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Introduction

Some Electromagnetic Conjectures

In this talk, I will discuss three conjectural restrictions on low-energy
electromagnetism that follow from quantum gravity:

(1) There must exist charged states.

(2) There must exist states with all charges allowed by charge
quantization (Q = nq, n ∈ Z).

(3) There must exist a particle of charge Q = nq and mass m, with
m < mP , such that

m
√
G ≤ nq.

Conjecture (3) is a version of the “Weak Gravity Conjecture”
Arkani-Hamed/Motl/Nicolis/Vafa.
The condition m < mP ensures that the particle is not a black hole, and
thus requires a field to exist in the low-energy effective action.
None of these conjectures can be derived in perturbation theory, but all
three seem to be true in string theory.
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Introduction

The existing arguments for (1)− (3) are not completely compelling:

If there are no charges, how do you make a charged black hole?

Even if there are charged black holes, why can’t they have only even
charges?

The original argument of AMNV for (3) was that non-BPS charged
black holes should be able to decay, but why?

In fact AMNV only argued for a weaker conjecture, that there exists a
state of charge Q and mass m obeying m

√
G ≤ Q, and this version

can be satisfied by black holes. So what is the conjecture anyway?
Heidenreich/Reece/Rudelius

In the remainder of this talk, I will present a paradox in AdS/CFT whose
resolution seems to require all three conjectures.
My arguments for (1) and (2) will be quite general, while (3) will depend
more on the details of the resolution. Harlow 1510.07911, see also Jafferis/Guica 1511.05627,

Harlow/Ooguri 16xx
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AdS/CFT

Recently there has been a lot of progress in understanding how to “back
off” of the extrapolate dictionary and directly describe bulk operators in
CFT language (see Xi Dong’s talk):

x

R

We write Banks/Douglas/Horowitz/Martinec;Hamilton/Kabat/Lifshitz/Lowe;Heemskerk/Marolf/Polchinski/Sully

φ(x) =

∫
R
dX K (x ;X )O(X ) + O(1/N).
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AdS/CFT

This construction also works when there are gauge fields in the bulk:

Gauge-invariant operators in the bulk can be represented in the CFT in
terms of the boundary current dual to Aµ:

Jµ(t,Ω) = (d − 3) lim
r→∞

rd−3Aµ(r , t,Ω).

Note that a global symmetry in the CFT becomes a gauge symmetry in
the bulk, consistent with the nonexistence of bulk global symmetries (for
discrete symmetries see Harlow/Ooguri 16xx).
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The Factorization Problem

A Reconstruction Paradox

Today the main subject of interest will be reconstruction of gauge-invariant
operators in a different background, the AdS-Schwarzschild geometry:

There is now a new kind of gauge-invariant operator: a Wilson line
stretching from one boundary to another.
This operator cannot be reconstructed using the techniques I’ve just
mentioned!
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The Factorization Problem

The problem is that the CFT Hilbert space factorizes:

HCFT = HL ⊗HR

|TFD〉CFT =
1√
Z

∑
i

e−βEi/2|i∗〉L|i〉R .

This means that any operator is a sum of tensor product operators
between the two sides, but if we try to cut the Wilson line in the bulk we
find pieces that are not gauge invariant:

Wn ≡ e in
∫ R

L A = e in
∫ 0

L Ae in
∫ R

0 A (n ∈ Z).

This prevents any attempt to make the two parts separately out of Jµ in
the left and right CFT’s respectively.
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The Factorization Problem

We can get more intuition for the problem by considering pure QED on a
spatial R× S2:

S S'

... ...

The Gauss constraint tells us that∫
S
E =

∫
S ′
E ,

so two macroscopically separated operators are equal in all states in the
physical Hilbert space!
We thus can never have a factorization of the Hilbert space into “left” and
“right” pieces: I call this apparent conflict with the CFT the factorization
problem.
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The Factorization Problem

We can begin to get a sense of how the factorization problem might be
resolved by considering the algebra of Wn with the asymptotic charges:

[QL − QR ,Wn] = 2nWn.

So in other words, Wn is a creation operator for 2n units of QL − QR : it
makes the wormhole a “little bit Reissner-Nordstrom”.
In particular we have

〈TFD|W †
n (QL − QR)Wn|TFD〉 = 2n,

so using the factorization of the Hilbert space we immediately see that

Q 6= 0

for the CFT on one Sd−1. This establishes conjecture (1).
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The Factorization Problem

Once dynamical charges exist they obstruct the QED argument
above, since the Gauss constraint now has something nontrivial on
the right hand side.

Indeed we will now see that including dynamical charges turns the
factorization problem into a UV issue.

To make this precise, I will now describe the factorization problem in
1 + 1-dimensional lattice gauge theory. Donnelly, Casini/Huerta/Rosabal, Radicevic

10



The Factorization Problem

Factorization in Lattice Gauge Theory

1 + 1 dimensional scalar electrodynamics on the lattice:

We have gauge transformations:

φ′i = Viφi

U ′i ,i+1 = Vi+1Ui ,i+1V
†
i .

I’ll choose boundary conditions:

V0 = VN = 1

φ0 = φN = 0.
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The Factorization Problem

Interesting gauge-invariant operators include

W ≡ U0,1U1,2 . . .UN−1,N

−→
φ i ≡ φiUi ,i+1Ui+1,i+2 . . .UN−1,N

←−
φ i ≡ U†0,1U

†
1,2 . . .U

†
i−1,iφi

Now say we want to cut the Hilbert space between site ` and site `+ 1.
We can solve the constraint to write an arbitrary gauge-invariant state as

〈U, φ, φ†|ψ〉 = Ψ
[
W ,
←−
φ i ,
←−
φ †i ,
−→
φ j ,
−→
φ †j

]
i ≤ `, j ≥ `+ 1.

This almost factorizes, but not quite: we still have W , which cannot be
generated by any pair of algebras localized on the left and right
respectively.
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The Factorization Problem

Introducing charges has not solved the factorization problem - but I claim
the situation has improved.
The reason is that

W ′ ≡
←−
φ †`
−→
φ `+1

is an operator that behaves identically to W in low-energy correlation
functions.

We can justify this using a type of “gauge-covariant operator product
expansion” see also Gadde:

φ†(x)φ(y) = e i
∫ y

x A (G (x , y) + less singular terms) .
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UV and IR

Representing W in the CFT

We thus arrive at a simple proposal for how to represent W in the CFT:

The left and right pieces are separately gauge-invariant, and they indeed
can be represented in the left and right CFTs using the standard method.
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UV and IR

Two immediate comments:

In order to cut a Wilson line in the fundamental representation, we
need a bulk operator of charge one. There must thus be a state of
charge one, so we have derived conjecture (2).

The charges could be quite heavy, say at the GUT scale, and we
would still need to know about them to represent a rather low-energy
operator in the CFTs!

The latter point is not an observable violation of bulk effective field theory,
but it is a violation of the notion of “effective conformal field theory”.
Fitzpatrick/Katz/Poland/Simmons-Duffin

I view it as a particularly sharp manifestation of the UV sensitivity of IR
questions when black holes are present.
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UV and IR

Let’s assess what we have really accomplished here:

You give me a low-energy correlation function involving W , and I give
you a CFT representation of W that works in that correlation
function.

But now say you change your mind, and want to add an extra
operator near the center: you can catch me lying!

I can fix it by bringing the two operators even closer together, but you
can catch me again with another operator.

To avoid this, I need to pre-emptively bring the operators together until
one of two things happens:

I bring them to within the Planck scale. I have now postponed the
factorization problem into the realm of ignorance: perhaps this
already counts as a solution?

I bring them together to within some larger length scale, where the
physics nonetheless changes qualitatively and is no longer described
by Maxwell dynamics.

In other words, the gauge field must be emergent!
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Emergent Gauge Field in a Simple Model

A Case Study: the CPN−1 model in d dimensions

To see how emergence can help us, it will be very helpful to study an
explicit example: the CPN−1 model. D’Adda/Luscher/Di Vecchia, Witten

N complex scalar fields za, a = 1, . . .N.

Impose a constraint
∑

a z
∗
a za ≡ z†z = 1.

Impose a gauge symmetry z ′a = e iθ(x)za.

Impose an SU(N) flavor symmetry rotating the zs.

These constraints together imply that the Hilbert space factorizes
site-by-site into a copy of CPN−1 at each point in space.
Nonetheless there is a phase of this model which flows to scalar
electrodynamics in the IR!
Reminder: this is a model for the bulk.
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Emergent Gauge Field in a Simple Model

The natural Lagrangian is a non-linear σ model:

L = − N

g2
(Dµz)† (Dµz)

Dµ ≡ ∂µ − iAµ

Aµ =
1

2i

(
z†∂µz − ∂µz†z

)
.

In any spacetime dimension, this model is solveable at large N.
The idea is to introduce a Lagrange multiplier σ, and view Aµ as an
auxilliary field:

L = − N

g2

[
(Dµz)† (Dµz) + σ

(
z†z − 1

)]
.

We can then integrate out the zs to get an effective action for Aµ and σ,
which at large N will be exact. By adjusting g we can arrange that
0 < σ0 � Λ, with SU(N) unbroken.
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Emergent Gauge Field in a Simple Model

We are especially interested in the piece of the effective action that is
quadratic in Aµ:

+

Evaluating these diagrams (and tuning g to be in the right phase for
d > 2) we find an effective Maxwell term

Seff ⊃ −
1

4q2

∫
ddx FµνF

µν ,

with:

1

q2
=


N

6πσ0
d = 2

N
12π
√
σ0

d = 3

N
12π2 log

(
Λ√
σ0

)
d = 4

NΛd−4 d > 4.
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Emergent Gauge Field in a Simple Model

How is the existence of an IR Coulomb phase consistent with the
microscopic factorization of the Hilbert space?
Above we saw that

Aµ =
1

2i

(
z†∂µz − ∂µz†z

)
.

The lattice version of this equation is

Uxδ =
z†xzx+δ

|z†xzx+δ|
,

which you can check indeed transforms as a Wilson link.
But this is precisely the gauge-covariant OPE! It is apparently exact at the
lattice scale.
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The Weak Gravity Conjecture

On to the Weak Gravity Conjecture

In the CPN−1 model, the mass m =
√
σ0 and coupling q of the charges in

the IR are computable quantities. We can use this to test the weak gravity
conjecture

m
√
G ≤ q.

To do this, we clearly need to couple the model to gravity. In order to
solve the factorization problem, we need to take the cutoff Λ of the model
to be less than the Planck scale, and to have the strongest test of the
conjecture we should take them to be comparable.
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The Weak Gravity Conjecture

In doing the test, we need remember that the presence of N light fields
renormalizes Newton’s constant G , essentially by the same diagrams we
studied before:

1

G
∼ NΛd−2.

Here Λ is the scale where gravity becomes strongly coupled, which we have
taken to be the same as the CPN−1 model cutoff, so for d > 4 we have

1

q2
∼ NΛd−4.

Combining these equations we have q2/G ∼ Λ2, so we then have

m2 � Λ2 =
q2

G
.

The CPN−1 model automatically obeys the weak gravity conjecture!
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The Weak Gravity Conjecture

Why did this happen? The logic is actually quite simple:

In order to solve the factorization problem, we had to have an energy
scale, at most the Planck scale, where the Maxwell term in the
effective action has zero coefficient. This corresponds to infinitely
strong gauge coupling.

If we want to have a weak gauge coupling at low energies, then we
need to generate a large coefficient for this Maxwell term as we run
the renormalization group. We do this by integrating out loops of
charged fields.

But say all of the charge fields have masses up at the Planck scale:
then they will gap out immediately, and will not be able to generate
any significant Maxwell term.

Thus we arrive at the basic point of the WGC: a weak gauge coupling
requires a light charged field.
In fact this argument generalizes to multiple U(1)’s, where it reproduces a
rather nontrivial generalization of the WGC due to Cheung and Remmen.
Harlow/Ooguri
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Conclusion

What have we learned?

The fact that the CFT Hilbert factorizes despite the geometric
connection through the bulk gives us powerful information about
short-distance physics in the bulk. In particular it provides support to
conjectures (1)-(3).

That we can describe the Wilson line W despite this factorization is
an important check of the idea that the wormhole exists, since if there
were no bridge we would not expect it to. (see also Engelhardt/Freivogel/Iqbal)

The charges from which the gauge field emerges give a
UV-regularization of the electromagnetic “edge modes”/“soft hair” of
Donnelly/Wall, Hawking/Perry/Strominger, whose gravitational cousins appeared
recently in a CFT explanation of the Ryu-Takayanagi formula Harlow.

Indeed there is a gravitational factorization problem too! Its solution
will similarly require UV information about quantum gravity in the
bulk. But what is the bulk description of the degrees of freedom from
which the graviton emerges?
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Conclusion
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