Complex Chern-Simons from M5 branes on the squashed 3-sphere

Daniel L. Jafferis

Harvard University

Strings 2013

Seoul

June 28, 2013

Clay Cordova, D.J. 1305.2886 and 1305.2891

- The squashed 3-sphere partition function of the 3d N=2 theory $\mathcal{T}_{\mathfrak{g}}[M_3]$ given by the (2,0) theory twisted on M₃.
- Supersymmetric backgrounds for 5d maximally supersymmetric Yang-Mills.
- Emergent gauge symmetry from supersymmetry: complex Chern-Simons from reduction on the sphere.

(2,0) theory in six dimensions

 Labeled by ADE "gauge group", describes the dynamics of multiple M5 branes.

No marginal or relevant deformations, but believed to be a local CFT.

Strongly coupled, no known Lagrangian description.

(2,0) theory on a circle

 Compactifying on a circle flows in the IR to 5d N=2 YM with gauge group G.

In 5d, Yang-Mills theory is IR free, and strongly coupled in the UV.

Instanton-solitons are identified as the KK modes.

For susy quantities – higher order operators in whatever is the exact 5d theory are plausibly Q-exact. Recall talks by Douglas, Seok Kim, Vafa

Compactifications

• On Riemann surfaces to 4d N=2 theories

• On 3-manifolds to 3d N=2 theories

On 4-manifolds to 2d (0,2) theories
 Recall talk by Gukov

A new window on strongly coupled SCFTs in lower dimensions, some which lack Lagrangians.

Curious correspondences

- Observables such as the sphere partition function of the resulting (6-d) dimensional SCFT are equal to the partition function of a particular theory on M_d.
- These 2d Toda and 3d noncompact CS theories are not supersymmetric, don't look like standard gauge theories...

[Alday Gaiotto Tachikawa. Terashima Yamazaki, Dimofte Gaiotto Gukov]

See also Pasquetti's talk

Direct approach

- Find a full 6d background S × M that preserves supersymmetry.
- Partition function is independent of the size of M due to supersymmetry.
- Reduce on S to find the theory on M.

Supersymmetry in curved space

How can one determine the curvature couplings such that susy is preserved?

Couple to off-shell supergravity, putting the theory in the geometry of interest, and taking M_{Pl} to infinity. Certain background fields in addition to the metric must be turned on to preserve supersymmetry.

Recall Komargodski's talk

[Festuccia Seiberg. Adams Jockers Kumar Lapan, Jia Sharpe,]

5d intermediary

- Hard to proceed directly from six dimensions, since there is no Lagrangian of the (2,0) theory to reduce. After all, this is why the $\mathcal{T}_{\mathfrak{g}}[M_d]$ theories are interesting.
- Thus one wants to first find a circle isometry to obtain 5d YM in some background then one can simply derive the theory on M_d.

N M5 branes on a 3-manifold

Take 3 dimensions to be a small 3-manifold.

To preserve some supersymmetry, one may take the normal directions to be in the cotangent bundle: $R^{2,1} \times T^*M_3 \times R^2$ is the 11d geometry. $SO(3)_R \times SO(3)$ is broken to the diagonal, resulting in 3d N=2 supersymmetry.

The IR 3d N=2 CFT is independent of the metric on M₃, and has no flavor symmetries for compact hyperbolic manifolds.

$\mathcal{T}_{\mathfrak{g}}[M_3]$

Provides a new perspective on 3d SCFTs.

 Abelian CSM Lagrangians have been constructed for some classes of examples, using tetrahedral decomposition.

[Dimofte Gaiotto Gukov, ...]

Harder for compact 3-manifolds.

3-sphere partition function

Characterizes the number of degrees of freedom of the CFT.

Computable from a supersymmetric Lagrangian using localization. Preserves nonconformal SU(2 | 1) × SU(2) supersymmetry.

[Kapustin Willett Yaakov, D.J., Hama Hosomichi Lee]

Squashed 3-sphere

There is a squashing of the 3-sphere, S^3_{ℓ} , changing the size of the Hopf fiber, and preserving SU(2) × U(1) isometry. By adjusting the R scalar and other 3d background fields, one may preserve SU(2|1) × U(1) supersymmetry.

[Imamura Yokoyama]

The partition function of an N=2 theory on this space is exactly related to that on the ellipsoid. $b^2|z_1|^2 + b^{-2}|z_2|^2 = 1$ $\ell = \frac{2}{b+b^{-1}}$ [Hama Hosomichi Lee]

3d-3d conjecture

- Terashima Yamazaki, Dimofte Gaiotto Gukov conjectured that the squashed S³ partition function of the N M5 on M₃ theory is given by a noncompact CS partition function on M₃ with level determined by the squashing.
- How can this bosonic theory with emergent gauge symmetry arise from reduction of a susy gauge theory?

Complex Chern-Simons theory

 $S = \frac{q}{8\pi} \int \operatorname{Tr} \left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3}\mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A} \right) + \frac{\tilde{q}}{8\pi} \int \operatorname{Tr} \left(\bar{\mathcal{A}} \wedge d\bar{\mathcal{A}} + \frac{2}{3}\bar{\mathcal{A}} \wedge \bar{\mathcal{A}} \wedge \bar{\mathcal{A}} \right)$ $= \frac{k}{4\pi} \int \operatorname{Tr} \left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3}\mathcal{A}^3 - X \wedge d_A X \right) + \frac{u}{2\pi} \int \operatorname{Tr} \left(\frac{1}{3}X^3 - X \wedge F_A \right)$

The Chern-Simons levels are q = k + iu and $\tilde{q} = k - iu$

■ Noncompact gauge symmetry $\mathcal{A} \to \mathcal{A} + d_{\mathcal{A}} g$, for $g \in \mathfrak{g}_{\mathbb{C}}$

[Witten]

Reality properties

Can't regulate with YM – wrong sign kinetic term. Subtle to define theory non-perturbatively.

[Witten]

- k is an integer so that e^{iS} is invariant under large gauge transformations.
- u is either real or pure imaginary to obtain a unitary theory. Path integral is oscillatory for real u.

$S^2 \times S^1$

One may make similar conjectures for the 3d superconformal index of these theories.

[Dimofte Gaiotto Gukov. Dongmin Gang, Eunkyung Koh, Sangmin Lee, Jaemo Park]

Recently demonstrated by Yagi, and by Sungjay Lee and Yamazaki using similar ideas that one obtains complex Chern-Simons with k = 0 and u pure imaginary.

> Related works in other configurations: Witten '11, Fukuda Kawano Matsumiya

Hopf reduction: 5d Yang-Mills

One can reduce from S³ to S² along the Hopf fiber.

$$ds^{2} = \frac{r^{2}}{4} \left(d\theta^{2} + \sin^{2}(\theta) d\phi^{2} \right) + r^{2} \left(d\psi + \cos^{2}(\theta/2) d\phi \right)^{2}$$

- This results in 5d YM on S² with graviphoton flux and other background fields.
- Nonrenormalizable theory with $\frac{1}{g_{YM}^2} = \frac{1}{r}$, but here we actually want small *r*.

Background couplings

- One needs to find the complete 6d background in which supersymmetry is preserved. This involves twisting on the 3-manifold, but something else on the squashed sphere.
- Then reduce to five dimensional background, coupled to the dynamical maximally susy Yang-Mills Lagrangian theory.

5d maximal supergravity

- Only interested here in the gravitino and dilatino supersymmetry variations, whose vanishing gives the conditions for preserving rigid susy.
- Can be obtained by reduction of 6d off-shell conformal sugra [Bergshoeff Sezgin van Proeyen]. Here the R symmetries are both SO(5).

Generalizes 5d N=1 supergravity of [Kugo Ohashi].

$6d \rightarrow 5d$, off-shell fields			
Field	Interpretation	sp(4)	W
\underline{e}^a_μ	Metric	1	-1
\underline{V}^{mn}_{μ}	R Gauge Field	10	0
$\underline{T}^{mn}_{\mu u ho}$	Auxiliary 3-form	5	-2
$\underline{D}^{mn,rs}$	Auxiliary scalar	14	2

Metric reduces to 5d as metric, graviphoton and dilaton. $\underline{e}^{a}_{\mu} = \begin{pmatrix} e^{a}_{\mu} & e^{5}_{\mu} = \alpha^{-1}C_{\mu} \\ e^{a}_{z} = 0 & e^{5}_{z} = \alpha^{-1} \end{pmatrix}$

 $\underline{V}_{a}^{mn} \rightarrow V_{a}^{mn}, a \neq 5, \ \underline{V}_{5}^{mn} \equiv S^{mn}, \ \underline{T}_{abc}^{mn} \rightarrow \underline{T}_{ab5}^{mn} \equiv T_{ab}^{mn}, \ \underline{D}^{mn,rs} \rightarrow D^{mn,rs}$

5d Yang-Mills action

$$\begin{split} S_A &= \frac{1}{8\pi^2} \int \operatorname{Tr} \left(\alpha F \wedge *F + C \wedge F \wedge F \right), \\ S_{\varphi} &= \frac{1}{32\pi^2} \int d^5 x \sqrt{|g|} \alpha \operatorname{Tr} \left(\mathcal{D}_a \varphi^{mn} \mathcal{D}^a \varphi_{mn} - 4 \varphi^{mn} F_{ab} T^{ab}_{mn} - \varphi^{mn} (M_{\varphi})^{rs}_{mn} \varphi_{rs} \right), \\ S_{\rho} &= \frac{1}{32\pi^2} \int d^5 x \sqrt{|g|} \alpha \operatorname{Tr} \left(\rho_{m\gamma} i \mathcal{D}^{\gamma}_{\beta} \rho^{m\beta} + \rho_{m\gamma} (M_{\rho})^{mn\gamma}_{\ \beta} \rho^{\beta}_n \right). \\ S_{int} &= \frac{1}{32\pi^2} \int d^5 x \sqrt{|g|} \alpha \operatorname{Tr} \left(\rho_{m\alpha} [\varphi^{mn}, \rho^{\alpha}_n] - \frac{1}{4} [\varphi_{mn}, \varphi^{nr}] [\varphi_{rs}, \varphi^{sm}] - \frac{2}{3} S_{mn} \varphi^{mr} [\varphi^{ns}, \varphi_{rs}] \right). \end{split}$$

Note the CS term, the F-scalar mixing, and the cubic scalar potential induced by background fields.

Round sphere case

 Note that H₃ × S³ with equal radii is conformally flat.

Thus the (2,0) theory can be put canonically on this space.

• $SO(3)_R$ twisting on H₃ leads to $S^3 \times R^3$.

Background sugra on $S^2 \times R^3$

For general squashing, all background fields are involved. In 5d, there is graviphoton flux on S².

$$ds^{2} = dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \left(\frac{r\ell}{2}\right)^{2} \left(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}\right), \ C = \cos^{2}(\theta/2)d\phi, \ \alpha = 1/r$$

$$T_{\hat{A}BC} = t\varepsilon_{\hat{a}bc}, \ V_{A\hat{B}\hat{C}} = v\varepsilon_{a\hat{b}\hat{c}}, \ S_{\hat{A}\hat{B}} = s\varepsilon_{\hat{x}\hat{y}}, \ D_{\hat{A}\hat{B}} = d\left(\delta_{\hat{a}\hat{b}} - \frac{3}{2}\delta_{\hat{x}\hat{y}}\right)$$

$$t = s = -\frac{\sqrt{1-\ell^2}}{2r\ell^2}, \ v = -\frac{i}{2r\ell^2}, \ d = \frac{3}{2r^2\ell^2} \left(1 + \frac{1}{\ell^2}\right)$$

Reduction on S²

- In the limit of a small sphere, the light fields that survive the dimensional reduction are S² constant modes of the gauge field (along the 3-manifold) and the scalars, and particular modes of the fermions that transform in the 2 of the SU(2) rotations of the sphere.
- The fermionic action is not diagonalized by the mass basis, so one must include some massive modes and integrate them out.

Gauge sector

In 5d, the graviphoton induces a Chern-Simons term.

$$S_A = \frac{1}{8\pi^2} \int_{\mathbb{R}^3 \times S^2} \left(\alpha \operatorname{Tr}(F \wedge *F) + G \wedge CS(A) \right)$$

• S^2 is simply connected, one just reduces to 3d.

$$S_A = \frac{r\ell^2}{8\pi} \int_{\mathbb{R}^3} \operatorname{Tr}(F \wedge *F) + \frac{1}{4\pi} \int_{\mathbb{R}^3} CS(A)$$

• The 3d YM term disappears in the $r \rightarrow 0$ limit.

Scalar action

 The 5 scalars decompose into (3,1) + (1,2) under R-symmetry breaking SO(5) to SO(3) × SO(2).

The 5d sugra induced masses and those from the R gauge field covariant derivative cancel.

 $S_X = \frac{r\ell^2}{8\pi} \int d^3x \operatorname{Tr}\left(\nabla_a X_b \nabla_a X_b\right) + \frac{1}{4\pi} \int d^3x \, i\varepsilon_{abc} \operatorname{Tr}\left(X_a \nabla_b X_c - i\sqrt{1-\ell^2} X_a F_{bc}\right)$

 $S_Y = \frac{r\ell^2}{8\pi} \int d^3x \operatorname{Tr}\left(\nabla_a Y_z \nabla_a Y_z\right)$

Fermion action

Expanding the twisted fermions in terms of scalars and 1-forms in M₃, a doublet of modes on S², and keeping track of the SO(2)_R index:

$$\rho^m = \varepsilon^{\alpha \hat{\alpha}} \lambda^{\sigma \hat{\sigma}} + \left(\gamma^a\right)^{\alpha \hat{\alpha}} \xi_a^{\sigma \hat{\sigma}}$$

$$S_{ferm} = \frac{1}{32\pi^2} \int d^3x \operatorname{Tr} \left[\left(\xi_a^{i\hat{i}} \varepsilon_{ij} B_{\hat{i}\hat{j}} - e \widetilde{\xi}_a^{i\hat{i}} B_{ij} \varepsilon_{\hat{i}\hat{j}} \right) i \nabla_a \lambda^{j\hat{j}} \right. \\ \left. - \frac{i}{r\ell} \left(\xi_a^{i\hat{i}} \xi_a^{j\hat{j}} - \widetilde{\xi}_a^{i\hat{i}} \widetilde{\xi}_a^{j\hat{j}} \right) \varepsilon_{ij} B_{\hat{i}\hat{j}} - \frac{4i}{r\ell^2(1+\ell)} \widetilde{\lambda}^{i\hat{i}} \widetilde{\lambda}^{j\hat{j}} \varepsilon_{ij} B_{\hat{i}\hat{j}} \right]$$

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad e = \sqrt{\frac{1-\ell}{1+\ell}}$$
30

Non-abelian interactions

These come from the standard quartic terms and Yukawa couplings, and the background induced cubic scalar potential.

$$S_{pot} = \frac{r\ell^2}{8\pi} \int d^3x \operatorname{Tr}\left(\frac{1}{2}[X_a, X_b][X_a, X_b] + [X_a, Y_z][X_a, Y_z] + \frac{1}{2}[Y_z, Y_w][Y_z, Y_w]\right)$$
$$+ \frac{i\sqrt{1-\ell^2}}{12\pi} \int d^3x \ i\varepsilon_{abc} \operatorname{Tr}\left(X_a[X_b, X_c]\right)$$

$$S_{yuk} = \frac{1}{32\pi^2} \int d^3x \operatorname{Tr}\left(\tilde{\xi}_a^{i\hat{i}}[X_a, \lambda^{j\hat{j}}] B_{ij} \varepsilon_{\hat{i}\hat{j}} - e\xi_a^{i\hat{i}}[X_a, \lambda^{j\hat{j}}] \varepsilon_{ij} B_{\hat{i}\hat{j}} + \left(\frac{2}{1+\ell}\right) \tilde{\lambda}^{i\hat{i}}[Y_z, \lambda^{j\hat{j}}] B_{ij} \kappa_{\hat{i}\hat{j}}^z\right)$$

Complex connection

- By changing the contour of integration of X, it is natural to define a complex 1-form,
 A = A + i X.
- The action looks almost invariant under a new symmetry, A → A − [X,g], X → X + dg + [A,g]
 except for the term (D^A_µX^µ)²

Obtaining ghosts

Integrating out the fermions whose mass diverges in the small sphere limit leads to a second order action for the 4 massless fermions.

$$\begin{split} S_{\lambda} &= \frac{ir\ell^2}{64\pi^2(1+\ell)} \int d^3x \,\operatorname{Tr}\left(\nabla_a \lambda^{i\hat{i}} \nabla_a \lambda^{j\hat{j}} \varepsilon_{ij} B_{\hat{i}\hat{j}} + [X_a, \lambda^{i\hat{i}}] [X_a, \lambda^{j\hat{j}}] \varepsilon_{ij} B_{\hat{i}\hat{j}} \right. \\ &\left. - \frac{1}{2} [Y_z, \lambda^{i\hat{i}}] [Y_w, \lambda^{j\hat{j}}] \left(\delta^{zw} \varepsilon_{ij} B_{\hat{i}\hat{j}} + i\varepsilon^{zw} \varepsilon_{ij} \varepsilon_{\hat{i}\hat{j}} \right) \right) \end{split}$$

Non-linear ghost action is Q-equivalent to a quadratic action.

Faddeev-Popov

The Faddeex-Popov determinant for fixing the noncompact part of the gauge symmetry with the gauge fixing term $(D^A_\mu X^\mu)^2$ is precisely the fermionic determinant!

$$\delta\left(D_{\mu}X^{\mu}\right) = D_A^2 g + \left(\operatorname{ad}_X\right)^2 g$$

There are 4 rather than 2 fermions, and the doubling is exactly cancelled by the 1-loop determinant of the Y scalars.

Complex Chern-Simons

Therefore,

$$Z_{S^{3}_{\ell}}[T_{\mathfrak{g}}(M_{3})] = Z_{M_{3}}[CS_{\mathfrak{g}_{C}}(1,\sqrt{1-\ell^{2}})]$$

 Note that both branches of unitary reality conditions for the level u appear.