Tensor Network and Holography

Ling-Yan Hung Fudan University (Arpan Bhattacharyya, Zhe-Shen Gao, Si-Nong Liu)

Strings 2016, Tsinghua

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Reduced density matrix and Entanglement Entropy

Reduced density Matrix

$$\rho = |\Psi\rangle\langle\Psi|, \qquad \rho_{\mathcal{A}} = \operatorname{tr}_{\mathcal{B}}\rho$$

► The entanglement entropy is a limiting case of the Rényi entropy by analytically continuing n.

$$S_{EE} = -\mathrm{tr}_A(
ho_A \ln
ho_A) = \lim_{n \to 1} S_n = -\partial_n \ln \mathrm{tr}
ho_A^n|_{n=1}$$

Holographic EE

Given that it is a difficult task generally to compute EE/Rényi entropy in field theory, how about using holography?

Holographic EE

Given that it is a difficult task generally to compute EE/Rényi entropy in field theory, how about using holography?

Ryu-Takayanagi Formula

$$S_1 = \frac{\text{Min}[\mathcal{A}_{d-1}]|_{\partial \mathcal{A} = \partial A}}{4G_N}$$

Ryu & Takayanagi (proof by Casini, Huerta, Myers; Aitor Lewkowycz, Juan Maldacena)

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Tensor network and wavefunctions

Tensor network representation of wavefunction:

figure courtesy Singh and Vidal, Global symmetries in tensor network states: symmetric tensors versus minimal bond dimension

Mera and RT formula

It was first pointed out by Brian Swingle:

Figure 13: (color online) In scale-invariant 1d MERA, two sites separated by distance L in physical space are separated by distance $O(\log L)$ in holographic space. If the MERA reproduces the properties of a 1d quantum critical lattice system with a CFT limit, then one can understand the open indices in the TN as a discrete version of a (1+1)d-GFT, living at the boundary of a bulk that is a discrete version of a (2+1)d-AGS gravitational dual.

figure courtesy Orus, Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and Holography

Holographic code – a proposal

Patawski, Yoshida, Harlow, Preskill

- Use Perfect tensors as a building block
- ▶ Perfect tensors $T_{a_1 a_2 \cdots a_{2n}}$ unitary transformation no matter how you split the indices into 2 groups of the same size

Holographic code – a proposal

Patawski, Yoshida, Harlow, Preskill

- Use Perfect tensors as a building block
- Perfect tensors T_{a1}a2····a2n</sub> unitary transformation no matter how you split the indices into 2 groups of the same size
- Products of perfect tensors easily form unitaries and isometries (norm-preserving maps)

$$|I\rangle = T_{Ib}|b\rangle, \qquad T_{Ia}T_{aJ}^{\dagger} = \delta_{IJ}, \qquad D(I) \leq D(a) \qquad (1)$$

Holographic code— a proposal

Figure 4. White dots represent physical legs on the boundary. Red dots represent logical input legs associated to each perfect tensor.

courtesy Pastawski, Yoshida, Harlow, Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

Holographic code- RT formula

Figure 19. Here we illustrate how to construct a unitary circuit interpretation of a holographic state which witnesses the ITT entantglement for a simply connected boundary region. (a) The following steps to measure unitarity of the product of the control of

$$\rho_{A} = U_{a_{1} \cdots a_{|A|}}^{\beta_{1} \cdots \beta_{N}} U_{a'_{1} \cdots a'_{|A|}}^{\dagger \beta_{1} \cdots \beta_{N}} |a_{1}, \cdots, a_{|A|}\rangle \langle a'_{1} \cdots, a'_{|A|}|$$
 (2)

courtesy Pastawski, Yoshida, Harlow, Preskill, Holographic quantum error-correcting codes: Toy models for the

bulk/boundary correspondence

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Obvious issues with this code

Correlation functions? NO connected "few-point" correlation functions between local operators

Correlation functions

There is a rather easy fix!

assume that the perfect tensors are the leading order contribution to this wave-function.

Correlation functions

There is a rather easy fix!

assume that the perfect tensors are the leading order contribution to this wave-function.

$$T \to T + \epsilon t,$$
 (3)

for some other tensor t, and that ϵ is assumed to be very small.

2-point functions

Leading order contribution linear in ϵ ? They vanish.

2-point functions

► The leading contributions come from a geodesic-full of nodes replaced by t!

2-point functions

Natural to define "Transfer Matrix", if we assume homogeneity and isometry:

$$(\mathcal{T}_{o_1})_{a'b'}^{ab} = [(\mathcal{T}.t^{\dagger} + t.\mathcal{T}^{\dagger})_{v}]_{a'b'}^{ab} = \mathcal{T}_{as_1s_2bs_3s_4}t_{a's_1s_2b's_3s_4}^{\dagger} + \text{h.c.}.$$
 (4)

This gives

$$\langle O_1 O_2 \rangle = O_{1aa'} \mathcal{T}_{bb'}^{aa'} \mathcal{T}_{cc'}^{bb'} \cdots \mathcal{T}_{tt'}^{ss'} O_{2tt'}$$
 (5)

Diagonalizing \mathcal{T} , gives

$$(U.\mathcal{T}.U^{\dagger})_{bb'}^{aa'} = \lambda_{aa'}\delta_{bb'}^{aa'}$$
 (6)

conformal dimension

The conformal dimension of operators are thus given by

$$\langle O^{aa'}(x_1)O^{aa'}(x_2)\rangle = \epsilon^{\gamma}(\lambda_{aa'})^{\gamma}, \ \Delta_{aa'} = -\log(\lambda\epsilon), \ \gamma \sim \log|x_2 - x_1|$$
(7)

Some extra conditions: e.g. for the 6 leg tensor code \mathcal{T}_{o_i} and \mathcal{T}_{o_j} has the same spectra.

e.g.

$$(\mathcal{T}_{o_2})^{ab}_{a'b'} = \mathcal{T}_{s_1 a s_2 s_3 b s_4} t^{\dagger}_{s_1 a' s_2 s_3 b' s_4} + \text{h.c.}$$
 (8)

For an [L,M] lattice, geodesics are most naturally running across the L-gon in L/2 different ways.

3-pt function

The same game can be played for three point function. Applying the same argument, the leading contribution would be given by three geodesics connected at a point.

if the bulk tensor network is a discretization of the AdS space, one could find an optimal point that minimizes

$$S(3) = \sum_{i=1}^{3} \Delta_i \gamma_i(z), \tag{9}$$

where Δ_i is the conformal dimension of the three operators.

In ads space, this is basically

$$\gamma = \log \frac{z\epsilon}{z^2 + (x - x_i)^2},\tag{10}$$

which is the geodesic distance from (x_i, ϵ) to some point (x, z) in the bulk.

3-pt function

In ads-space, the 3-point correlation function would automatically satisfy the universal form enforced by conformal symmetry if one finds the appropriate point (X, Z). Janik, Surowka, Wereszczynski

Fusion matrix

This shows that one can define a fusion matrix

$$\begin{split} \mathcal{F}^{(a_1,b_1),(a_2,b_2),(a_3,b_3)} &= \\ (T_{a_1s_1a_2s_2a_3s_3}t^{\dagger}_{b_1s_1b_2s_2b_3s_3} + t_{a_1s_1a_2s_2a_3s_3}T^{\dagger}_{b_1s_1b_2s_2b_3s_3}). \ \ (11) \end{split}$$

where the position of the contracted index *s* depends on the orientation of node where the three geodesics meet.

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Coxeter Group

To describe these lattices systematically, it is natural to use the classification of these lattices based on the Coxeter group.

Coxeter Group

- One basic feature of the coxeter group is to specify the angles in the triangulation. [p,q,r]
- Hyperbolic space

$$\frac{\pi}{p} + \frac{\pi}{q} + \frac{\pi}{r} < \pi \tag{12}$$

the lattice preserves all the symmetries generated by reflection across the planes defining the triangulation

Lattice symmetry - Coxeter group

- identify polytopes with nodes, and edges (codimension one surfaces) with legs
- e.g. the HAPPY hexagonal code can be identified with the [4,6,2] lattice
- allows more detailed analysis of the lattice structure : e.g. computing code distance for a general lattice
 - 1. $\frac{N_{bulk}}{N_{boundary}}([6,8])
 ightarrow 0.2508$
 - 2. $\frac{\textit{N}_\textit{bulk}}{\textit{N}_\textit{boundary}}([6,10]) \rightarrow 0.2504$
 - 3. $\frac{N_{bulk}}{N_{boundary}}([6, 16]) \rightarrow 0.25$

BTZ

Symmetries allow us to build a BTZ black hole, which is an orbifold:

$$ds^2 = \frac{dz^2 + dx^2 + dt^2}{z^2},$$

where

$$z = \frac{r_h}{r} \exp(2\pi r_+ \phi), \qquad x + it = \frac{r}{r_h} \exp(2\pi r_+ (\phi + i\tau))$$

BTZ bh

Recover two RT surfaces, one wrapping the horizon, the other not. – same result recovered using Random tensors

Outline

Some background on Rényi entropy and Entanglement entropy

Tensor networks

Correlation functions

Lattice symmetry - Coxeter group

Summary/Future directions

Is this capturing "quantum" gravity?

- Is this capturing "quantum" gravity?
- higher point functions???
- Rényi entropy S_n no n dependence! − a consequence of the unitaries

- Is this capturing "quantum" gravity?
- higher point functions???
- ▶ Rényi entropy S_n no n dependence! a consequence of the unitaries
- isometries and the stress tensor using the Coxeter group???

- Is this capturing "quantum" gravity?
- higher point functions???
- ▶ Rényi entropy S_n no n dependence! a consequence of the unitaries
- isometries and the stress tensor using the Coxeter group???
- ▶ time dynamics??? e.g. recover time-like geodesics??? sending shock waves??? black holes and scrambling????

Thank you!!