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Abstract

We construct vertex operator super-algebras which lead to modules for moonshine relations

connecting the sporadic simple Mathieu groups M
22

and M
23

, with distinguished mock modular

forms. Starting with an orbifold of a free fermion theory, any subgroup of Co
0

that fixes a 3-

dimensional subspace of its unique non-trivial 24-dimensional representation commutes with a

certain N = 4 superconformal algebra. Similarly, any subgroup of Co
0

that fixes a 2-dimensional

subspace of the 24-dimensional representation commutes with a certain N = 2 superconformal

algebra. Through the decomposition of the corresponding twined partition functions into char-

acters of the N = 4 (resp. N = 2) superconformal algebra, we arrive at mock modular forms

which coincide with the graded characters of an infinite-dimensional Z-graded module for the

corresponding group. The two Mathieu groups are singled out amongst various other possibili-

ties by the moonshine property: requiring the corresponding mock modular forms to be regular

at all cusps inequivalent to the low temperature cusp at i1. Our constructions constitute the

first examples of explicitly realized modules underlying moonshine phenomena relating mock

modular forms to sporadic simple groups. Modules for other groups, including the sporadic

groups of McLaughlin and Higman–Sims, are also discussed.

⇤On leave from CNRS, Paris.
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which just appeared on the arXiv, and work in progress.

Outline of talk:

1.  Introduction
II.  Geometric motivation
III.  M22/M23 moonshine
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1.  Introduction

A talk about moonshine needs to begin with some
recap of the story to date, and the objects involved.

At the heart of the story are two classes of beautiful
and enigmatic objects in mathematics:

First off, we have
the sporadic finite groups

-- the 26 simple finite
groups that do not come

in infinite families.
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And secondly, we have
the modular functions

and forms: objects
which play well with

the modular group (c.f.
worldsheet partition

functions, S-duality invt.
space-time actions, ...).

A common example: consider SL(2,Z) acting on the UHP 
via fractional linear transformations:

⌧ ! a⌧+b
c⌧+d ⌘ A · ⌧

Then a modular function is a meromorphic function which 
satisfies:

f(A · ⌧) = f(⌧)

f(A · ⌧) = (c⌧ + d)kf(⌧)

while a modular form of weight k satisfies instead:

Wednesday, October 2, 13
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Monstrous moonshine originated in the observation
that:

The Monster is the largest of the sporadic groups.

1

Physics 451 lectures: Spring 2014

Shamit Kachru, Stanford

I. LECTURE 12: MONSTROUS MOONSHINE

Today, we’re going to take a bit of a detour from geometric ideas and talk about a famous

story from the mid 1980s called “Monstrous moonshine.” In part this is because there are

new developments surrounding this class of ideas that we will revisit later on. In part it

is because this will directly relate to other ‘counting problems’ in AdS/CFT which we will

encounter starting in the next lecture; what we learn today will turn out fortuitously to be

crucial background there.

Monstrous moonshine is a set of interesting relations between three distinct classes of

objects:

* Algebraic structures (finite groups)

* Modular forms

* Solutions of string theory

Lets first introduce some baby facts we’ll need from the first two areas.

A. Algebraic structures

The simple finite groups have been classified. They fall into 18 infinite families, and in

addition there are 26 oddballs - the “sporadic groups.” Of these, the largest is the Fischer-

Griess Monster M, with

||M || = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ⇠ 8⇥ 1053 . (1)

The Monster is hard to visualize. Its first non-trivial irreps occur in high dimensions:

dim = 1; 196, 883; 21, 296, 876; · · · (2)

A natural question for people from other areas of mathematics, or from physics (where

group theory has often played a role, and we have a psychological yearning for deep unique

structures to determine the world): are the sporadic groups deep and interesting, or are they

accidents to be forgotten as mathematics progresses?

It is not an easy beast to visualize.  The smallest
irreducible representations are:

J function

� John McKay noticed that

� All modular functions may be written as rational 
functions of

Dims of irreps of M
d1 1
d2 196,883
d3 21,296,876
d4 842,609,326

� Monstrous Moonshine!
It was being constructed in ’78 when John McKay took

a break to study some number theory papers.
Saturday, June 21, 14

while
A basic result says that any modular function can be 

written as a rational function of 

John McKay, taking a break from hard work on sporadic 
groups in the late 1970s, came across this expansion in a 

number theory paper.  He noticed:

j(⌧) =
1

q
+ 744 + 196, 884 q + 21, 493, 760 q2 + · · ·

q = e2⇡i⌧

196, 884 = 196, 883 + 1

21, 493, 760 = 21, 296, 876 + 196, 883 + 1

. . .

dims of irreps
of Monster!
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What John McKay noticed (with help from John
Thompson) was:
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One notices immediately the  “coincidence”:

The  “McKay-Thompson series” greatly strengthen
evidence for some real relationship:

Suppose there is a physical theory whose partition function 
is j, and which has Monster symmetry.  Then:

Why would there be a relation between these two
classes of objects??

Why should there be a relationship between the j-function 
and irreps of the Monster?

* A positive integer begs interpretation as dim(V) for some 
vector space V.

* So suppose there exists an infinite dimensional graded 
representation:

V = V�1 � V1 � V2 � V3 � . . .

V�1 = ⇢0, V1 = ⇢1 � ⇢0, V2 = ⇢2 � ⇢1 � ⇢0, . . .

where

Wednesday, October 2, 13Saturday, June 21, 14
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This suggests to also study the MT series:

j(⌧)� 744 = dim(V�1) q�1 +
P1

i=1 dim(Vi) qi

But if the Monster M has a natural action on V, this also 
suggests that we can fruitfully study the McKay-Thompson 

series:

ch⇢(g) = Tr(⇢(g)), g 2 M

Tg(⌧) = chV�1(g) q
�1 +

P1
i=1 chVi(g) q

i

For each conjugacy class in M (there are 194), we get such 
a series.

Wednesday, October 2, 13Saturday, June 21, 14

For each conjugacy class of M, we get such a series.  Now
while the partition function is modular under SL(2,Z),

in general the MT series are not:

Now, if we imagine the Hilbert space V arises from the 
statespace of a 2d CFT, we would identify:

Now the point is the following.  Let us imagine the modular 
function j is being generated by a partition function of a 2d 

CFT on a torus.  If we twist the boundary conditions:

h

0

@ a b
c d

1

A

����������⇥ hdgc

g gahb

Modular properties

Indeed, standard orbifold arguments suggest that 
under a modular transformation

For twining genus: h=1. Thus to get same diagram 
need:

‣ c=0 mod N=o(g)
‣ a=1 mod N=o(g)   [actually gcd(a,N)=1 sufficient]

Thursday, July 19, 12

we should still get a modular form for a subgroup of the 
modular group that preserves the form of the BC.

Thus, any conjecture for the decompositions is subjected 
to many checks, because the spaces of these modular 

forms are quite constrained.

Wednesday, October 2, 13

Z(⌧) = Tr(qL0) = j(⌧) .

Z[g](⌧) = Tr(gqL0) = T[g](⌧) .

In a similar way, we could write the MT series as:

Now, while Z is SL(2,Z) invariant, the MT series aren’t:
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In a similar way, we could write the MT series as:
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...but we should still get
modular functions under

a subgroup of SL(2,Z)
that preserves the B.C.
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This gave many further non-trivial checks.  Eventually, 
a beautiful and complete (?) story was worked out,

by Frenkel-Lepowsky-Meurman, Borcherds, ....

Summary on Monster

Bosonic strings on Leech 
lattice orbifold

Monster symmetryModular invariant 
partition function ሺ߬ሻܬ

Frenkel, Lepowsky, Meurman;
Dixon, Ginsparg, Harvey;

Borcherds

Unique 24-dim’l even self-dual lattice 
with no points of length-squared 2

Saturday, June 21, 14
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II.  Geometric Motivation

This is where matters stood until the work of
EOT (2010) brought K3 into the story:

* For any (2,2) SCFT, one can compute the elliptic genus:

II.  Enter the Calabi-Yau manifold

The partition function is, in general, difficult to
compute and highly dependent upon the precise

point in moduli space one studies.

More robust objects arise by counting BPS states.
A prototype (in 2d (2,2) theories) is the elliptic genus:

Zell(q, �L) = TrRR(�1)FLqL0ei�JL(�1)FR q̄L̄0

Lets unpack this for a moment.

A.   The elliptic genus of K3

Saturday, June 21, 14

It is a generalization of a modular form, known as a
Jacobi form.
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Math object definition slide

A Jacobi form of level 0 and index m behaves as

1 Introduction.

In this paper, I extend the work of Kawai [4], calculating N=2 heterotic string
one-loop threshold corrections with a Wilson line turned on, to Calabi-Yau
three- and fourfolds. (See also [10] for an alternative interpretation of Kawai’s
result.) In full generality, this calculation provides a map from a certain
class of Jacobi functions (including elliptic genera) to modular functions of
certain subgroups of Sp4(Q), in a product form. In a number of cases, these
products turn out to be equal to the denominator formula of a generalized
Kac-Moody algebra. It seems natural to assume that this algebra is present in
the corresponding string theory, and indeed in [9] it is argued that this algebra
is formed by the vertex operators of vector multiplets and hypermultiplets.

2 Elliptic genus.

In this section, I recall some basic facts about elliptic genera for Calabi-
Yau manifolds, mostly from [5], and I explicitly derive it for 4-folds. Let
C be a complex manifold of complex dimension d, with SU(d) holonomy.
Then its elliptic genus is a function φ(τ, z) with the following transformation
properties

φ

(

aτ + b

cτ + d
,

z

cτ + d

)

= e

[

mcz2

cτ + d

]

φ(τ, z),

(

a b
c d

)

∈ SL2(Z) (1)

φ(τ, z + λτ + µ) = (−1)2m(λ+µ)e[−m(λ2τ + 2λz)]φ(τ, z), λ, µ ∈ Z (2)

where m = d
2 , and it has an expansion of the form

φ(τ, z) =
∑

n≥0,r∈Z+m

c(n, r)qnyr (3)

I use here the notations e[x] = e2πix, q = e[τ ], y = e[z]. The coefficients
c(0,−m + p) for 0 ≤ p ≤ c have the following geometrical meaning

c(0,−m + p) = χp =
c
∑

q=0

(−1)p+qhp,q (4)

where hp,q are the Hodge-numbers of C. Furthermore

φ(τ, 0) = χ (5)

1

under modular transformations and elliptic 
transformations.  The latter is encoding the
behavior under the  “spectral flow” of N=2

SCFTs.
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Because it is an index independent of (many) moduli,
the elliptic genus is highly computable.

B.  The elliptic genus of K3 and EOT

K3 is the simplest non-trivial Calabi-Yau space - i.e.,
it admits a family of Ricci flat Kahler metrics and preserves 

space-time supersymmetry.

Here is a picture:

Wednesday, October 2, 13

It was computed for K3 in 1989
by Eguchi, Ooguri, Taormina, Yang:

The Jacobi theta functions are famous objects you
can look up.

�(⌧, �) = 8
4X

i=2

✓i(⌧, �)2

✓i(⌧, 0)2

Saturday, June 21, 14

If this thing was computed in 1989, why talk about it now?

In 2010, the following was noticed.  It is natural (given the
supersymmetry of the K3 CFT) to expand this in 
characters of the N=4 superconformal algebra:

�(⌧, �) = 20 chshort

1/4,0(⌧, �)� 2 chshort

1/4,1/2(⌧, �) +
P1

n=1

An chlong

1/4+n,1/2(⌧, �)
�K3

(⌧, z) = 20 chshort

1/4,0(⌧, z)� 2 chshort

1/4,1/2(⌧, z) +
P1

n=1

An chlong

1/4+n,1/2(⌧, z)

The values of the As are given by:

Eguchi, Ooguri, and Tachikawa noticed this in 2010, and 
conjectured a “Mathieu Moonshine” relating K3 

compactification to the sporadic group M24.

A1 = 90 = 45+ 45

A2 = 462 = 231+ 231

A3 = 1540 = 770+ 770

dims of irreps
of M24!
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From: Hirosi Ooguri <h.ooguri@gmail.com>
Subject: My PhD thesis
Date: May 15, 2014 2:32:56 PM PDT
To: Shamit Kachru <shamit.kachru@gmail.com>
Cc: Ooguri Hirosi <h.ooguri@gmail.com>

Dear Shamit,

  Here is a copy of my PhD thesis. Please see 
(3.16). I did not know how to divide these by two. 

Regards, Hirosi

Thursday, May 15, 14
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Math object definition slide
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1

under modular transformations and elliptic 
transformations.  The latter is encoding the
behavior under the  “spectral flow” of N=2

SCFTs.
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M24 is a sporadic group of order

C.   So what is M24 and why is it here?

The Mathieu group M24 is a sporadic group of order:

|M24| = 210 · 33 · 5 · 7 · 11 · 23 = 244, 823, 040

“Automorphism group of the unique doubly even self-dual 
binary code of length 24 with no words of length 4 

(extended binary Golay code).”

Or in plain English:

Wednesday, October 2, 13

* Consider a sequence of 0s and 1s

* Any length 24 word in G has even overlap with all 
codewords in G iff it is in G

* The number of 1s in each element is divisible by 4
but not equal to 4

* The subgroup of S24 that preserves G is M24

Why does M24 appear in relation to K3?

No one really knows!  There are some hints
from geometry. 

Wednesday, October 2, 13

M22 and M23 are
the subgroups of
permutations in 

M24 that stabilize
one or two points
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(extended binary Golay code).”
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This M24 moonshine, and a list of generalizations 
associated with each of the Niemeier lattices called

“umbral moonshine,” have been investigated intensely
in the past few years.  The full analogue of the story

of Monstrous moonshine is not yet clear.

In particular, no known K3 conformal field theory (or 
auxiliary object associated with it) gives an M24 module 

with the desired properties.

Cheng, 
Duncan,
 Harvey

Gaberdiel,
Hohenegger,

Volpato

The starting point for the work I’ll report was the 
desire to extend these kinds of results to Calabi-Yau

manifolds of higher dimension.
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For Calabi-Yau threefolds, there is a story involving the
heterotic/type II duality:

Then, in addition to trying to more deeply understand
the EOT result, it is logical to explore wider classes of

geometries to look for similar connections.

Our first thought was to explore heterotic strings on 
K3, where additional data comes into play.Such vacua arise in two simple avatars, related by duality:

Heterotic strings on 
K3xT2

Type IIA on Calabi-Yau
threefolds

Z

K3
c2(V1) + c2(V2)

⌘ n1 + n2 = 24

  The Hirzebruch surface is a        bundle over        .P 1 P 1

Size of  “base” of fibration
maps to heterotic dilaton

Can we find evidence for similar moonshine in the 
spectrum of BPS states of this much wider class of

theories?

Thursday, June 20, 13

elliptic fibration over

Fn, n1 = 12 + n, n2 = 12� n

SK, Vafa;
Ferrara, Harvey, Strominger, Vafa

They can be lifted to 6d dualities in F-theory. Morrison,
Vafa

dilaton S size of base P 1

We move to the setting of 4d N=2 string vacua.

Wednesday, October 2, 13

In fact, string dualities
 also relate these to 

type II strings on
 Calabi-Yau threefolds

Cheng, Dong, Duncan,
SK, Harvey, Wrase;

Harrison, SK, Paquette

Saturday, June 21, 14
A related M24 structure appears in the heterotic string
on K3 as a (dualizable) quantity governing space-time
threshold corrections.  So it appears in GW invariants

of the dual Calabi-Yau spaces. Cheng, Dong, Duncan,
Harvey, Kachru, Wrase

Saturday, June 21, 14



We were then led to think about Calabi-Yau fourfolds.

The elliptic genus of a Calabi-Yau fourfold has an
interesting structure.  

It is a linear combination of two Jacobi forms of 
weight 0 and index 2:

3 Elliptic genera of more general fourfolds

For a generic Calabi-Yau fourfold, the elliptic genus is a weak Jacobi form of index 2 and

weight 0. That is, it satisfies

Zell

✓
a⌧ + b

c⌧ + d
,

z

c⌧ + d

◆
= exp

✓
4⇡icz2

c⌧ + d

◆
Zell(⌧, z), for all

 
a b

c d

!
2 SL(2,Z) . (3.1)

The relevant ring of weak Jacobi forms is generated by the basis elements

��2,1(q, y) =
�10,1(q, y)

⌘(q)24
=

✓
1

y
� 2 + y

◆
�
✓

2

y2
� 8

y
+ 12� 8y + 2y2

◆
q + . . . , (3.2)

�0,1(q, y) =
�12,1(q, y)

⌘(q)24
=

✓
1

y
+ 10 + y

◆
+

✓
10

y2
� 64

y
+ 108� 64y + 10y2

◆
q + . . . ,(3.3)

where �i,k are the unique cusp forms of index i and weight k and we use the conventions

q ⌘ e2⇡i⌧ , y ⌘ e2⇡iz . (3.4)

Expanding the elliptic genus one has

Zell(q, y) =
X

n�0,r2Z+m

c(n, r)qnyr . (3.5)

For a given fourfold X, the coe�cients of ��2,1 and �0,1 are determined by the topology of

X. For a given Euler character �(X) and

�0(X) =
4X

k=0

(�1)kh0,k(X) , (3.6)

the elliptic genus is given by

Zell(⌧, z) = �0(X) E4(q)��2,1(q, y)
2 +

�(X)

144

�
�0,1(q, y)

2 � E4(q)��2,1(q, y)
2
�
. (3.7)

Here E4 is the Eisenstein series of weight four:

E4(q) = 1 + 240
1X

k=1

�3(k)q
2k = 1 + 240q2 + 2160q4 + 6720q6 + · · · (3.8)
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Standard generators for 
ring of weak Jacobi forms

C.D.D. Neumann,
1996
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The piece that is present universally has a nice expression:

Zuniv ⇠ 1
⌘(⌧)12

P4
i=1 ✓i(⌧, 2z)✓i(⌧, 0)

11

As we’ll see momentarily, this has a very suggestive q-
expansion and hints at many interesting things.  But first,

we switch to a setting where all statements can be
made precise, without randomly selecting a fourfold.

We can consider this a move to
Platonic ideals instead of real-world

grubby fourfolds...
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III.  The Platonic realm of M22/M23 moonshineIII.  Mock modular moonshine for M22 and M23

We begin with the chiral SCFT
on the E8 root lattice.

It can be formulated in terms of 8 bosons and their
Fermi superpartners.

Next, we orbifold:

Chiral orbifold theory on E8 lattice

� Perform ଶ orbifold:
� Constant 8 disappears from partition function:

� All coefficients are dimensions of Conway reps.

for ଵ
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The partition function of this theory can be 
computed by elementary means.  It is given by:
Chiral orbifold theory on E8 lattice

� Perform ଶ orbifold:
� Constant 8 disappears from partition function:

� All coefficients are dimensions of Conway reps.

for ଵThe coefficients are interesting:

Chiral orbifold theory on E8 lattice

� Perform ଶ orbifold:
� Constant 8 disappears from partition function:

� All coefficients are dimensions of Conway reps.

for ଵNatural decomposition 
into Co1 reps!
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In fact, it was realized some years ago that this model
has a (not so manifest) Conway symmetry, which

commutes with the N=1 supersymmetry.
Chiral E8 orbifold possesses Conway symmetry

� Conway symmetry commutes with N=1 SUSY.
� Expand partition function in N=1 characters:

Duncan ’05

Coefficients of N=1 characters have “nicer” 
decompositions in terms of dimensions of irreps of ଵ.

FLM; 
Duncan

’05

This CFT played a significant role in attempts to find
 a holographic dual of pure supergravity in AdS3.

Witten
’07
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We have realized several new things about this model;
explaining them will occupy the rest of this talk.

1.  It admits an N=4 description with more or less
manifest M22 moonshine.

2.  The elliptic genus and twining functions that arise
match expectations for every conjugacy class.

They have a beautiful interpretation as Rademacher sums.

3.  The natural objects appearing in the genera are mock modular forms.  
This gives a completely explicit example

of mock moonshine with a full construction of the module.

4.  An analogous story holds for an N=2 description
with M23 mock moonshine.

Saturday, June 21, 14
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Elliptic genus:

� Weak Jacobi form of weight and index 
� Also partition function of chiral E8 orbifold

of asymmetric orbifold on E8 factorizes:

where is left partition function with grading:

Elliptic genus:

� Weak Jacobi form of weight and index 
� Also partition function of chiral E8 orbifold

of asymmetric orbifold on E8 factorizes:

where is left partition function with grading:

One can construct a full string theory simply related
to this module by considering the asymmetric orbifold

generated by this       acting separately on left/right. Z2

Its elliptic genus is:

Now, expand this thing in N=4 characters:

Saturday, June 21, 14
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Z(q, y) = 21 chBPS
h=1/2,l=0(q, y) + chBPS

h=1/2,l=1(q, y)

+ 560 chh=3/2,l=1/2(q, y) + 8470 chh=5/2,l=1/2(q, y) + · · ·

+ 210 chh=3/2,l=1(q, y) + 4444 chh=5/2,l=1(q, y) + · · ·

The coefficients are dimensions of M22 representations:

Expand

Coefficients are dimensions of M22 representations!

in N=4 characters:

� Analogous to M24/K3 moonshine
� No virtual representations

Cheng, XD, Duncan, 
Harrison, Kachru, 
Wrase, in preparation

And, no virtual representations appear.

these two lines are governed by mock modular forms!
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Math object definition slide

A Jacobi form of level 0 and index m behaves as

1 Introduction.

In this paper, I extend the work of Kawai [4], calculating N=2 heterotic string
one-loop threshold corrections with a Wilson line turned on, to Calabi-Yau
three- and fourfolds. (See also [10] for an alternative interpretation of Kawai’s
result.) In full generality, this calculation provides a map from a certain
class of Jacobi functions (including elliptic genera) to modular functions of
certain subgroups of Sp4(Q), in a product form. In a number of cases, these
products turn out to be equal to the denominator formula of a generalized
Kac-Moody algebra. It seems natural to assume that this algebra is present in
the corresponding string theory, and indeed in [9] it is argued that this algebra
is formed by the vertex operators of vector multiplets and hypermultiplets.

2 Elliptic genus.

In this section, I recall some basic facts about elliptic genera for Calabi-
Yau manifolds, mostly from [5], and I explicitly derive it for 4-folds. Let
C be a complex manifold of complex dimension d, with SU(d) holonomy.
Then its elliptic genus is a function φ(τ, z) with the following transformation
properties

φ

(

aτ + b

cτ + d
,

z

cτ + d

)

= e

[

mcz2

cτ + d

]

φ(τ, z),

(

a b
c d

)

∈ SL2(Z) (1)

φ(τ, z + λτ + µ) = (−1)2m(λ+µ)e[−m(λ2τ + 2λz)]φ(τ, z), λ, µ ∈ Z (2)

where m = d
2 , and it has an expansion of the form

φ(τ, z) =
∑

n≥0,r∈Z+m

c(n, r)qnyr (3)

I use here the notations e[x] = e2πix, q = e[τ ], y = e[z]. The coefficients
c(0,−m + p) for 0 ≤ p ≤ c have the following geometrical meaning

c(0,−m + p) = χp =
c
∑

q=0

(−1)p+qhp,q (4)

where hp,q are the Hodge-numbers of C. Furthermore

φ(τ, 0) = χ (5)

1

under modular transformations and elliptic 
transformations.  The latter is encoding the
behavior under the  “spectral flow” of N=2

SCFTs.

Thursday, May 8, 14

A  “mock modular form” arises when a theory has
to make a choice between modularity and holomorphy. 

Typical example:  supersymmetric index in a theory with

Zell(q, �L) = TrRR(�1)FLqL0ei�JL(�1)FR q̄L̄0

may not quite manage to localize
on right-moving ground states, due

to mismatch in densities of fermions
and bosons at finite energy.

Right-moving primaries

Unpaired Ground States

Difference      in Spectral      Densities

Mock 
modular

Non-Hol
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There is an equivalent description of the E8 orbifold
theory as a theory of 24 free fermions orbifolded

by the action of         .
 

(�1)F

* The orbifold has a manifest Spin(24) symmetry.

* Choosing an N=1 superalgebra actually reduces this 
symmetry to        .  Co0

* Now, to construct an N=4 superalgebra, choose
three of the fermions.
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The currents of the SU(2) R-symmetry of N=4 are then:

1 Introduction

2 A Free Field Module

Review John’s module and the N=1 structure. Talk about Conway characters at torsion points?

(MC probably not?!)

3 The N = 4 Module

Let us construct an N = 4 SCA in the free fermion orbifold theory. Our strategy is to first

construct the SU(2) R-currents, and act them on an N = 1 supercurrent to generate the full

N = 4 SCA. In this process, we break the Co

0

symmetry group (MC we can’t twine the module

with the full Co so we might need to change this.) down to M
22

.

We start with 24 real free fermions �↵, ↵ = 1, 2, · · · , 24. Picking out the first three fermions,

we obtain the currents Ji:

Ji = �i✏ijk�j�k , i, j, k 2 {1, 2, 3} . (3.1)

They form an a�ne SU(2) current algebra with level 2 as may be seen from their OPE:

Ji(z)Jj(0) ⇠
1

z2
�ij +

i

z
✏ijkJk(0) . (3.2)

The next step is to pick an N = 1 supercurrent and act Ji on it. Recall that an N = 1

supercurrent exists in this model and may be written as a linear combination of spin fields in

this model [1]. To do this explicitly we first group the 24 real fermions into 12 complex ones

and bosonize them:

 a ⌘ 2�1/2(�
2a�1

+ i�
2a) ⇠= eiHa ,  ̄a ⌘ 2�1/2(�

2a�1

� i�
2a) ⇠= e�iHa , a = 1, 2, · · · , 12 .

(3.3)

In terms of the bosonic fields Ha, an N = 1 supercurrent W may be written as (MC rewrite

this sentence?)

W =
X

s

wse
is·Hcs(p) , (3.4)

where each component of s = (s
1

, s
2

, · · · , s
12

) takes the values ±1/2, and the coe�cients ws

are C-numbers. We have introduced cocycles cs(p) to ensure that the operators with integer

spins commute with all other operators, and the operators with half integral spins anticommute

among themselves. The cocycles depend on the zero mode operators p which are characterized

3

One can check quickly that
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3

By bosonizing the fermions, writing the currents in
bosonic language, and writing the N=1 supercurrent in

the same way, one can show that one obtains from OPEsand extract the singular terms of their OPEs:

Ji(z)W (0) ⇠ �

i

2z
Wi(0) , (3.14)

where Wi are slightly modified combinations of spin fields:

W
1

= �

X

s

2s
2

wRse
is·Hcs(p) , (3.15)

W
2

= i
X

s

4s
1

s
2

wRse
is·Hcs(p) , (3.16)

W
3

= i
X

s

2s
1

wse
is·Hcs(p) , (3.17)

where Rs ⌘ (�s
1

,�s
2

, s
3

, · · · , s
12

). (MC : should we call Rs s

0 or something to make the

formulas look a bit nicer? )

We claim that all three Wi defined above are valid N = 1 supercurrents. This is because we

may obtain, for instance, W
3

from W by rotating the 1-2 plane by ⇡, and the conditions (3.9),

(3.10) for being an N = 1 supercurrent are invariant under SO(24) rotations. We may obtain

W
2

and W
3

similarly. This shows that each of Wi is an N = 1 supercurrent.

Furthermore, we may check the OPEs of Wi:

Wi(z)Wj(0) ⇠ �ij



8

z3
+

8

z
T (0)

�

+ 2i✏ijk



2

z2
Jk(0) +

1

z
@Jk(0)

�

, (3.18)

W (z)Wi(0) ⇠ �2i

✓

2

z2
+

@

z

◆

Ji(0) , (3.19)

Ji(z)Wj(0) ⇠
i

2z
(�ijW + ✏ijkWk) . (3.20)

This shows that W , Wi, Ji, and the stress tensor T defined as

T = �

1

2
�↵@�↵ = �

1

2
@Ha@Ha (3.21)

form anN = 4 SCA with central charge c = 12. We may recombine the fourN = 1 supercurrents

W , Wi into the more conventional N = 4 supercurrents

W±
1

⌘ 2�1/2(W ± iW
3

) , W±
2

⌘ ±2�1/2i(W
1

± iW
2

) , (3.22)

which transform as 2+ 2̄ of the SU(2) R-symmetry. In terms of these supercurrents we obtain

5

Saturday, June 21, 14Saturday, June 21, 14



The algebra of the supercurrents is then calculated to be:
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and together with the stress-energy tensor

these fill out an N=4, c=12 superconformal algebra.

The subgroup of Conway that commutes with the choice
of the three-plane is M22.
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In this language, the elliptic genus is more naturally 
rewritten as:Equivalent formulation of E8 orbifold theory

� In terms of 24 free fermions orbifolded by ி:

� Can be shown isomorphic to E8 orbifold theory.
� Possess ଴ symmetry commuting with N=1.
� Possess M22 symmetry commuting with N=4!
� Choosing N=4 SCA breaks Conway down to M22.
� This free fermion orbifold makes M22 symmetry 

manifest (although it is hidden in E8 orbifold theory).

Duncan ’05

Cheng, XD, Duncan, 
Harrison, Kachru, 
Wrase, in preparation

This is equivalent to our earlier expression (from the “E8 
viewpoint”) by nontrivial identities on Jacobi forms.

The 21 “non N=4” fermions give the 21 of M22.  All
higher states in the module have transformation laws

that can then be derived from first principles.
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One can now compute twining genera by an explicit 
prescription.  But also, excitingly:

* One can use the magic of Rademacher sums!

In the original Monstrous Moonshine, all twining functions 
were given as Hauptmoduln of genus zero subgroups of the 

modular group.

In Mathieu moonshine, this was not true.  However, the 
genus zero property is equivalent to arising as a 

Rademacher sum in the Monster case, and this property 
holds for the twining functions of Mathieu moonshine.

Here, the twinings also all arise as Rademacher sums.

Duncan, Frenkel;
Cheng, Duncan
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Math object definition slide

A Jacobi form of level 0 and index m behaves as

1 Introduction.

In this paper, I extend the work of Kawai [4], calculating N=2 heterotic string
one-loop threshold corrections with a Wilson line turned on, to Calabi-Yau
three- and fourfolds. (See also [10] for an alternative interpretation of Kawai’s
result.) In full generality, this calculation provides a map from a certain
class of Jacobi functions (including elliptic genera) to modular functions of
certain subgroups of Sp4(Q), in a product form. In a number of cases, these
products turn out to be equal to the denominator formula of a generalized
Kac-Moody algebra. It seems natural to assume that this algebra is present in
the corresponding string theory, and indeed in [9] it is argued that this algebra
is formed by the vertex operators of vector multiplets and hypermultiplets.

2 Elliptic genus.

In this section, I recall some basic facts about elliptic genera for Calabi-
Yau manifolds, mostly from [5], and I explicitly derive it for 4-folds. Let
C be a complex manifold of complex dimension d, with SU(d) holonomy.
Then its elliptic genus is a function φ(τ, z) with the following transformation
properties

φ

(

aτ + b

cτ + d
,

z

cτ + d

)

= e

[

mcz2

cτ + d

]

φ(τ, z),

(

a b
c d

)

∈ SL2(Z) (1)

φ(τ, z + λτ + µ) = (−1)2m(λ+µ)e[−m(λ2τ + 2λz)]φ(τ, z), λ, µ ∈ Z (2)

where m = d
2 , and it has an expansion of the form

φ(τ, z) =
∑

n≥0,r∈Z+m

c(n, r)qnyr (3)

I use here the notations e[x] = e2πix, q = e[τ ], y = e[z]. The coefficients
c(0,−m + p) for 0 ≤ p ≤ c have the following geometrical meaning

c(0,−m + p) = χp =
c
∑

q=0

(−1)p+qhp,q (4)

where hp,q are the Hodge-numbers of C. Furthermore

φ(τ, 0) = χ (5)

1

under modular transformations and elliptic 
transformations.  The latter is encoding the
behavior under the  “spectral flow” of N=2

SCFTs.
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A “Rademacher sum” is a close relative of a Poincare 
series.   You can obtain a modular form by starting with an 

object invariant under the stabilizer of infinity, and then 
summing over representatives of right cosets:

Rademacher Sums and Rademacher Series 3

For instance, to obtain a modular form of even integral weight w = 2k we may, following

Poincaré (cf. (2.10)), take f(τ) = e(mτ) where m is an integer, τ is a parameter on the upper-

half plane H, and here and everywhere else in the article we employ the notation

e(x) = e2πix. (1.1)

Then the subgroup of Γ = SL2(Z) leaving f invariant is just the subgroup of upper-triangular

matrices, which we denote Γ∞ since its elements are precisely those that fix the infinite cusp of

Γ (cf. §2.1). Thus we are led to consider the sum

∑

(

a b
c d

)

∈Γ∞\Γ

e

(

m
aτ + b

cτ + d

)

1

(cτ + d)w
, (1.2)

for w = 2k, taken over a set of representatives for the right cosets of Γ∞ in Γ. When k > 1

this sum is absolutely convergent, locally uniformly for τ ∈ H, and thus defines a holomorphic

function on H which is invariant for the weight w = 2k action of Γ by construction. If m ≥ 0

then it remains bounded as #(τ) → ∞ and is thus a modular form of weight 2k for Γ = SL2(Z).

This result was obtained by Poincaré in [Poi11]. (See [Kow10] for a historical discussion.)

For many choices of w and m, however (e.g. for w ≤ 2), the infinite sum in (1.2) is not

absolutely convergent (and not even conditionally convergent if w < 1). Nontheless, we may

ask if there is some way to regularise (1.2) in the case that w ≤ 2. One solution to this

problem, for the case that w = 0, was established by Rademacher in [Rad39]. Let J(τ) denote

the elliptic modular invariant normalised to have vanishing constant term, so that J(τ) is the

unique holomorphic function on H satisfying J
(

aτ+b
cτ+d

)

= J(τ) whenever
(

a b
c d

)

∈ SL2(Z) and

also J(τ) = q−1 +O(q) as #(τ) → ∞ for q = e(τ).

J(τ) = q−1 + 196884q+ 21493760q2 + 864299970q3 + · · · (1.3)

In [Rad39] Rademacher established the validity of the expression

J(τ) + 12 = e(−τ) + lim
K→∞

∑

(

a b
c d

)

∈Γ∞\Γ
0<c<K

−K2<d<K2

e

(

−
aτ + b

cτ + d

)

− e
(

−
a

c

)

(1.4)

for J(τ) as a conditionally convergent sum, where Γ = SL2(Z), and one can recognise the right

hand side of (1.4) as a modification of the w = 0 case of (1.2) with m = −1. This result has

Poincare series for
modular form of 

weight w=2k

Rademacher sums are modified versions of this that
improve the convergence properties.
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* A similar story holds if instead of enlarging the N=1 
supersymmetry to N=4, one enlarges it to N=2.

* The commutant of a choice of U(1) R-current (and 
consequent N=2 algebra) is M23.

* Again there is a manifest symmetry in the fermionic
construction, twinings are computable by a simple
prescription, and everything holds together nicely.

This gives examples of mock modular moonshine for
M22 and M23 at c=12.  The Mathieu case of M24 at c=6

remains mysterious.
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In the big picture, this means:

* We now have several examples of mock modular 
moonshine with explicit modules.

* They arise naturally in the quantum/stringy geometry
of certain asymmetric orbifolds.

* Connections to geometric models (CY fourfolds,
spin(7) manifolds) require more work, but there

are promising avenues...

* Connections to geometry appeared through EOT.  
They extend to some extent to the heterotic theory

and via duality to Calabi-Yau threefolds.

* Some fourfolds give modular forms closely related to
those in the last bit of my talk.  Does this mean anything?

interplay of duality with moonshine
is a new thing; can it deepen or 

broaden the lessons?
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