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Gauge/gravity duality can reproduce many 
properties of condensed matter systems, even 
in the limit where the bulk is described by 
classical general relativity:

1) Fermi surfaces
2) Non-Fermi liquids
3) Superconducting phase transitions
4) …

It is not clear why it is working so well.



Can one do more than reproduce qualitative 
features of condensed matter systems?

Can gauge/gravity duality provide a 
quantitative explanation of some mysterious 
property of real materials?

We will argue that the answer is yes!



Plan: Calculate the optical conductivity of a 
simple holographic conductor and 
superconductor with lattice included.

Earlier work on the effects of a lattice by
many groups, e.g.,  Kachru et al; Maeda et al; 
Hartnoll and Hofman; Zaanen et al.; 
Siopsis et al., Flauger et al

Main result: We will find surprising similarities 
to the optical conductivity of some cuprates.  



Note:

(1) For

(2) In the limit              :

This can be derived more generally
from Kramers-Kronig relation.               



Our gravity model

We start with just Einstein-Maxwell theory:

This is the simplest context to describe a 
conductor.  We require the metric to be 
asymptotically anti-de Sitter (AdS)



Want finite temperature: Add black hole

Want finite density: Add charge to the black 
hole. The asymptotic form of At is 

μ is the chemical potential and ρ is the charge 
density in the dual theory.



Introduce the lattice by making the chemical 
potential be a periodic function:

We numerically find solutions with smooth 
horizons that are static and translationally
invariant in one direction. 



Charge density for 
A0 = ½, k0 = 2, 
T/μ = .055

Solutions are rippled 
charged black holes.



To compute the optical conductivity using linear 
response, we perturb the solution

Boundary conditions:

ingoing waves at the horizon

δgμν normalizable at infinity

δAt ~ O(z),    δAx =  e-iωt [E/iω + J z + …]

induced current

Conductivity



Review: optical conductivity with no lattice
(T/μ = .115)



With the lattice, the delta function is 
smeared out



The low frequency conductivity takes the simple 
Drude form: 



Intermediate frequency shows scaling 
regime:

Lines show 4 different temperatures:
.033 < T/μ < .055



Comparison with the cuprates
(van der Marel, et al 2003)



What happens in the 
superconducting regime?

We now add a charged scalar field to our action:

Gubser (2008) argued that at low temperatures, 
charged black holes would have nonzero Φ.

Hartnoll, Herzog, GH (2008) showed this was 
dual to a superconductor (in homogeneous case).



The scalar field has mass m2 = -2/L2, since for 
this choice, its asymptotic behavior is simple:

This is dual to a dimension 2 charged scalar 
operator O with source ϕ1 and <O> = ϕ2.
We set ϕ1 = 0.

For electrically charged solutions with only At
nonzero, the phase of Φ must be constant.  



We keep the same boundary conditions on At
as before:

Start with previous rippled charged black holes 
with Φ = 0 and lower T. When do they become 
unstable? 

Onset of instability corresponds to a static 
normalizable mode of the scalar field. This can 
be used to find Tc.



Having found Tc, we 
now find solutions for T 
< Tc numerically.

These are hairy, 
rippled, charged black 
holes.

From the asymptotic behavior of Φ we read off 
the condensate as a function of temperature.



Condensate as a function of temperature

Lattice amplitude 
grows from
0 (inner line) to 
2.4 (outer line).



We again perturb these black holes as before 
and compute the conductivity as a function of 
frequency.

Find that curves at small ω are well fit by 
adding a pole to the Drude formula

The lattice does not destroy superconductivity
(Siopsis et al, 2012; Iizuka and Maeda, 2012)

Superfluid
component

Normal 
component



Fit to:

superfluid density                 normal fluid density



The dashed red line through ρn is a fit to:

with             Δ = 4 Tc.

This is like BCS with thermally excited 
quasiparticles but:

(1) The gap Δ is much larger, and comparable 
to what is seen in the cuprates.

(2) Some of the normal component remains 
even at T = 0 (this is also true of the 
cuprates).



Intermediate frequency conductivity again 
shows the same power law:

T/Tc = 1, .97, .86, .70

Coefficient B and 
exponent 2/3 are 
independent of T 
and identical to 
normal phase.



8 samples of 
BSCCO with 
different doping.

Each plot includes 
T < Tc as well as T 
> Tc.

No change in the 
power law.

(Data from Timusk
et al, 2007.)



Preliminary results on a full 2D lattice (T > Tc) 
show very similar results to 1D lattice.

The optical 
conductivity in each 
lattice direction is 
nearly identical to the 
1D results.



Our simple gravity model reproduces 
many properties of cuprates:

• Drude peak at low frequency
• Power law fall-off ω-2/3 at intermediate ω
• Gap 2Δ = 8 Tc

• Normal component doesn’t vanish at    
T = 0



But key differences remain

• Our superconductor is s-wave, not d-wave

• Our power law has a constant off-set C

• …


