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Motivation: Enlarged Landau Paradigm.

Landau paradigm: (basis of most condensed matter understanding)

1. Phases of matter are classified by how they represent their symmetries.

2. At a critical point, critical dofs are fluctuations of order parameter.

Gapless excitations or degeneracy (in a phase) are Goldstone modes for
spontaneously broken symmetries.

Landau-Ginzburg theory is an implementation of this point of view for

finding representative states, for understanding gross phase structure; it

quantitatively describes phase transitions in large enough dimensions.

Some apparent exceptions:

e topological order [Wegner, Wen]

e.g. deconfined phase of discrete gauge theory, Y
fractional quantum Hall states. ; E2 Mj/wj
e other deconfined states of gauge theory (e.g. Coulomb ;ﬁase of E&M).

As we enlarge our understanding of what constitutes a symmetry, we can
also enlarge the Landau paradigm.
Goal: Our goal here will be to understand how to generalize the idea of

Landau-Ginzburg theory.



Higher-form symmetries.

[Gaiotto-Kapustin-Seiberg-Willett, Sharpe, Hofman-Igbal, Lake...]

(D = number of spacetime dimensions.)
0-form symmetry: 1-form symmetry:
Ju = —Jy, with 0#J,, =0
9J, =0 (ie. dx J = 0) " w W "
. s (i.e. dx J =0)
= Q= fED *J is inde- 2 0 S . d %,
_ _ « .
pendent of time-slice X, > Ep-2 " epends
1 only on the topological class

i.e. is topological.
polog of .

Charged particle worldlines

can’t end Charged string worldsheets

can’t end (except on charged operators).
(except on charged operators). . . . )
) ) . Discrete (Zjp) version: strings can disappear
Discrete (Z,) version: particles can )
i i or end in groups of p.
disappear in groups of p.

Charged objects are local operators Charged objects are loop operators:
O(z) = €°O(x), da=0. WI[C] — etfe "W (C], dI' = 0.



Physics examples of one-form symmetries:

» Maxwell theory with electric charges:
J = Let PR, = (dA)* is conserved: V,J* = 0.
A

(Charged operator is the ’t Hooft line, W¥ = ¢lfc 4))

»> Pure SU(N) gauge theory
or Zn gauge theory
or U(1) gauge theory with charge-N matter
has a Zy 1-form symmetry (‘center symmetry’).

(Charged line operator is the Wilson line in the minimal irrep,
WI[C] = trPetfc 4)

» The 3d Ising model

has a Z2 1-form symmetry
reflecting the integrity of domain walls.

(Charged line operator is the disorder operator.)




Higher-form symmetries can be broken spontaneously.

[Kovner-Rosenstein, Nussinov-Ortiz, Gaiotto-Kapustin-Seiberg-Willett, Hofman-Igbal, Lake]

0-form symmetry: 1-form symmetry:
Unbroken phase: correlations of charged Unbroken phase: correlations of charged
operators are short-ranged, decay when operators are short-ranged, decay when
the charged object (S° = two points) the charged object grows.
gTOWS. W(C)) ~ e~ Tr+1Area(C)
(O(x)TO(0)) ~ e~ ™=l For E&M, area law for (W (C)) is the
(|| = Area(SO(x))l) superconducting phase.

Broken phase for 1-form sym:
<W(C)> _ e—TpPerimeter(C) 4o
<O(I)TO(0)> = <OT><O> + (set to 1 by counterterms local to C:
independent of size of S°.

Broken phase for 0-form sym:

large loop has a vev)



Higher-form symmetries, a fruitful idea:

> TOpOlOgical Order as SSB [Nussinov-Ortiz 06,

Gaiotto-Kapustin-Seiberg-Willett 14]

> PhOtOIl as GOldStOIle bOSOH [Kovner-Rosenstein 92, Gaiotto et al,

Hofman-Igbal, Lake 18]

» A new organizing principle for magnetohydrodynamics

[Grozdanov-Hofman-Igbal 16]

» New anomaly constraints on IR behavior of QFT

[Gaiotto-Kapustin-Komargodski-Seiberg 17, many others]|



Robustness of higher-form symmetries.

We are used to the idea that consequences of emergent (aka accidental)
symmetries are only approximate:

Explicitly breaking a O-form symmetry gives a mass to the Goldstone boson.

Q: The existence of magnetic monopoles with m = Monopole €xplicitly
breaks the 1-form symmetry of electrodynamics:

BMJE — jmonopole
% v .

If the photon is a Goldstone for this symmetry, does this mean the photon

gets a mass? No!

Cheap explanation #1: By dimensional analysis (take m. — c0).

m~ — 0 when Mmonopole — 00.

Cheap explanation #2: By dimensional reduction.

[Polyakov] _ pf
~ e

monopole

R— 00
My B0,

Cheap explanation #3: The operators that are charged under a 1-form
symmetry are loop operators — they are not local. We can’t add non-local

operators to the action at all.



Mean String Field Theory



Method of the missing box.

Landau-Ginzburg mean field theory is our zeroth order tool for

understanding symmetry-breaking phases and their neighbors.

O-form symmetry : mean field theory

I-form symmetry : 7



Landau-Ginzburg-Wilson reminder.

Order parameter for U(1) 0-form symmetry-breaking, ¢(z) — e'*$(z).

¢ is a coarse-grained object, this is an effective long-wavelength description.
All local, symmetric terms, organized by derivative expansion

(what else could it be):

SLandau—Ginzburg»Wilson[¢] = /de (T|¢|2 + ’LL|¢)|4 + -+ |8¢|2 + - ) .

One way to make contact with a microscopic Hamiltonian H is by the
variational principle:

Product-state ansatz: |¢) = Qg |p(x)).

Hrew|d] = (¢p|H|¢p) determines specific coefficients.



Working by analogy.

Ingredients:

¢(z): function from space of points to  ¥[C]: functional from space of loops to

linear rep of G
d(x) — p(x)e'™ da=0

dex

Coupling to bg field: A — A+ da
aard() ~ (52 — idu(x)) ¢(x)

linear rep of G

Y[C] = Y[C)eife T dl' =0

50%: area derivative [Migdal, Polyakov]
%
%
[1dC] = [[dX]emE1C]
Coupling to background field: B — B + dI’

s ¥IC] ~ (e — B (@(s))) ¥IC]

[Soo-Jong Rey 89]



Mean String Field Theory.

All terms consistent with basic principles in (area) derivative expansion:

Sraw(v / [dC] ( (I%ICI°) + 52 ?{ ds ;gw[c ?L[?) ...)+sr[w},

v(z) =re+ur? +-- -,

60%: area derivative [Migdal, Polyakov]

Topology-changing recombination terms:

Sy [111] = /[dcl,2,3]5[01*(02+03)} ()\1/J[01]1[)*[Cz]1/1*[03} -+ h.C.)

+ -+ also respect 1-form symmetry.
The action SLew|[¢] is Wilson-natural® under the following assumptions:
» Invariance under the 1-form symmetry
» Locality: a single integral over the center-of-mass position.
» Ordinary rotation and translation invariance

> A certain translation invariance in loop space



Mean String Field Theory.

suawtt) = [100) (v (4IOP) + iy f as 2L 2 Y

» Important disclaimer: Not at all UV complete, no gravity.
We expect no connection to ‘real’” string field theory and are trying to
do something much less difficult involving only effective strings.

> A gauged version of this model (without S,) was studied [Soo-Jong Rey,
1989] as a description of 2-form Higgs mechanism, and [Franz 07,
Beekman-Sadri-Zaanen 11] as a dual description of a 3 + 1d superfluid.

» Still-difficult but well-posed Q: what does this model describe?
Plausible goal: develop a crude picture of the phase diagram (and

transitions) for systems with 1-form symmetries.




Classical mechanics of Mean String Field Theory.

5S[Y]
o> [C]

Equations of motion: 0 =

1 5 e~ mECl gy[C] / 2y, 05
0= —gemt€ fase b (4T UEY e iy

Requires a boundary condition at small loops. n o>
This BC says: a small loop can shrink to nothing. oMY
Setting ¢[small, contractible loop] = g~ 2, some constant

> is consistent with t.he symmetries, since for a small, contractible loop,
C = 0R, Y[C] = e ¥ Ty[C] = e Jr T[] = ¢[C] is neutral, and

» will match nicely to gauge theory in the broken phase.



Unbroken phase.

Let’s ignore S, for a moment, and take r > 0:

Im{y]

Re[y]

Sraw[y] = /[dC]( Y[CIYT[CT + C]% 565/):”(;’] 56016)&(]5) * ’)7

r>0 = Y[C] ~ 0. (¢p =0 is not consistent with B.C.)

. — o—s(AlCD) — ;
Ansatz:  Y[C]=e , AlC) = sn Area(X)

For large 7, A, solution is self-consistently: (s'(A4))> =r + O (A_l/z)

— [[C] = e VAT

Area law. Confinement.

String tension = /7.



Broken phase.

Now consider r < 0:

Y[C] ~v (v =14/ %) “string condensed phase”

[Levin-Wen)] Imly]

Fluctuations about groundstate:

Y[C] = vexp (% ds (it(z(s)) + iau(z(s))2" (s) + thu (x(s))z"E” + - ))
c
Plug back into action (worldline techniques, e.g. [Strassler’s thesis]):

S = /defo“” + massive modes, (f = da)

> Photon = Goldstone boson (slowly-varying 1-form symmetry transf).

1

5,27+ determined by stiffness.

» Gauge coupling is ¢* =

> All other unprotected dofs massive.

> Perimeter-law factors e~ $o £ = = mLICl+

redefinition of ¥[C].

ambiguous by field



Topological defects in the broken phase.

Another purpose of ordinary LG theory is to provide an understanding of
topological defects of the broken phase [e.g. Mermin 1979].

Take X C spacetime with ¢ # 0 defines a map LX — U(1), where LX is
the free loop space, maps S' — X.

Defects linked with X are then labelled by homotopy classes of such maps
[LX,U(1)].

If 71 (X) = 0, then
[LX,8"] = ma(X).

For example, take X = S77! surrounding a codim

q locus. This predicts that the magnetic monopole
is the only topological defect for G = U(1). \ - ’



Discrete 1-form symmetries.

To break the U(1) 1-form symmetry down to a Z, subgroup, add

Sy =h / [ACT?[C] + h.c.

In the broken phase, this is S, = 2hv? )" cos (p fc a).
For h > 1, minimizing S, requires fo a= %, k=0,---p—1 for all loops

C, including nearby loops = da = 0.
Introducing a D — 2-form Lagrange multiplier b to set pda = 0 gives

/[dw]e*SLGWw*SMUﬁ,M ~ /[dadb]e‘%f“dae““ Inp_s®

where Uk, 5_o is the 1-form symmetry operator.

This is an EFT for Z, gauge theory. v e W



Regularization on the lattice.

A simple example of a system with 1-form symmetry:
Z, gauge theory aka (perturbed) toric code. Cell complex, H = ®iinks, ¢ Hp-

HTC_—ooZ Z‘L . —TI Z xk—gz L.

sites, s plaquettes, p X links, £
. _ —_— o
g=0:|gs) = E |C) (where | 7~ ) = [Ze = —1)).
collections of closed loops, C
g ~ electric string tension. Soomimemet __ oovey g ”
‘Product-state’ ansatz: |ih) =: e, connectea VIAWIEL gy

where W[c]|0) = |¢) creates the loop c. [Related ansatze: Levin-Wen 04, Vidal et al]
E[Y] = (V|Hrc| V)

=> 1= > ¢[dele+ap] + gL[c [yl ZwapH R

IpNec#0 recombination

H_/
small-loop BC

0= SE

s+ gives a lattice version of the MSF'T EoM.



Thoughts about phase transitions



Phase transitions.
If we were to ignore S,

(for example if there were an additional ¥ — — symmetry):

» Continuous mean field transition at 7 = r, = 0, [C] ~ eV Te4,
Numerical estimate of this exponent: tension ~ (r — 7.)®

ind=3 Zy case is x ~ 1.26 # 0.5 [Hasenbusch 93]
» Dimensional analysis says the upper critical dimension is 8!
[Parisi 79] using estimate of fractal dimension of random surfaces = 4.
But: S, ~ ¢°.
The fact that the U(1) 1-form symmetry admits a cubic term
strongly suggests that the generic transition is first order.
This provides an appealing explanation for the anecdotal evidence from
many numerical simulations. e.g. [Creutz-Jacobs-Rebbi, ..., Kawai-Nio-Okamoto,

Allais, Florio-Lopes-Matos-Penedones]

D =4 is special.




[Important input from Diego Hofman]

Phase transitions.
Two notions of lower critical dimension: (D{; = D = 2 for 0-form symms.)
e where Hohenberg-Mermin-Wagner-Coleman forbids symmetry breaking
(D} = 3 [Gaiotto et al, Lake])

e where linearly-transforming fields are dimensionless (DF = 4).

In D = 4 there can be a KT-like transition.
The dimension of A in

Sp = —h [[dCYP[C] + h.c.

Sy =~ [liCIy[C )
1S AP (g) = 32ﬂ_2 [Kapustin 05]. i \ et \ .’
For large-enough p, A,(g) passes e e e
through 4 at some g. < V4.

Imy]

p
non- conf.

Seen in 3 + 1d Z, lattice gauge theory K

simulations for large-enough p. P

[Elitzur et al, Horn et al, Windey et al, magneﬁc electric
Svetitsky-Yaffe, Creutz-Jacobs-Rebbi] Conf conf.

Istjorder
~Ir]




Final thoughts.

» There is much more to understand about this theory.

It is not quite under control yet, but likely can be understood.
» Can we find new RG fixed points this way?
» By adding topological and WZW terms, we can describe 1-form SPTs,

and realize more general gauge theories as the broken phase.
» What is a gauge theory?

Contrast with the work of Polyakov, Migdal, Makeenko and others
reformulating a particular gauge theory as a field theory in loop space:

Here, by writing a field theory in loop space, we arrive at some

universal properties of gauge theory.



Final thought.

Q: Does the enlarged Landau paradigm
(including all generalizations of symmetries, and their anomalies
— see Shu-Heng Shao’s talk on Thursday)
incorporate all phases of matter
(and transitions between them)

as consequences of symmetry?

Landau was even more right than we thought.
This seems to be a fruitful principle.



The end.

Thanks for listening.

Thanks to the organizers of the Strings meeting.



