P O R
Loy = 5(0u01)" + 5(0u02)" + 0007 + g105(61 + 1956207 + 5792(00)°

 Underthe U(1) ¢— e



Emergent /N=2 Supersymmetry

* For N=2, which corresponds to one 4-component
Majorana fermion, the NJLY model flows to the

Wess-Zumino model. sthomas;s.-s.tee ]h“{‘“‘”‘“;"ej“‘-hj‘*i\\\ _

. ‘1‘.“1“ \ \ S\ ‘\‘:\

* The U(1) turns into R-symmetry. IR AAN
. AN

* The sphere free energy in d=4-¢, o >®/ﬁ;,f’; \ a\‘\:\
including the curvature terms, TN/
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agrees with the result for the WZ model in d
dimensions based on SUSY localization. ciombi, i



Above 4 Dimensions

Both O(N) and GN models make sense at least to
all orders in the 1/N expansion.

Interesting weak coupling expansions near even
dimensions.

For example, in 6-& dimensions find the cubic
O(N) symmetric theory
92 3
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It has an IR fixed point for sufficiently large N.

Results there agree with the 1/N corrections
found for O(N) model as a function of d. rei, Giombi, I,

Tarnopolsky; Gracey



Higher Spin AdS/CFT

* When N is large, the O(N) and GN models
have an infinite number of higher spin

currents whose anomalous dimensions are of
order 1/N.

* Their singlet sectors have been conjectured to
be dual to the Vasiliev interacting higher-spin
theories in d+1 dimensional AdS space.

* One passes from the dual of the free to that of
the interacting large N theory by changing
boundary conditions at AdS infinity. ik, polyakov;

Leigh, Petkou; Sezgin, Sundel; for a recent review, see Giombi’s TASI lectures



Higher-Spin dS/CFT

* To construct non-unitary CFTs dual to higher
spin theory in de Sitter space, replace the
commuting scalar fields by anti-commuting

ones. Anninos, Hartman, Strominger

* The conjectured dual to minimal Vasiliev
theory in dS, is the interacting Sp(N) model
introduced ea rlier LeClair, Neubert
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In d>4 this quartic theory has a UV fixed point
at large N.

Consider instead the cubic Sp(N) invariant
theory, which is weakly coupled in 6-¢
dimensions.

i / = (égzik;’i%,\fi?“,\j t+ % (0u0)” + %!hQu X'\ o+ é.q?”ﬂ)
The beta functions are related to those of the
O(N) theory via N-> -N
For Sp(N) there are IR stable fixed points at

couplings for all positive even N.



Symmetry Enhancement for N=2

* The N=2 model may be written as

‘ ~ 1 : _ 1 .
S = / dz (aﬁ,ﬂ@aﬂ“@ +5 (0,0)° + 1000 + 69203)

* At the fixed point

93 = 291 .

* There is symmetry enhancement from Sp(2) to
the supergroup Osp(1]2)

) =ca, d=oca, doc=—ab+ab



Defining g = i/ U2 ey,

* The scaling dimensions of commuting and
anti-commuting scalars are equal

8 T . 260 —702((3) .
A=Ay =92 L2 3
o= =0 15 150° 33750




Connection with the Potts Model

* (n+1) state Potts model can be described in
6-€ dimensions by a cubic field theory of n
scalar fields za, wallace

5= / d'x (OHOZ()#OZ + ggdmdojél‘)

* The vectors ¢, describe the vertices of the
n-dimensional generalization of tetrahedron.



* The 6-¢ expansions have been developed for
any g-state Potts model.

 We find that, in the formal limit g-> 0, they are
the same as at the fixed point with the
emergent Osp(1]|2) symmetry.

* The zero-state Potts model can be defined on
a lattice using the spanning forest model, and
Monte Carlo results for scaling exponents are
available in d=3,4,5 where the model has
second order phase transitions. peng, Garoni, Sokal



Conclusions

* The € expansions in the O(N), Gross-Neveu,
Nambu-Jona-Lasinio, and other vectorial CFTs, are
useful for applications to condensed matter and
statistical physics.

* They provide “checks and balances” for the new
numerical results using the conformal bootstrap.

* They serve as nice playgrounds for the RG
inequalities (C-theorem, a-theorem, F-theorem)
and for the higher spin AdS/CFT and dS/CFT

correspondence.



 Some small values of N are special cases
where there are enhanced IR symmetries.

* Cubic QFT in d<6 can exhibit the enhanced
OSp(1]2) supergroup symmetry. It describes a
known statistical system, the spanning forests
(equivalent to the zero-state Potts model).

* Yukawa CFTs in d<4 can exhibit emergent
supersymmetry with 2 or 4 supercharges.
Perhaps this can be realized in condensed
matter systems and observed experimentally.



