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Al is changing the world!

Language Models for Text and Code Generation

Biology (Protein Folding)
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« Periodic boundary conditions

« Configurable temperature, coupling constant (J), and external field (h)
q « Energy and magnetization calculations
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Vision Models (Object Recognition)




Why is this happening?



Dominant Al Paradigm: Scaling

Hestness et al, 2017, “Deep Learning Scaling is Predictable, Empirically”
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Figure 1: Neural machine translation learning curves. Left: the learning curves for separate models
follow £(m) = amPs + . Right: composite learning curve of best-fit model at each data set size.



Test Loss

Dominant Al Paradigm: Scaling

Kaplan et al 2020, “Scaling Laws for Neural Language Models”
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Following these trends, 10x of compute leads to 10% reduction in loss




Test time scaling

Snell et al 2024, “Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters”
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GPT-4 Technical Report

OpenAI*

3 Predictable Scaling

A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The
primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive
model-specific tuning. To address this, we developed infrastructure and optimization methods that
have very predictable behavior across multiple scales. These improvements allowed us to reliably
predict some aspects of the performance of GPT-4 from smaller models trained using 1,000x —
10,000x less compute.



Test Loss

Hyperparameter Transfer
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OpenAl codebase next word prediction
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Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.
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Figure 2: A taxonomy of different scaling behaviors. Predictable scaling fits closely to a linear functional form after,
for example, exponentiating the cross-entropy loss. However, depending on the downstream task, models do not
always improve with scale (inverse, nonmonotonic, and trendless), or the improvement might be highly noisy. The
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Challenges of Scaling Paradigm

Expensive: Current approaches are very data and compute hungry
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Energy: According to internet rumor and some reputable sources (World Economic Forum), training GPT-4
consumed an estimated 50 gigawatt-hours (GWh) of energy, took 100 days and cost $100M USD! Decent

part of the cost is due to performing large number of training runs.

ChatGPT uses ~0.5 GWh per day! (Forbes)

Compare to typical US household ~30 kWh per day!

FT' Financial Times

Al set to fuel surge in new US gas power plants

The US is on the cusp of a natural gas power plant construction boom, as Big Tech
turns to fossil fuels to meet the huge electricity needs...

¢ Georgia Institute of Technology

Al's Energy Demands Spark Nuclear Revival

The demand for electricity to power Al data centers is skyrocketing, placing immense

pressure on traditional energy sources.




Many interesting questions

What are the limits of scaling?
» “Universality classes”
« What properties scale predictably, what do not?
When does consistent behavior arise? Hyperparameter transfer
What sets these scaling laws? Why power laws”?
Can we beat them? Better scaling laws.
At what scale do new capabilities emerge”? Important implications for Al Safety

Is scaling sufficient? Does GPT-5 signal the end of scaling era”?



In this series of talks

Parameterizations for predictable scaling: How to scale up a neural network such that they converge

to well-behaved limits and allow hyperparameter transfer?

An introduction to Dynamical Mean Field Theory (DMFT) descriptions of infinite limits: We will discuss

deeper and other architectures that will lead to a different description than presented in Andrea’s talk

Application of DMFT for understanding scaling laws

A toy model of emergence of in context learning
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Resources

LECTURE NOTES, REVIEWS AND BLOG POSTS

Replica Method for the Machine Learning Theorist - Part 1, by Blake Bordelon, Haozhe Shan, Abdul Canatar, Boaz Barak, Cengiz Pehlevan
Replica Method for the Machine Learning Theorist - Part 2, by Blake Bordelon, Haozhe Shan, Abdul Canatar, Boaz Barak, Cengiz Pehlevan
Lecture notes on the replica method for Wishart matrix eigenvalues, by Jacob Zavatone-Veth

Lecture Notes on Infinite-Width Limits of Neural Networks, Cengiz Pehlevan and Blake Bordelon, prepared for 2023 Princeton ML Theory Summer School

Infinite Limits of Neural Networks, Deeper Learning Blog, by Alex Atanasov, Blake Bordelon and Cengiz Pehlevan

A Dynamical Model of Neural Scaling_Laws, Deeper Learning Blog, by Blake Bordelon, Alex Atanasov and Cengiz Pehlevan

Scaling_and renormalization in high-dimensional regression, by Alex Atanasov, Jacob Zavatone-Veth, Cengiz Pehlevan

Solvable Model of In-Context Learning Using_Linear Attention, Deeper Learning Blog, by Mary Letey




Part |: Parameterizations for Predictable Scaling



Lazy vs Rich Limits

As discussed in Andrea’s lectures, previous work identified different behaviors arising from infinite (width, depth,
attention head, ....) limits of networks with different parameterizations and initializations

» lazy/static (NTK — Kernel limit): Network does not adapt its internal representations to data. Worse
performance compared to rich regime in practice. Easier to analyze (see Andrea’s talk), but not realistic.
(Chizat and Bach, 2018; Jacot, Gabriel, Hongler, 2018)

> feature learning/rich (mean field limit): Network learns internal representations. Better performance and more
realistic, but harder to analyze. There may be many rich limits for a given architecture.

(Two-layer networks: Rotskoff, Vanden-Eijnden 2018; Mei, Montanari, Nguyen, 2018)

(Deep MLPs: Yang & Hu 2020; Bordelon and Pehlevan, 2022)

(ResNets: Bordelon et al., 2023; Yang et al., 2023)

(Transformers. Bordelon et al., 2025, Dey et al. 2025)



Infinite-width limits for MLPs
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Let’s first fix depth (L) at a finite number, and take width (N) to infinity



Different parameterizations for for MLPs

We will derive
these scalings in a
few slides.

n=novgN

Yo controls speed of representation learning (Chizat and Bach, 2019; Geiger et al, 2020)

v = On(1/VN)

Neural Tangent parameterization (Jacot et al, 2018; Lee et al, 2019):

Mean field / Maximal Update (mu) parameterization (Mei et al 2018, Yang et al 2021): 9 = On (1)



Example: Mean-field/muP vs NTK parameterizations

Depth 12 ResNet on CIFAR-10 SGD training



Example: Mean-field/muP vs NTK parameterizations
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1024

Depth 12 ResNet on CIFAR-10 SGD training



Example: Mean-field/muP vs NTK parameterizations
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MF
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1024

Depth 12 ResNet on CIFAR-10 SGD training



Parameterizations
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Desiderata for feature learning infinite limits
As we scale width (V), we demand the following:

1. Stable Initialization: Hidden layers and output remain stable at initialization

b =6n(1), f=0n(1)
2. Training: Outputs evolve in finite time
Arf(x) = f(x;0¢) — f(x;0:-1) = On(1)

3. Feature Learning: Features evolve in finite time (this doesn’t happen in NTK parameterization)

ALY (x) = b9 (x;0,) — hi (x;6,_1) = O 5 (1)

Yang & Hu 2020; Bordelon and Pehlevan, 2022



Stable Initialization
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muP/ mean field parameterization

1
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Demand the following:

1. Stable initialization = 20, +by=1 forfe{2,..,L}, 2a;+b; =0

2. Training —> 2ay+c=1 forle{2 ...,L}, 2a;+¢c=0
3. Feature Learning — d= %

Yang & Hu 2020; Bordelon and Pehlevan, 2022



Full details of these calculations can be found in

Lecture Notes on Infinite-Width Limits of Neural Networks

Cengiz Pehlevan and Blake Bordelon

June 2023
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(

%Yo controls speed of representation learning

Yo ~ O(1/VN)

Neural Tangent (Jacot et al, 2018; Lee et al, 2019):

Yo ~ O(1)

Mean field scaling (Mei et al 2018, Yang et al 2021):
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Test Error

Why does hyperparameter transfer work”? Consistent behavior across scales

ResNet18 on CIFAR-5M, online training, batch size 250

64

w
N

=
[e)]

10

100

1000
Train Steps

10000

True logit value on test point

10~ 103 104
Train steps

More experiments in Viyas et al, NeurlPS, 2023



Consistent behavior across widths

ResNet18 on CIFAR-5M, online training, batch size 250
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Case 2: Transformers Parameterizations for Predictable Scaling
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Theory

DEPTHWISE HYPERPARAMETER TRANSFER IN RESID- o . )
UAL NETWORKS: DYNAMICS AND SCALING LIMIT Infinite Limits of Multi-head Transformer Dynamics

Blake Bordelon* ¥, Lorenzo Noci** , Mufan (Bill) Li ¥, Boris Hanin ¢ & Cengiz Pehlevan' Y

9 Harvard University Blake Bordelon, Hamza Chaudhry, Cengiz Pehlevan
% BTH Ziirich John A. Paulson School of Engingering and Applied Sciences
§ Princeton Universi ty ) Center for Brain Science o .
Kempner Institute for the Study of Natural and Artificial Intelligence
Harvard University
Cambridge, MA 02138
blake_bordelon@g.harvard.edu
hchaudhry@g.harvard.edu
cpehlevan@seas.harvard.edu

Feature Learning in Infinite-Depth Neural Networks

Greg Yang* Dingli Yu* Chen Zhu Soufiane Hayou'
xAL Princeton Language Nvidia Simons Institute
and Intelligence UC Berkeley

Don’t be lazy: CompleteP enables compute-efficient
deep transformers

Nolan Dey* Bin Claire Zhang* Lorenzo Noci Mufan Li

Extension, refined desiderata, and mbe moimer  lmewi |
experimental verification

Blake Bordelon Shane Bergsma Cengiz Pehlevan Boris Hanin
Harvard University Cerebras Systems Harvard University Princeton University
Kempner Institute

Joel Hestness
Cerebras Systems




Setup

h™' =n!+ L~ F,(0% 0%, ¢={1,...,L}

|

Fixed depth network such as an
Attention or MLP block

0" — 6°+A0° A6 =" glimw



Desideratum 1 (Stable Initialization). Hidden layers and output remain stable at initialization. More
precisely, for all layers £ € [L], +|/h*||3 € ©(1) and f € O(1), as N — o0, L — oc.

— a>1/2
. L 1 2
Quick derivation: hit! = h! + ﬁw%(hf), WY ~ N(O, UWW)
1
At large N H™* = H' + L 03 By onvo,un¢(h)?,  H' = N|he\2
o2 o2 £
Example:  ¢(h) = ReLU(h) H = g + TWL—mHﬁ — [1 4 7va—m] HO
HO o> %
LleréoHL: exp(%)[—]o a:%.

o) a < %



Desideratum 2 (Maximal Residual Stream Update). Each residual block’s weights should contribute
order 1/ L to feature movements, and each non-residual block should contribute constant order. More

precisely, for all { € [L — 1], each block’s parameter update 6° — 0° + A0 should contribute the
change +||Ageh**1||2 € ©(1/L). Moreover, for the embedding and unembedding layers we require
+|AWOz|3 € ©(1) and + | AWEhE|3 € ©(1).

— n=0(L""%)




Desideratum 3 (Complete Feature Learning). The network parameterization satisfies complete

feature learning, i.e. neither the hidden layers {h*} ¢e[L) nor the model output f are lazy with respect
to any subset of model parameters.

11"%(8.,80) = h(Bo) + Voh(8)]s, - (8 — 60)

Definition. We say a layer h' is lazy with respect to a subset of parameters 6 C {0} < if at finite
depth and width, h' is not linear in 0 and the change Agh? at initialization from updating only 6 (i.e.
replacing 0 — 0 4+ A0) is asymptotically the same as the change to the linearization of h:

|A9h£ — Aghlein’el
| Aghy™’|

=o0(l), asN,L— .

— a=1




Simple Block Depth 2 Example.

Consider N = 1 R =0t L WhEWER e={1,... L} (Wi, W) =6 6" + A6

Taylor expand: Age Rett = Ve R AQY + %ABKTV@ BHIAQY

T« £ 10 0 £ 14 44 —apl 0 y4
= L™(Wih' AWq) +Wh R AWE)) + L™k AW AW, . o =
~— ~—— ~ ~~ o o
Lo—1 Lo—1 L2(a—1)
L—1 L;r—Q
* . A A A A A
’ @ @ 10"
a=0.5 g
L oo IR :
—_ > £
LaL:) 10° \\i\;‘
|:| Activation Function E o :': ji/:_'; \i\s\
- Feature Transform (Untrained) —&— CompleteP (a=1.0)

22 24 26 28 2 10 2 12
Depth (L)



Table 1: Summary of SP, uP, and « € {0.5,1} for a pre-LN transformer language model. Terms

related to

dth and depth control are highlighted in

ange and green respectively. Additional tunable

parameters are highlighted in blue. Hidden refers to all linear layers in the transformer backbone.

Parameterization SP uP a € {0.5,1}

Emb. Init. Var. - o Oase

Emb. LR (AdamW) Mbase Tbase Tlbase

Pre-LN Init. Var. o o2 G

Pre-LN LR (AdamW) Tbase Tbase MbasemL

Hidden Init. Var. O Ol Ofuse *

Hidden LR (AdamW) Tbase Tbase * Thase - My - ML* 1

Hidden Bias LR (AdamW)  7pase Mbase Thasem L1

Hidden WD (AdamW) Nz Abase * Abase, "

MHA Residual X!+ MHA(LN(X!)) X!+ MHA(LN(XY)) X!+m;~-MHA(LN(XY))
MLP Residual Z' + MLP(LN(Z!))  Z'4+MLP(LN(Z'))  Z'+m; - MLP(LN(Z'))
Final-LN Init. Var. Ofe Os s

Final-LN LR (AdamW) Mbase Tlvase Tlbase

Unemb. Init. Var. T T Oa e

Unemb. LR (AdamW) Mbase Tbase Tlbase

Unemb. Fwd. XIwWT XLWT XIWT

unemb

unemb °

unemb

AdamW e (Residual blocks)
AdamW ¢ (Emb. & Unemb.)

€base
€base

€base * 71
€base

\ —
€base mr, *

€base

Yang & Hu 2020

Bordelon et al., 2023; Yang et al., 2023,
Bordelon et al., 2025; Dey et al. 2025



Practical benefits

is Stable HPs across Depth Improved deep models Larger range of efficient N:L
B = 350 - -
Depth . Parameters —e— Optimal
46— —— 2 30% — 50M 1 uP
§ —— 4 a 300M _ CompleteP (a=1)
- 4.4 - —e—\ 8 3.'250/0_ —&— 1.5B T‘ 102__
C [
2 X8 o 20% S
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Figure 1: We introduce CompleteP, which offers depth-wise HP transfer (Left), FLOP savings when
training deep models (Middle), and a larger range of compute-efficient width/depth ratios (Right).



Conclusion for Part 1

Different parameterizations and initializations lead to different behaviors in
scaling limits

Parameterizations that allow predictable and consistent scaling offer
hyperparameter transfer benefits

More work to be done as new architectural changes come in (e.g. mixture
of experts)
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Resources

LECTURE NOTES, REVIEWS AND BLOG POSTS

Replica Method for the Machine Learning Theorist - Part 1, by Blake Bordelon, Haozhe Shan, Abdul Canatar, Boaz Barak, Cengiz Pehlevan
Replica Method for the Machine Learning Theorist - Part 2, by Blake Bordelon, Haozhe Shan, Abdul Canatar, Boaz Barak, Cengiz Pehlevan
Lecture notes on the replica method for Wishart matrix eigenvalues, by Jacob Zavatone-Veth

Lecture Notes on Infinite-Width Limits of Neural Networks, Cengiz Pehlevan and Blake Bordelon, prepared for 2023 Princeton ML Theory Summer School

Infinite Limits of Neural Networks, Deeper Learning Blog, by Alex Atanasov, Blake Bordelon and Cengiz Pehlevan

A Dynamical Model of Neural Scaling_Laws, Deeper Learning Blog, by Blake Bordelon, Alex Atanasov and Cengiz Pehlevan

Scaling_and renormalization in high-dimensional regression, by Alex Atanasov, Jacob Zavatone-Veth, Cengiz Pehlevan

Solvable Model of In-Context Learning Using_Linear Attention, Deeper Learning Blog, by Mary Letey




Part Il - Dynamical Mean Field Theory Description of Feature

Learning Dynamics

See Andrea Montanari’s Turing Lecture 3
for results on two-layer MLPs.
| will discuss deeper MLPs (and point to
references for other architectures).



Dynamical Mean Field Theory

Dynamical mean-field theory (DMFT) offers a powerful theoretical approach for reducing the
equations of motion of high-dimensional system into a single equation governing an effective, or
“mean-field,” particle.

Why is this useful?

1. Mean field equations can be used to gain various analytical insights into the problem.

2. Mean field equations can provide computational gains compared to simulating the full high
dimensional system

Specifically for this context:

3. Scaling the size of neural networks give better performing models. Hence, DMFT describes the
“best” model for a given architecture.



Primer on Dynamical Mean Field Theory

Random Coupled Systems in High Dimensions

Spin Glass Example: H({s:}) = Q\F Z Ji;jSi8; Jij = Jji ~ N(0,1)

Langevin Dynamics on sphere O¢si(t) =

ﬂ\

Gross, Mezard, Kirkpatrick, Thirumalai, Crisanti, Horner, Sommers, Sompolinsky,....



Primer on Dynamical Mean Field Theory

Sompolinsky & Zippelius ‘82, Kurchan & Cugliandolo '93, Crisanti, Horner & Summers ‘93, Bouchaud et al ‘97

Random Coupled -> Uncoupled System in the Limit

R(t,t')
Y
N — oo n(t) g é
s(t)

des(t) = —A()s(t) +  n(t) —l—/dt’R(t,t’)s(t’)
v J

. (NG
colored noise v~
memory term

Correlation and Response Form Closed System from Single Site Picture

n(t) ~ GP(0,C(t, 1)) C(t,t") = (s(t)s(t")) R(t,t) = <§§((f,))>




Many theoretical methods give this result

1. Saddle point of a Martin Siggia Rose Path integral Z = /dCdR exp (—NS(C, R))

2. Cavity (add new site) argument, compute self-feedback through other sites

A great first reading on DMFT

Building Intuition for Dynamical Mean-Field Theory: A Simple Model
and the Cavity Method
A tutorial oriented to the biophysics community

Emmy Blumenthal
Princeton University Department of Physics, Princeton, NJ 08540, USA
July 23, 2025



Can we apply this idea to neural networks?

Loss/Data: L£(0;D), D ={(xu,yu) 5:1, x € RP

0;D
Training: % = _%%

Is there a mean field description of this dynamics?



Dynamical mean-field theory of learning dynamics of feature learning
deep networks in the infinite-width (and depth) limit

Self-Consistent Dynamical Field Theory of Kernel THE INFLUENCE OF LEARNING RULE ON REPRESEN-
Evolution in Wide Neural Networks TATION DYNAMICS IN WIDE NEURAL NETWORKS

Blake Bordelon & Cengiz Pehlevan

ICLR, 2023
Blake Bordelon & Cengiz Pehlevan NeurlPS 2022

Infinite Limits of Multi-head Transformer Dynamics
DEPTHWISE HYPERPARAMETER TRANSFER IN RESID-

UAL NETWORKS: DYNAMICS AND SCALING LIMIT
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Similar limits considered in two-layer networks by Rotskoff, Vanden-Eijnden 2018; Mei, Montanari, Nguyen, 2018;
and using the “Tensor Programs” Yang & Hu 2020



Gradient-flow in feature space

Gradient-flow can be rewritten in “feature/activation” space without reference to weights except at initialization.
Key quantities are layer-wise feature and gradient kernels.

1 onS
2(0)(t,5) = o0L1) 60P(), Gt 5) = el (1) & (s) g = VN _%
)

e S a0 ol + OB B3



N — oo [imit

1. Feature and Gradient kernels concentrate but evolve in time.

1

—g(t)- gl (s)

2()(t,5) = 2oP(1) - oP(s)),  Ch(ts) = 1

N

2. Distribution of fields factorize over sites and layers.

L N

p({hfhgf}) = H pr(hfagf)

/=11=1

3. Population averages are replaced by single-site averages

OO (D) o(hL()) — ($(PL)o(BP(5))



Gradient-flow in feature space

Gradient-flow can be rewritten in “feature/activation” space without reference to weights except at initialization.
Key quantities are layer-wise feature and gradient kernels.

1 onS
2(0)(t,5) = o0L1) 60P(), Gt 5) = el (1) & (s) g = VN _%
)

e S a0 ol + OB B3



Dynamical Mean Field Theory (DMFT)

{ui(t)}MG[P],tER_'_ ~ GP(0, & 1), {'rﬁ(t)}ﬂelpl’teR_{_ ~ GP(0, G,

P

B ()] =, (8) + 70 / ds 3" [A51 (1, 5) + Dal8)BE1 (1, 5)] 24(5)B(RE(5)),

a=1

t P
2,(t)|={ra ()| + 0 /0 ds Y [Bla(t,s) + Aa(s)Grb! (t,5)] ¢(he(s),

9,(t) F S(hy(t))z,(2)

& (t,5) = (d(hs, (1) B(h5(5))) , Gralt,s) = (g, (t)g5(s))

- 5¢ hﬁ €+1 t
Afm(t, S) =% < 5’(I’g (i)))> ) Bﬁa(t, 3) =Y <6uf1+1§s))>

Recovers Yang & Hu 2020 results from Tensor Programs in relevant limits/settings
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DMFT matches experiments

Richness: Infinite width equations depend crucially on an output multiplier Yo

10° 10° — y=02
107t 10t
% 1072 g 1072
1073 1073
0 50 100 150 200 B “To T 5
t h z
(a) Loss Dynamics (b) Final A Distribution (c) Final z Distribution

Y0=2.0 V0=3.0

Theory ®! Expt. ®!
Theory G! Expt. G?

(e) Final G* Kernels
(Depth 4, Width 4000, tanh, synthetic data)



Comments

1. For two-layer networks, A and B field (response functions) disappear. One can derive a PDE
version of the dynamics. However, unlike previous PDE descriptions in this limit (Rotskoff,
Vanden-Eijnden 2018; Mei, Nguyen, Montanari 2018) (see Andrea Montanari’s Turing
Lecture 3), the PDE describes the density h and z, not weights

2. For linear networks, DMFT closes under kernels to give deterministic, algebraic equations
alleviating the need for a Monte Carlo procedure. Two-layer version can be solved exactly

recovering known results in linear networks (e.g. Saxe et al 2013).

3. ADMEFT can be given for SGD. One does this by first committing to a minibatch B, at

each gradient step. Integrals over time become sums over discrete time and the data

sum is over B,.



Limiting process for a residual network through the DMFT (Informal)

1
1 _ b TN
h*™ =h +L1/2W »(h")
Take depth (L) and width (N) to infinity in any sequential limit T = ¢ € [0,1]

L
T T t
h(T;x;t) =h(0;a:;t)+/ du(7’;a:;t)+77070/ dT’/ ds/dw'Ch(T';a:,a:';t,s)g(T';a:’;s)
0 0 0

Full characterization of the deterministic operator C can be found in the paper

Bordelon et al., 2023;
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Learning Rate



What does this theory imply for scaling laws?



Kaplan et al., 2020

Hoffman et al., 2022

Scaling exponents

an = 0.076,

L(N,T)=E + N~N 4 T-or an = 0.39,

Compute proportional to NT'

ar = 0.095

T = 0.28



Dynamics of Finite Width Kernel and Prediction
Fluctuations in Mean Field Neural Networks

Blake Bordelon & Cengiz Pehlevan NeurlPS 2023
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Deviations from consistent behavior across widths for more complex datasets

8 = 755
NEHa — N=256
—— N=64
7 N=128 7.0
6.5

w
S
o

Training Loss
Training Loss
wv
w

by
o

3 4.5
2 4.0
3.5
10° 10° 106 107 108
Images seen Tokens seen

(b) Imagenet (c) Wikitext-103

More experiments in Nikhil Vyas*, Alex Atanasov*, Blake Bordelon*, Depen Morwani, Sab Sainathan, Cengiz Pehlevan, NeurlPS, 2023



Late time loss scaling with parameters deviates from 1/width predicted by DMFT

Loss=CN~R +D

% e —e— Data, Wikitext
N
100 \\ \‘.\ 6.95 x N_O'42
\\\ A Data, Imagenet
. ---- 112 x N7063
\
0 6x 101 %
1 \\ \\\
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Deviations from consistent behavior across widths

SGD dynamics for a vision transformer trained on CIFAR-5M. H — number of attention heads

=
(@)

- y1
steps=25

Test Loss

1.4 steps=100
steps=250
1.2 steps=500
1o steps=1000
steps=2000
0 500 1000 1500 2000 2500 10! 102 103
Steps H
(a) Training Dynamics Varying H (b) Convergence to H — oo limit

Bordelon, Chaudhry, Pehlevan
Infinite Limits of Multi-head Transformer Dynamics (NeurlPS 2024)



Part lll: Scaling Laws



How FEATURE LEARNING CAN IMPROVE NEURAL
A Dynamical Model of Neural Scaling Laws SCALING LAWS

. Blake Bordelon®, Alexander Atanasov* , Cengiz Pehlevan
Blake Bordelon ' > Alexander Atanasov®2 Cengiz Pehlevan '?

ICML 2024 ICLR 2025

Related “static” works by: Caponnetto & De Vito 2007; Bordelon et al., 2020; Spigler et al., 2020; Bahri et al. 2021; Mel &
Ganguli 2021; Favero et al. 2021; Maloney et al. 2022; Atanasov et al. 2022; Cui et al. 2022; Cagnetta et al. 2023; Simon et
al. 2023; Dohmatob et al. 2024; Defilippis et al. 2024

More recent “dynamic” works: Paquette et al. 2024; Lin et al. 2024

Scaling laws in the feature learning regime: Worschech & Rosenow 2025

Other approaches: Michaud et al. 2023;....
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A Dynamical Model of Neural Scaling_Laws, Deeper Learning Blog, by Blake Bordelon, Alex Atanasov and Cengiz Pehlevan

Scaling_and renormalization in high-dimensional regression, by Alex Atanasov, Jacob Zavatone-Veth, Cengiz Pehlevan

v

Solvable Model of In-Context Learning Using_Linear Attention, Deeper Learning Blog, by Mary Letey




We need to also scale data size!

Typical case behavior of this limit over random draws of data and initial parameters

Initialization Scale Y0

|

— Training Time ———

Width
Learning Rate

Depth Data

N\

This simple theory captures how the behavior of the model depends on computational/statistical resources
(width, training time, and total data)



Main ideas of the model

We are looking for a simple model where we can vary parameters (N), dataset size (P) and

training time (T)

For analytical tractability, we will consider the lazy limit of neural network training. (I will later

generalize to feature learning).

In the lazy limit, neural networks are kernel machines (NTK in the infinite width, Jacot et al.
2018)

Main modeling idea: Kernels of finite-width networks are “noisy” versions of the infinite-width
models.

Bahri et al. 2021, Atanasov et al. 2022, Maloney et al. 2022



Teacher-Student Setup

Eigenvalues and eigenfunctions of the infinite-width NTK are a complete basis:

Koo(x,x') = 3 92 ()0 (x) / dx p(x) U5 (X)65° () = Aedi
k
Finite-width model: ~ f(x) = » wxthy (X) Expand: U (%) = —= 3 At (x)
NIte-wi maoage ; kY Xpan k \/N; kl'W¥;

(student, width N)

i 1
Jim CATA=T Ay ~N(01)

Teacher: y(x) = Zwklbfzo (x)
X

Data: D= (%4,9.)0_1 %, ~p(x) Y = y(xu) + €4 Uk = Pr (%)



Teacher-Student Setup

Teacher:  y(z) =Y  Wptp° Student:  f(z) = \/% > wr A (x)
k l k

Consider gradient-flow on MSE loss

N
1 1 1
0 =w 0 T T 0
v Wy — —— Apw —v'(t)=—|( =A'A —W W v(t
== 2 Au 0= (ya7a) (7o) v
« Using path integral (MSR) methods and Gaussian equivalence, we study the P N >> 1 regime where we
took M — oo first. (Technical note: Results are correct up to O(1/P + 1/N). There is an asymptotically
exact limit as well with structurally identical equations where N/M = v, P/M = o, M, N, P — 0.

» Averages over two types of disorder: initialization and data.

» We derive a mean field theory for full asymptotic learning dynamics and study other phenomena as well.

See paper for these equations and results.



Data has power-law structure
ResNets on CIFAR-5M

10
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(a) NTK Spectra for Varying Widths



Power law in — power law out

Kool x) = 00U () [ dxpUR (U0 = Ml y(@) = Y oo
k k

Source-and-capacity constraints:  (Wx )2 Ak ~ k7%, Ap ~ k70 Capongitrtgeﬁ)r? ;V;tlo 38%5

Spigler et al., 2020;
Bahri et al. 2021;
Favero et al. 2021;
Maloney et al. 2022;

Cui et al. 2022;

t—(a=1)/b P N — oo, (Time-Bottleneck) Cagnetta et al. 2023;

Simon et al. 2023;

L(t,P,N)~q P (@D ¢ N — oo, (Data-Bottleneck) Dohmatob et al. 2024:

N-(@=1 ¢ P — oo, (Model-Bottleneck) Defilippis et al.; 2024



L(t, N)
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L(t, P)
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(d) N = 1000 Test Loss Dynamics
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(e) Early Time Data Convergence (f) Late Time Data Bottleneck



Bottlenecks as rank-constraints

t—(a=1)/b P N — 0o, (Time-Bottleneck)
L(t,P,N) ~ p—(a=1) ¢ N — o, (Data-Bottleneck)
N—(e=1) ¢ P o0, (Model-Bottleneck)

Data Bottleneck: k, =P
Model Bottleneck: k., =N

Time Bottleneck: k, =t/ A\ =k7° 7 ~ kD)

Spigler et al., 2020
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Improved scaling for hard, but not easy tasks from feature learning

YRS S NP VI (75 D VR NY

>k
Dynamics,y —» 0 Dynamics, y > 0
—— Rich Regime
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(@) imy_so0 £(t, N) ~ t X8 (b) Lazy Limit (c) Rich Regime

1
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Theory predicts correct power exponents for deep RelLU networks

e o]

y(0) = Zk Ycos(kd) , K(6,0") = Z)\k cos(k(0 —0")).

k=1
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(a) ReLU (g4 = 1.0) with varying 8 = 22=1  (b) Varying g, with fixed target (¢ = 1.4)
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Test Loss
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(a) CNNs on MNIST-1M, g = 0.30
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(b) CNNs on CIFAR-5M 8 = 0.075



Summary from these models

« Data structure and architecture jointly determine scaling exponents

» Feature learning may not always improve scaling exponents

* Models may transition between different scaling regimes during training
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