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Precision Holography –

Agreement between an AdS/CFT result, valid for
N →∞, λ >> 1, and a gauge theory computation using
supersymmetric localization, in same limit.
Match as a function of field theory parameters.

TWO EXAMPLES: (amid growing number of interesting papers)

1. Gravity dual on S3 of ABJM theory, perturbed by mass terms
for its chiral matter fields. arXiv:1302.7310 Pufu + DZF

2. Gravity dual on S4 of N = 2∗: N = 4 SYM → N = 2 by mass
for hypermultiplet. arXiv:1311.1508 Bobev, Elvang, Pufu, DZF

In both cases we calculate the Free Energy as a function of the
mass parameters in perfect agreement with QFT result!



Usual ideas of AdS/CFT duality:

i) global symmetries of gravity dual and bdy. gauge theories agree,

ii) map between classical fields of gravity theory and composite
operators of the QFT,

iii) find classical solution of gravity dual with AAdS metric and
other fields,

iv) asymptotics at AdS boundary determines sources + vevs for
QFT operators,

v) Son−shell of gravity dual is bridge to dual QFT. But it is ∞.
Holographic Renormalization determines ∞ CT’s for any solution
of the EOMs.

vi) The ∞ CT’s from Holo. Ren. must be supplemented by a finite
CT to satisfy SUSY. (to be emphasized.)



The mass deformation of ABJM
Jafferis, 1012.3210

1. ABJM may be viewed as a U(N)k × U(N)−k Chern-Simons
theory with 4 bi-fundamental chiral multiplets:
Y A(x), χA(x), A = 1, .., 4.

2. To display Lmass on S3 of radius a, it is convenient to use 3
traceless diagonal 4× 4 matrices:

T 1 = diag(1, 1,−1,−1)

T 2 = diag(1,−1, 1,−1)

T 3 = diag(1,−1,−1, 1) .

Define 3 bilinear Bose and Fermi operators:

OαB = Tr(Ỹ TαY ) ∆ = 1 scalar

OαF = Tr(χ̃Tαχ− Ỹ TαY σ) ∆ = 2 pseudoscalar



3. The mass deformation depends on 3 parameters δ1 , δ2, δ3:

Lmass =
1

a2

∑
α

(δα + δ1δ2δ3/δα)OαB +
1

a

∑
α

δαOαF .

4. The Free Energy of the deformed ABJM theory was calculated
by matrix model methods at large N. [Jafferis et al 1103.1181]:

F =
4
√

2πN3/2

3

√∏
A

R[Y A] .

The R[Y A] are deformed R-charges given by

R[Y A] =
1

2
+ (δ1T

1 + δ2T
2 + δ3T

3)AA .

(It is a curiosity of the ”real mass” mechanism on S3 that mass
parameters are related to R-charges.)



Goals of the gravity dual

1) It must source the 3 OB , ∆ = 1 and the 3 OF ∆ = 2 .

2) An appropriate classical solution must reproduce F .



The gravity dual:

1. After an orgy of group theory we extract a consistent N = 2
truncation from gauged N = 8,D = 4 SG De Wit-Nicolai

It contains
i) gravity multiplet gµν , ψ

i
µ,A

0
µ, and

ii) 3 abelian vector mults zα, χαi ,Aαµ .

Drop all vectors since they vanish in the solution needed to match
the S3-invariant QFT.

With no vectors, we are left with an N = 1 SG.



Bosonic action and potential

S =
1

8πG4

∫
d4x
√
g

[
−1

2
R+

3∑
α=1

|∂µzα|2

(1− |zα|2)2
+

1

L2

(
−3 +

3∑
α=1

2

1− |zα|2

)]

Very Simple:

a) scalar Lkin is that of a Kähler σ model on 3 copies of Poincaré
disc.

b) Potential gives conformal mass m2L2 = −2.

2. Potential in N = 1 SG should be related to a holomorphic

W (zα) by std. formula: V = eK
(
∇αW Kαβ̄∇β̄W̄ − 3WW̄

)
.

We find W = (1 + z1z2z3)/L.



3. a) Extract fermion trf. rules from N = 8 SG, b) deduce 1st
order BPS eqtns for zα(ρ), B(ρ) from these.

Mathematica solves the BPS eqtns. in terms of a conformally flat
metric

ds2 = e2B(ρ) dρ
2 + ρ2dΩ2

3

(1− ρ2)2
.

Solution for the scalars is quite simple

zα(ρ) = cαf (ρ) z̃α =
c1c2c3

cα
f (ρ)

with common radial function f (ρ) = (1− ρ)2/(1 + c1c2c3ρ
2).

i. smooth non-singular solution
ii. 3 arbitrary complex constants cα
iii. z̃ 6= z∗, as expected in Euclidean SUSY
iv. We check that BPS sols. also solve Lagrangian EOM’s and find
Killing spinors.



4. To extract the physics, we change to usual radial coordinate r .

ds2 = L2(dr2 + e2A(r)dΩ2
3) ,

with e2A(r) ∼ e2r for large r . The bdy. behavior of the z ’s is
za(r) = aαe−r + bαe−2r z̃a(r) = ãαe−r + b̃αe−2r ,
where aα, bα, etc. are functions of c1, c2, c3.

Puzzle: e−r is usual source rate for ∆ = 2 operator, and e−2r is its
vev rate. But we need to source 3 ∆ = 2, OF and 3 ∆ = 1, OB .

Resolution: For m2L2 = −2, in D = 4, SUSY requires
Alternate Quantization for either z + z̃ or z − z̃ . Then e−2r term
becomes source for ∆ = 1!
Both OF and z − z̃ are pseudoscalar, so we take aα − ãα as their
sources. Conversely, both OB and z + z̃ are scalar, so we take
bα + b̃α as sources.

This requires using Legendre transform of Son−shell as generating
function for QFT observables. Klebanov and Witten



5. Holographic Renormalization provides a renormalized action

Sren = Sbulk + SGH + SCT .

It is finite, but not satisfactory because it does not respect SUSY
for flat-sliced solutions of the same bulk theory.
Diagnostic: Evac 6= 0.

We wil use the Bogomolny construction to find the correct CT.

CT’s are universal; they govern all solutions of the same theory, so
we must use the same CT for S3-sliced solutions.

A flat-sliced solution has metric ds2 = dr2 + e2A(r)dx idx i with
zα(r), i.e. radial dependence only.



Bogomolny for gen. Kahler metric with
V = eK (∇αW Kαβ̄∇β̄W̄ − 3WW̄ ).

Start with Sbulk and use integration by parts to rewrite it as

Sbulk =

∫
d4x
√
g [−1

2
R + Kαβ̄∂rz

α∂β̄r + V ]

=

∫
d3x dr e3A

[
− (∂rA− eK/2|W |)2

+ Kαβ̄(∂rz
α + W̄α)(∂rz

β̄ +W β̄) − ∂

∂r
(2e3A|W |)

]

Action is stationary if the first order BPS eqtns are satisfied:

∂rA− eK/2|W | = 0 ∂rz
α + W̄α = 0.

SUSY requires that surface term is cancelled by adding CT

SSUSY =
1

4πG4

∫
d3x e3A eK/2|W |.

evaluated at r = r0, the bdy.



The Bogomolny calculation is exact for flat-sliced solutions so
SSUSY contains ∞ terms which match those of SCT plus the finite
CT:

Sfinite =
1

4πG4

∫
d3x
√
h

1

2
(z1z2z3 + z̃1z̃2z̃3)

Inclusion of this finite correction is crucial for correct calc. of Free
Energy!



The Free Energy

1. A SUSY argument to derive the source term from bulk SG:
gαOαB + fαOαF , with gα, fα functions of the 3 cα parameters.

Compare with ABJM mass deformation

1

a2

∑
α

(δα + δ1δ2δ3/δα)OαB +
1

a

∑
α

δαOαF .

Identify the QFT mass parameters

δα = n
cα + c1c2c3/cα

1 + c1c2c3
.

n is a normalization constant, not usually fixed by AdS/CFT.



2. The Legendre transform of Sren is

J =
πL2

2G4

(1− c2
1 )(1− c2

2 )(1− c2
3 )

(1 + c1c2c3)2
.

3. Free Energy from localization:

F =
4
√

2πN3/2

3

√∏
A

R[Y A] ,

An earlier AdS/CFT calc. at the conformal point shows that the

coefficients in F matches that of J.

4. Use R[Y 1] = 1
2 + δ1 + δ2 + δ3. Insert the δα as functions of the

three cα. For the specific value n = 1/2, the argument of the
√
...

becomes a perfect square and matches the rational expression J!!



Part II: N = 2∗ on S4

A. The hypermultiplet fields are z1 , z2, χ1, χ2 and their formal
conjugates.
On flat R4, the hypermultiplet mass term is

LR4 = m2Tr(z1z̃1 + z2z̃2) + mTr(χ1χ1 + χ2χ2 + h.c)

SUSY on S4 requires a third operator (with ∆ = 2) Pestun, 2012

Lmass = LR4 +
im

2a
Tr(z2

1 + z2
2 + h.c .)

B. Some History: 1. Pilch-Warner, 1985 found truncation of
N = 8,D = 5 SG with two scalars φ, ψ dual to operators of LR4 .
Constructed flat-sliced RG flow.
2. Pestun, 2012 derived the mass deformation on S4, applied
localization, yielding a matrix model.



3. Matrix model solved at large N, λ >> 1 by Buchel et. al.,
1301.1597. Free Energy

FS4 = −N2

2
(1 + m2a2) log[

λ(1 + m2a2)e2γ+1/2

16π2
]

The third derivative w.r.t ma is scheme independent, so a gravity
dual should match

d3FS4

d(ma)3
= −2N2ma(m2a2 + 3)

(m2a2 + 1)2

4. Motivated by Buchel 1304.5622: Found soltn. on S4 involving
only the two Pilch-Warner scalars. It failed to match d3F .

Main problem was that the gravity dual on S4 requires another
scalar to source the third operator. We set out to restore the honor
of holography!



5. We found new truncation with 3 scalars φ, χ, ψ. More simply
expressed in terms of η = eφ/

√
6 and z , z̃ = (χ± iψ)/

√
2.

L5D =
1

4πG5

[
− R

4
+ 3

∂µη∂
µη

η2
+

∂µz∂
µz̃

(1− zz̃)2
+ V

]
V = −

(
1

η4
+ 2η2 1 + zz̃

1− zz̃
+
η4

4

(z − z̃)2

(1− zz̃)2

)
.

i) Simple— e.g. Poincaré disc again.
ii) Expand V = −3− 1

2 (4φ2 + 4χ2 + 3ψ2) + . . .. Compare with

AdS/CFT mass formula ∆ = 2 +
√

4 + m2 to find that the
(mass)2’s −4,−4,−3 agree with the needed ∆ = 2, 2, 3 for
φ, χ, ψ.



6. Extract 1st order BPS eqtns from the fermion trf. rules. No
analytic solution, so we do the following.
i) UV asymptotics from expansion in e−r , re−r as r →∞.
Find that the 3 scalars and A(r) depend on two independent
parameters: source µ and vev v .
ii) Analysis of IR behavior as r → 0; the four fields depend on one
parameter.
iii) A smooth solution that interpolates from IR → UV will
determine v(µ). From an accurate numerical solution, we extract
relation v(µ) = −2µ− µ log(1− µ)2.

7. Finite CT: We require SUSY for the truncation of our system to
φ, ψ of Pilch-Warner. Result is that

Sfinite =
1

16πG5

∫
d4x
√
hψ4

must be added to SCT.



8. Final Steps: a. calculate dF/dµ = dSren/dµ using chain rule:

dS

dµ
=

1

4πG5

∫
d4x
√
g0

(
〈Oψ〉

∂ψ0

∂µ
+ 〈Oφ〉

∂φ0

∂µ
+ 〈Oχ〉

∂χ0

∂µ

)
.

The 〈Oψ〉, etc are renormalized vevs, and ψ0, φ0, χ0 are leading
UV source terms.
b. Express these quantities in terms of µ, v(µ). Use 1

4πG5
= N2

2π2 to
obtain

dS

dµ
=

N2

2π2
vol(S4)(4µ− 12v(µ))

c. Take two more derivatives using v(µ) = −2µ− µ log(1− µ)2:



Result
d3F

dµ3
= −2N2µ(3− µ2)

(1− µ2)2

Compare with field theory:

d3FS4

d(ma)3
= −2N2ma(3 + m2a2)

(1 + m2a2)2

Perfect agreement if µ = ±ima !



Conclusions:

Two different theories give precision tests of
AdS/CFT in a Euclidean, non-conformal setting !


