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Building and solving quantum models of BHs is an outstanding open 
problem. It is a crucial endeavor and probably the only way to address 
consistently the fundamental questions, in a field that desperately lacks 
equations, as Joe Polchinski put it on tuesday.

My goal will be to very briefly review a work in progress that seems 
extremely promising and allows to tackle, in an extremely and surprisingly 
simple way (in view of the complexity of the problems), some of the deep 
questions of BH physics:

- How does the quasi-normal behavior emerges?
- How is unitarity restored?
- How can we describe a local probe falling into the horizon?

Hurdles that we need to pass to answer these questions are as follows:
- What kind of QM models can describe a BH?
- How can we find a way to reliably compute in these models the observables 
that are relevant to describe the fundamental properties of BHs (like the 
quasi-normal behavior, unitarity restoration, etc)? (very hard in principle)
- How can we study local probes and find the answers we seek from a 
calculation (and not simply an educated guess)?



The models

They are suggested by holography. A basic model would be the N=4 SYM 
theory on a spatial 3-sphere of radius R. Doing the dimensional reduction on 
the three-sphere, we get a gauged QM, with gauge group U(N) and an 
infinite number of adjoint variables.
BHs can be obtained with only a finite number of adjoint variables (that’s 
what happens e.g. for the D0 brane QM).
So a typical model we consider is a gauged QM with adjoint variables and an 
action of the form
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where X is a set of bosonic matrix variables, interactions terms can be the 
usual commutator square term             ,        terms, etc., and fermion terms 
can be added as for D0 branes.
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Computing: “easy”

a) Partition function: OK at weak coupling, by reducing the problem to a 
unitary matrix model corresponding to the holonomy along the thermal circle 
(Sundborg 1999, Aharony et al. 2005). Find Hagedorn phase transition, 
plausibly related to the Hawking-Page transition at strong coupling (at least in 
some cases). But the partition is far from being enough to derive the essential 
features of BH physics.



Computing: hard

b) A fundamental set of observables to consider are real time thermal 
correlators. One needs a reliable way to compute these at large N and at very 
long times, in order to see the emergence of an arrow of time (the quasi-
normal behavior of BHs), which is nothing but thermalization in the strongly 
coupled gauged QM. One also needs a way to understand these correlators 
at finite N, in order to see how unitarity is restored.

Such calculations are notoriously difficult and no example is known in a full-
fledged gauged matrix QM model (see however Iizuka, Okuda, Polchinski 
2008, 2009 for interesting toy models).
Difficulty: we need a non-perturbative resummation (the quasi-normal 
behavior is not seen at any finite order of perturbation theory, even at weak 
coupling!, see Festuccia and Liu 2006); and we need finite N to study 
unitarity restoration!

c) Local probe in the bulk (modeling a “local observer going through the 
horizon”): even the definition of such an object is non-trivial.



Hint at a possible breakthrough:  

Emparan et al. (2013, 2014) have shown very recently that there exists a well-
defined large D limit of classical GR (D is the number of space dimensions), 
which captures, in particular, the essential features of BH physics, including 
the quasi-normal behavior.

This is ringing a bell! From the point of view of the matrix QM, the large D 
limit is the limit of a large number of matrices. Might seem complicated at 
first sight, but actually this limit is well-behaved and easy to study.

Typically, we can arrange the variables into SO(D) vectors      of N times N 
matrices and the large D limit can be treated along the lines of the large n 
limit of O(n) vector models. There are a couple of *fundamental* differences 
due to the fact that we deal with a matrix model as well, that we briefly 
mention in the next transparency.
This yieds an extremely reliable approximation scheme (for example, can be 
checked vs Monte Carlo in zero dimension), that is able to capture all the 
non-trivial features of BH physics (including the arrow of time), and which is 
tractable at finite N! 
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The large D limit in models of vector of matrices 

1) The usual auxiliary fields used to solve the large n O(n) vector models are 
now replaced by SO(D) invariant bilinears in the matrix variables

The model is then reformulated in terms of a U(N) tensor model, with an 
effective action              which is proportional to D. This is quite unusual but 
is tractable, both at finite N and at large N (generalizing the usual matrix 
models).

2) The large D saddle point for the tensor breaks U(N) because of the non-
trivial holonomy          of the gauge field A over the thermal circle. The 
equations yield the spectrum of     in terms of the spectrum of A.

3) This then yields the spectrum of Bohr frequencies, with gaps of order            
The spectrum then becomes continuous at large N and implies the quasi-
normal behavior, but it is discrete at finite N, which implies unitarity.
 

�ab
cd = (Xµ)

a
c(Xµ)

b
d

Se↵(�)

e��A

�

1/N2.



Local probe of the geometry

We can use D-brane probes to study the resulting BH geometry, combining 
the first principle construction given in Ferrari 2013 with the large D 
computational technique described above.

An important feature of the construction is that the local probe action 
depends on a choice of equivariant gauge-fixing, even though the physical 
quantities, like the on-shell probe action, are of course independent of any 
gauge choice. This fundamental equivariant gauge-dependence of the local 
description is related in this formalism to the fact that there is no local 
observable in QG and provides an alternative to the state-dependent 
“operators” to reconstruct the bulk geometry. 


