General Relativity and the Cuprates

Gary Horowitz
UC Santa Barbara

GH, J. Santos, D. Tong, 1204.0519, 1209.1098 GH and J. Santos, 1302.6586 Gauge/gravity duality can reproduce many properties of condensed matter systems, even in the limit where the bulk is described by classical general relativity:

- 1) Fermi surfaces
- 2) Non-Fermi liquids
- 3) Superconducting phase transitions
- 4) õ

It is not clear why it is working so well.

Can one do more than reproduce qualitative features of condensed matter systems?

Can gauge/gravity duality provide a quantitative explanation of some mysterious property of real materials?

We will argue that the answer is yes!

Plan: Calculate the optical conductivity of a simple holographic conductor and superconductor with lattice included.

Earlier work on the effects of a lattice by many groups, e.g., Kachru et al; Maeda et al; Hartnoll and Hofman; Zaanen et al.; Siopsis et al., Flauger et al

Main result: We will find surprising similarities to the optical conductivity of some cuprates.

$$\operatorname{Re}(\sigma) = \frac{K\tau}{1 + (\omega\tau)^2}, \quad \operatorname{Im}(\sigma) = \frac{K\omega\tau^2}{1 + (\omega\tau)^2}$$

Note:

(1) For
$$\omega \tau \gg 1$$
, $|\sigma| \approx K/\omega$

(2) In the limit $\tau \to \infty$:

$$\operatorname{Re}(\sigma) \propto \delta(\omega), \quad \operatorname{Im}(\sigma) = K/\omega$$

This can be derived more generally from Kramers-Kronig relation.

Our gravity model

We start with just Einstein-Maxwell theory:

$$S = \int d^4x \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{2} F_{\mu\nu} F^{\mu\nu} \right]$$

This is the simplest context to describe a conductor. We require the metric to be asymptotically anti-de Sitter (AdS)

$$ds^2 = \frac{-dt^2 + dx^2 + dy^2 + dz^2}{z^2}$$

Want finite temperature: Add black hole

Want finite density: Add charge to the black hole. The asymptotic form of A_t is

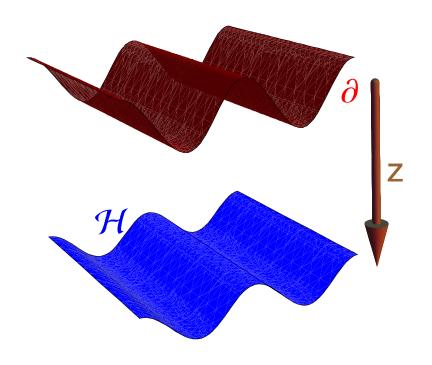
$$A_t = \mu - \rho z + O(z^2)$$

is the chemical potential and is the charge density in the dual theory.

Introduce the lattice by making the chemical potential be a periodic function:

$$\mu(x) = \bar{\mu} \left[1 + A_0 \cos(k_0 x) \right]$$

We numerically find solutions with smooth horizons that are static and translationally invariant in one direction.

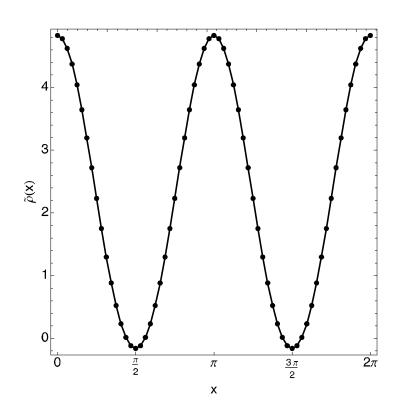


Charge density for

$$A_0 = \frac{1}{2}$$
, $k_0 = 2$,

$$T/ = .055$$

Solutions are rippled charged black holes.



Conductivity

To compute the optical conductivity using linear response, we perturb the solution

$$g_{\mu\nu} = \hat{g}_{\mu\nu} + \delta g_{\mu\nu}, \qquad A_{\mu} = \hat{A}_{\mu} + \delta A_{\mu}$$

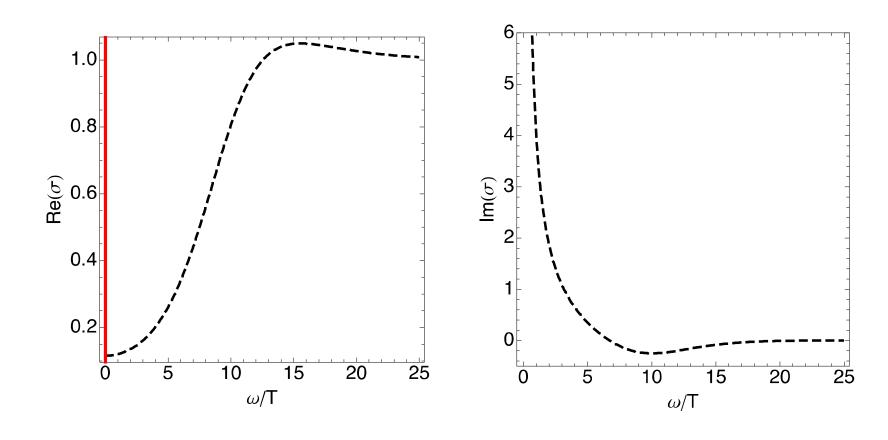
Boundary conditions:

ingoing waves at the horizon

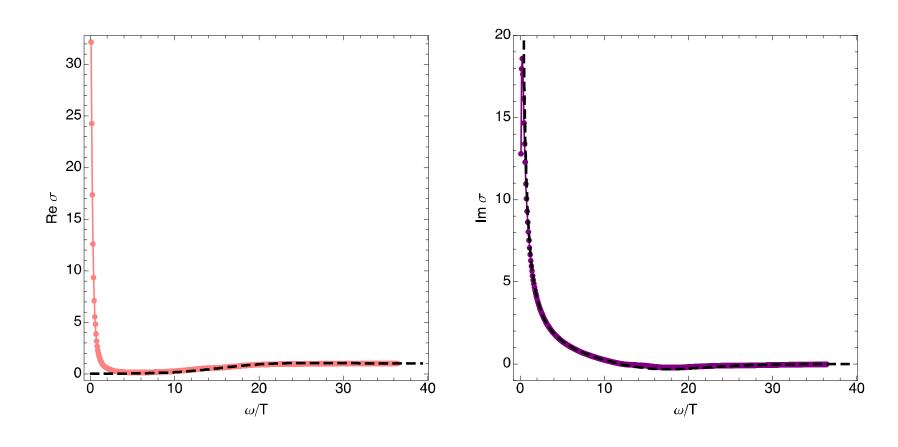
g normalizable at infinity

$$A_t \sim O(z)$$
, $A_x = e^{-i t} [E/i + Jz + \tilde{o}]$
induced current

Review: optical conductivity with no lattice (T/ = .115)

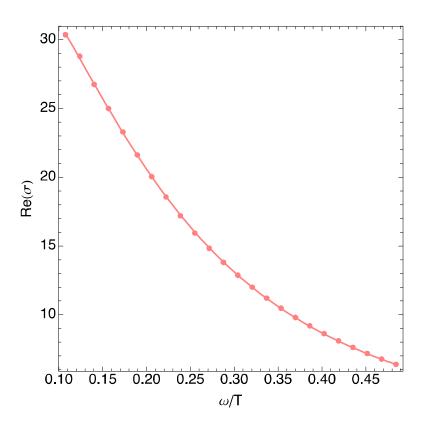


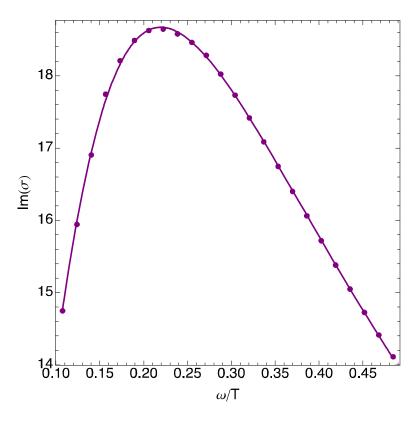
With the lattice, the delta function is smeared out



The low frequency conductivity takes the simple Drude form: K_T

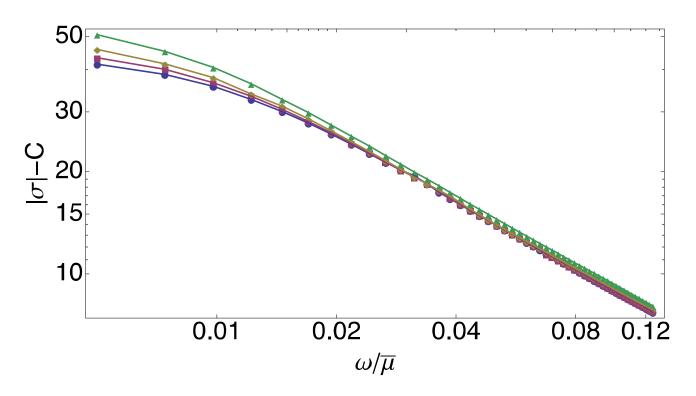
$$\sigma(\omega) = \frac{K\tau}{1 - i\omega\tau}$$





Intermediate frequency shows scaling regime: $B \sim 8$

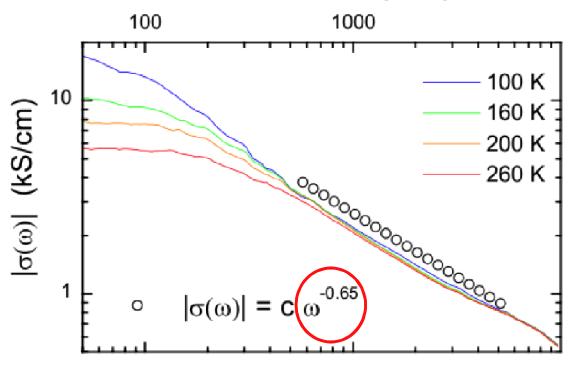
 $|\sigma| = \frac{B}{\omega^{2/3}} + C$



Lines show 4 different temperatures: .033 < T/ < .055

Comparison with the cuprates (van der Marel, et al 2003)

Wavenumber (cm⁻¹)



 $Bi_2Sr_2Ca_{0.92}Y_{0.08}Cu_2O_{8+\delta}$

What happens in the superconducting regime?

We now add a charged scalar field to our action:

$$S = \int d^4x \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{2} F_{\mu\nu} F^{\mu\nu} - 2|(\partial - ieA)\Phi|^2 + \frac{4|\Phi|^2}{L^2} \right]$$

Gubser (2008) argued that at low temperatures, charged black holes would have nonzero .

Hartnoll, Herzog, GH (2008) showed this was dual to a superconductor (in homogeneous case).

The scalar field has mass $m^2 = -2/L^2$, since for this choice, its asymptotic behavior is simple:

$$\Phi = z\phi_1 + z^2\phi_2 + \mathcal{O}(z^3)$$

This is dual to a dimension 2 charged scalar operator O with source ϕ_1 and $\langle O \rangle = \phi_2$. We set $\phi_1 = 0$.

For electrically charged solutions with only A_t nonzero, the phase of must be constant.

We keep the same boundary conditions on A_t as before:

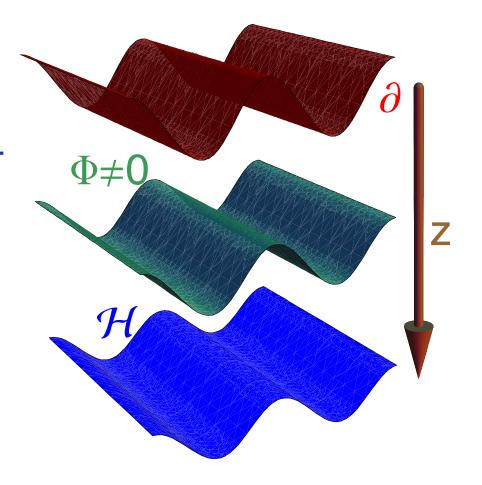
$$\mu(x) = \bar{\mu} [1 + A_0 \cos(k_0 x)]$$

Start with previous rippled charged black holes with = 0 and lower T. When do they become unstable?

Onset of instability corresponds to a static normalizable mode of the scalar field. This can be used to find T_c .

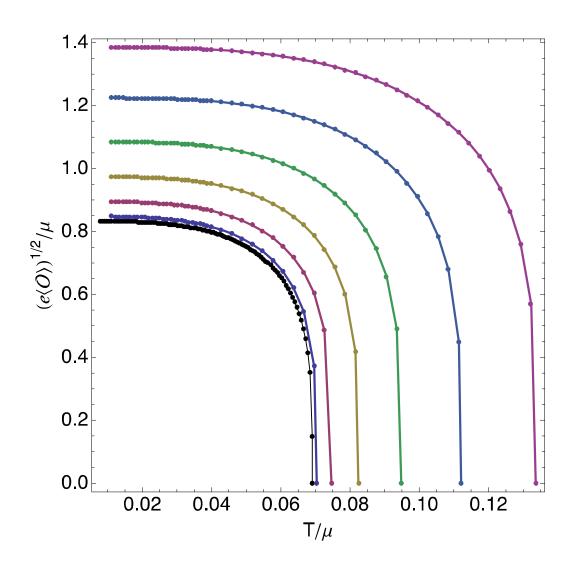
Having found T_c , we now find solutions for T < T_c numerically.

These are hairy, rippled, charged black holes.



From the asymptotic behavior of we read off the condensate as a function of temperature.

Condensate as a function of temperature



Lattice amplitude grows from 0 (inner line) to 2.4 (outer line).

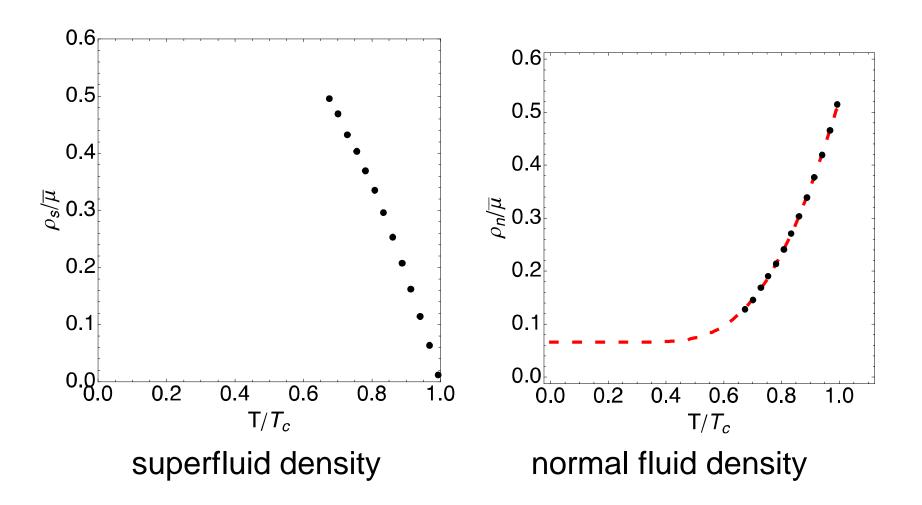
We again perturb these black holes as before and compute the conductivity as a function of frequency.

Find that curves at small are well fit by adding a pole to the Drude formula

$$\sigma(\omega) = i\frac{\rho_s}{\omega} + \frac{\rho_n\tau}{1 - i\omega\tau}$$
 Superfluid Normal component component

The lattice does not destroy superconductivity (Siopsis et al, 2012; lizuka and Maeda, 2012)

Fit to:
$$\sigma(\omega) = i \frac{\rho_s}{\omega} + \frac{\rho_n \tau}{1 - i\omega \tau}$$



The dashed red line through _n is a fit to:

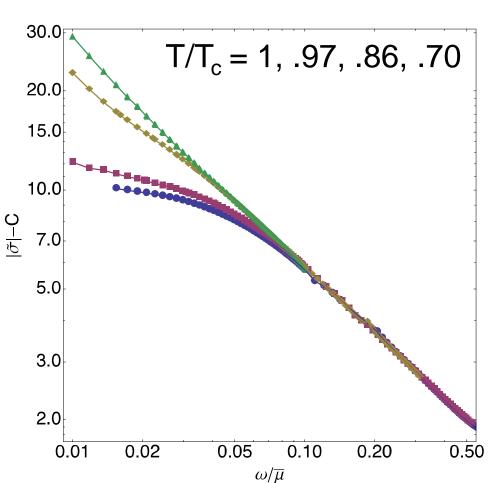
$$\rho_n = a + be^{-\Delta/T}$$

with
$$= 4 T_c$$
.

This is like BCS with thermally excited quasiparticles but:

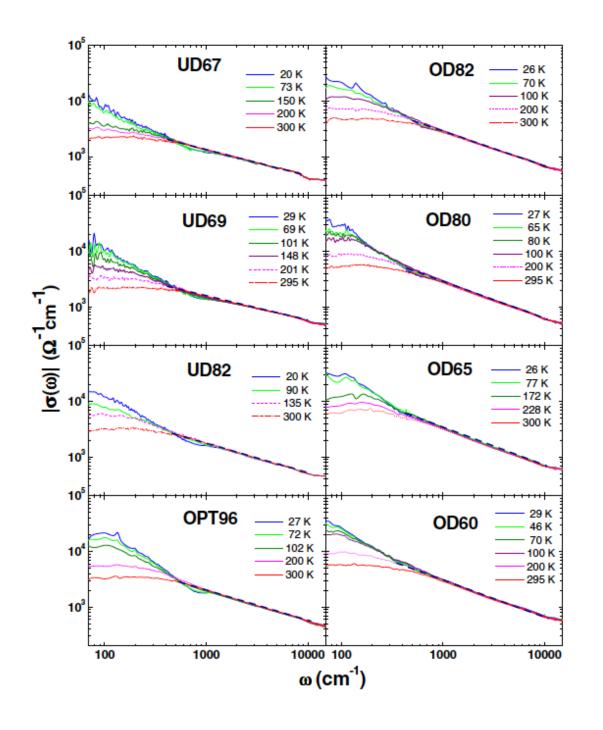
- (1) The gap is much larger, and comparable to what is seen in the cuprates.
- (2) Some of the normal component remains even at T = 0 (this is also true of the cuprates).

Intermediate frequency conductivity again shows the same power law:



 $|\sigma(\omega)| = \frac{B}{\omega^{2/3}} + C$

Coefficient B and exponent 2/3 are independent of T and identical to normal phase.



8 samples of BSCCO with different doping.

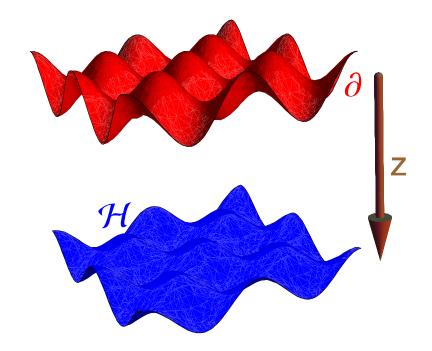
Each plot includes $T < T_c$ as well as $T > T_c$.

No change in the power law.

(Data from Timusk et al, 2007.)

Preliminary results on a full 2D lattice ($T > T_c$) show very similar results to 1D lattice.

The optical conductivity in each lattice direction is nearly identical to the 1D results.



Our simple gravity model reproduces many properties of cuprates:

- " Drude peak at low frequency
- " Power law fall-off -2/3 at intermediate
- " Gap 2 = $8 T_c$
- Normal component doesnq vanish atT = 0

But key differences remain

- "Our superconductor is s-wave, not d-wave
- Our power law has a constant off-set C

" c