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spin systems via gauge theory.
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This is meant to be a spacetime picture of elastic scattering of two
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Because of conservation of energy and momentum, the outgoing
particles go off at the same slope (same velocity) as the incoming
particles. There are time delays that I have not tried to draw.
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In a typical relativistic quantum field theory, there are particle
production processes, which are a large part of what makes
quantum field theory interesting.

Here is a picture of two particles
going to three:

The symmetries of typical relativistic field theories allow such
processes and they happen all the time in the real world.
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However, in two spacetime dimensions, there are “integrable” field
theories that have extra symmetries that move a particle in space
by an amount that depends on its velocity.

Then particle
production is not possible:
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How do we characterize a particle?

A particle has a velocity, or
better, in relativistic terms, a “rapidity” θ(

E
p

)
= m

(
cosh θ
sinh θ

)
Scattering of two particles with rapidities θ1 and θ2 depends only
on the rapidity difference θ = θ1 − θ2:

(Note that the slope with which I draw a line depends on the
rapidity of the particle in question.)
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But the amplitude for scattering of two particles of rapidities θ1

and θ2 is in general not only a function of the rapidity difference
θ = θ1 − θ2 because there may be several different “types” of
particles of the same mass.

An obvious reason for this is that the
theory might have a symmetry group G and the particles may be
in an irreducible representation ρ of G .
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The picture is then more like this:

Here i , j , k .l can be understood to represent basis vectors in the
representation ρ. We write Rij ,kl(θ) for the quantum mechanical
“amplitude” that describes this process. It is usually called the
R-matrix.
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The real fun comes when we consider three particles in the initial
and final state.

Since we can move them relative to each other,
leaving their slopes (or rapidities) fixed, we can assume that there
are only pairwise collisions. But there are two ways to do this and
they must give equivalent results:
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In more detail, equivalence of these pictures leads to the celebrated
“Yang-Baxter equation”

which schematically reads

R23R13R12 = R12R13R23.



The traditional solutions of the Yang-Baxter equation – as
discovered by Bethe, Lieb, Yang, Baxter, Fadde’ev, Drin’feld and
many others – are classified by the choice of a Lie group G and a
representation ρ, subject to (1) some restrictions, and (2) the
curious fact that in many important cases (like the 6-vertex model
of Lieb and the 8-vertex model of Baxter) a model associated to a
given group G does not actually have G symmetry.

In fact, there
are three broad classes of solutions of Yang-Baxter – “rational,
trigonometric, and elliptic” – and only the rational ones have G
symmetry.
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I’ve motivated this introduction by talking about relativistic
scattering, but the same solutions of the Yang-Baxter equation are
used for physical models of a completely different sort.

The ones
most relevant today are the integrable lattice systems of statistical
mechanics, which are constructed directly from a solution of the
Yang-Baxter equation:
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To explain this rather busy picture, the vertical and horizontal lines
are labeled by rapidities θ or θi , a line segment is labeled by a basis
vector i , j , k , . . . of the representation ρ, and a crossing is labeled
by the appropriate R-matrix. The problem of statistical mechanics
is to compute the “partition function” by summing over labels,
with each set of labels being weighted by the product of the
appropriate R-matrix elements. The problem turns out to be
solvable because “the transfer matrices commute,” which means
that (using the Yang-Baxter equation) the horizontal lines can be
moved up and down past each other.
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Perhaps the most obvious question about the Yang-Baxter
equation is “why” solutions of this highly overdetermined equation
exist.

There is another area in which one finds something a lot like
the Yang-Baxter equations. This is the theory of knots in three
dimensions. Here is one of the Reidemeister moves:
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The resemblance to the Yang-Baxter equation is obvious, but there
are also conspicuous differences:

(1) In knot theory, one strand passes “over” or “under” the other,
while Yang-Baxter theory is a purely two-dimensional theory in
which lines simply cross, with no “over” or “under”:
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These two points refer to structure that is present in knot theory
and not in Yang-Baxter theory.

But there is also an important
difference in the opposite direction:

(3) In Yang-Baxter theory, the spectral parameter is crucial, but it
has no analog in knot theory.
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Despite these differences, there is an obvious analogy between the
Yang-Baxter equation and the first Reidemeister move of knot
theory, so let us pursue this a little bit.

The usual solutions of
Yang-Baxter depend, as I’ve said, on the choice of a simple Lie
group G and an irreducible representation ρ. There are knot
invariants that depend on the same data. To define them at least
formally, let M be a three-manifold, E → M a G -bundle, and A a
connection on G . Then one has the Chern-Simons function

CS(A) =
1

4π

∫
M
Tr

(
AdA +

2

3
A ∧ A ∧ A

)
.

I have normalized it so that it is gauge-invariant mod 2πZ. In
quantum mechanics, the “action” must be well-defined mod 2πZ,
so we can take

I = kCS(A), k ∈ Z.
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A quantum field theory with this action is a “topological quantum
field theory,” since there is no metric tensor in sight.

Let us just
take the three-manifold M to be R3, and let K ⊂ R3 be an
embedded knot.

We pick an irreducible representation ρ of G , and let

Wρ(K ) = TrρP exp

(∮
K
A

)
i.e. the Wilson loop operator in the representation ρ.
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The usual “quantum knot invariants,” of which the prototype is
the Jones polynomial of a knot, can be defined via the expectation
value of the Wilson operator, 〈Wρ(K )〉 = 〈TrρP exp(

∮
K A)〉.

From
the knot invariants that one makes this way, one cannot really
extract the usual solutions of the Yang-Baxter equation since one
is missing the spectral parameter. However, in a sense from these
knot invariants one can extract a special case of the Yang-Baxter
solutions: in which the spectral parameter is taken to i∞.
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How can we modify or generalize Chern-Simons gauge theory to
include the spectral parameter?

A naive idea is to replace the
finite-dimensional gauge group G with its loop group LG . We
parametrize the loop by an angle θ. The loop group has
“evaluation” representations that “live” at a particular value
θ = θ0 along the loop. We hope that this will be the spectral
parameter label θ0 carried by a particle in the solution of the
Yang-Baxter equation. (It is important that we take the loop
group, not its central extension.)
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Taking the gauge group to be a loop group means that the gauge
field A =

∑
i Ai (x)dx i now depends also on θ and so is

A =
∑

i Ai (x , θ)dx i .

Note that there is no dθ term so this is not a
full four-dimensional gauge field. The Chern-Simons action has a
generalization to this situation:

I =
k

4π

∫
M×S1

dθTr

(
AdA +

2

3
A ∧ A ∧ A

)
.

This is perfectly gauge-invariant.
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What goes wrong is that because there is no ∂/∂θ in the action,
the “kinetic energy” of A is not elliptic and the perturbative
expansion is not well-behaved.

The propagator is

〈Ai (~x , θ)Aj(~x
′, θ′) =

εijk(x − x ′)k

|~x − ~x ′|2
δ(θ − θ′)

with a delta function because the kinetic energy was not elliptic,
and because of the delta function, loops will be proportional to
δ(0):

This loop will come with a factor δ(θ − θ′)2 = δ(θ − θ′)δ(0).
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What Kevin Costello did was to cure this problem via a very simple
deformation.

Take our three-manifold to be R3, and write x , y , t
for the three coordinates of R3, so overall we have x , y , t, and θ.
Costello combined t and θ into a complex variable

z = t + iεθ.

Here ε is a real parameter. The theory will reduce to the bad case
that I just described if ε = 0. As soon as ε 6= 0, its value does not
matter and one can set ε = 1. I just included ε to explain in what
sense we are making an infinitesimal deformation away from the
ill-defined Chern-Simons theory of the loop group.
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One replaces dθ (or (k/4π)dθ) in the naive theory with dz (or
dz/~) and one now regards A as a partial connection on R3 × S1

that is missing a dz term (rather than missing dθ, as before).

The
action is now

I =
1

~

∫
R3×S1

dz Tr

(
AdA +

2

3
A ∧ A ∧ A

)
.
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We’ve lost the three-dimensional symmetry of standard
Chern-Simons theory, because of splitting away one of the three
coordinates of R3 and combining it with θ.

We still have
two-dimensional diffeomorphism symmetry. However, as we
discussed when we were comparing Yang-Baxter theory to knot
theory, Yang-Baxter theory does not have three-dimensional
symmetry, but only two-dimensional symmetry. Modifying standard
Chern-Simons theory in this fashion turns out to have exactly the
right properties to give Yang-Baxter theory rather than knot
theory: the three-dimensional diffeomorphism invariance is reduced
to two-dimensional diffeomorphism invariance, but on the other
hand, now there is a complex variable z that will turn out to be
the spectral parameter.
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I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz .

The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes. Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞. By constrast, there is no
problem with poles of ω. At a pole of ω, effectively ~→ 0.



I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz . The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes. Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞. By constrast, there is no
problem with poles of ω. At a pole of ω, effectively ~→ 0.



I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz . The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes.

Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞. By constrast, there is no
problem with poles of ω. At a pole of ω, effectively ~→ 0.



I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz . The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes. Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞.

By constrast, there is no
problem with poles of ω. At a pole of ω, effectively ~→ 0.



I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz . The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes. Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞. By constrast, there is no
problem with poles of ω.

At a pole of ω, effectively ~→ 0.



I’ve described the action so far on R2 × C∗ where C∗ = R× S1

(parametrized by z = t + iθ), with the complex 1-form dz . The
classical action makes sense more generally on Σ× C , where Σ is
any smooth (oriented) two-manifold and C is a complex Riemann
surface endowed with a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

It turns out, however, that to get a quantum theory, one wants ω
to have no zeroes. Intuitively this is because a zero of ω is
equivalent to a point at which ~→∞. By constrast, there is no
problem with poles of ω. At a pole of ω, effectively ~→ 0.



So C has to be a complex Riemann surface that has a differential
ω with possible poles, but with no zeroes.

The only three options
are C, C/Z ∼= C∗, and C/(Z + τZ), which is a Riemann surface of
genus 1. It turns out that these three cases correspond to the
three traditional classes of solutions of the Yang-Baxter equation –
rational, trigonometric, and elliptic.
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The first point is that this theory has a sensible propagator and a
sensible perturbation expansion.

The basic reason for a sensible
propagator is that on R× R or R× S1 parametrized by t and θ,
the operator ∂/∂t that appeared in the naive action of LG is not
elliptic, but the operator ∂/∂z that appears in the deformed
version is elliptic. After a suitable gauge-fixing, the propagator (for
the rational model, i.e. on R2 × C with C = C ∼= R2) is

〈Ai (x , y , z)Aj(x
′, y ′, z ′)〉 = εijkzg

kl ∂

∂x l
(

1

(x − x ′)2 + (z − z ′)2 + |z − z ′|2
),

where i , j , k take the values x , y , z and the metric on R4 = R2 × C
is dx2 + dy2 + |dz |2.
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With this propagator, the perturbative expansion is well-defined, as
Costello proves.

This is a tricky point: the theory is actually
unrenormalizable by power cointing, so on that basis, one would
not expect a well-behaved quantum theory. However, it has no
possible counterterms, because all local gauge-invariant operators
vanish by the classical equations of motion. Anyway Costello
proves, using a fairly elaborate algebraic machinery of BV
quantization, that the theory has a well-defined perturbation
expansion.
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Now we consider Wilson operators, that is holonomy operators

TrρP exp

∮
`
A

where ` is a loop in Σ× C .

Here Σ is the topological
two-manifold, and C is a complex Riemann surface (with the
differential ω = dz). But we only have a partial connection

A = Axdx + Aydy + Azdz

so we would not know how to do any parallel transport in the z
direction. (We cannot interpret A as a gauge field with Az = 0
because this condition would not be gauge-invariant, and
quantizing the theory requires gauge-invariance. We have to
interpret it as a theory with Az undefined, so we cannot do parallel
transport in the z direction.) This means that we must take ` to
be a loop that lies in Σ, at a particular value of z .
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Now let us consider some lines that meet in Σ in the familiar
configuration associated to the Yang-Baxter equation:

Two-dimensional diffeomorphism invariance means that we are free
to move the lines around as long as we don’t change the topology
of the configuration. But assuming that z1, z2, and z3 are all
distinct, it is manifest that there is no discontinuity when we move
the middle line from left to right even when we do cross between
the two pictures. Thus two configurations of Wilson operators that
differ by what we might call a Yang-Baxter move are equivalent.
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Likewise, in the configuration associated to integrable lattice spin
systems

we can move the horizontal lines up and down at will.



But why is there as elementary a picture as in the lattice spin
systems, where one can evaluate the path integral by labeling each
line by a basis element of the representation ρ and each crossing by
a local factor Rij ,kl(z)?



This is a little tricky and depends on picking the right boundary
condition, but there is a way to make it work for each of the three
choices of C , corresponding to rational, trigonometric, and elliptic
solutions of the Yang-Baxter equation.



Easiest to explain is the rational case, in which the Riemann
surface is C = C, the complex plane.

We require that the gauge
field A on Σ× C goes to 0 at infinity in the C direction, and
likewise in quantizing we divide only by gauge transformations that
approach 1 at infinity along C. Then one finds that the classical
solution A = 0 has no deformations (up to gauge transformation)
and also no automorphisms (unbroken gauge symmetries).
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So on Σ× C, when we expand around the trivial solution A = 0,
there are no deformations or automorphisms of this trivial solution
and hence the perturbative expansion is straightforward.

It gives a
simple answer because the theory is infrared-trivial, which is the
flip side of the fact that it is unrenormalizable by power-counting.
That means that effects at “long distances” in the topological
space are negligible.
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I put the phrase “long distances” in quotes because
two-dimensional diffeomorphism invariance means that there is no
notion of distance on the topological space Σ (the first factor of
Σ× C).

A metric on Σ× C entered only when we fixed the gauge
to pick a propagator. Recall that we used the metric
dx2 + dy2 + |dz |2. We could equally well scale up the metric along
Σ by any factor and use instead eB(dx2 + dy2) + |dz |2 for very
large B.
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That means that when you look at this picture

you can consider the vertical lines and likewise the horizontal lines
to be very far apart (compared to z − zi or zi − zj).



In such a situation, in an infrared-free theory, effects that involve a
gauge boson exchange between two nonintersecting lines are
negligible:



In such a situation, in an infrared-free theory, effects that involve a
gauge boson exchange between two nonintersecting lines are
negligible:



One should worry about gauge boson exchange from one line to
itself

because then the distance |a− b| need not be large. Such effects
correspond roughly to “mass renormalization” in standard
quantum field theory. In the present problem, in the case of a
straight Wilson line, the symmetries do not allow any interesting
effect analogous to mass renormalization.
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When two lines cross we get an integral

over a and b that converges, and receives significant contributions
only from the region |a|, |b| . |z − z ′|.

I will say what it converges
to in a few minutes.
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The diagrams localized near one crossing point simply build up a
universal R-matrix associated to that crossing, and the discussion
makes it obvious that the Yang-Baxter equation

is obeyed.



Moreover, this makes it clear that the path integral in the presence
of the configuration of Wilson operators associated to the
integrable lattice models

can be evaluated by the standard rules – label each vertical or
horizontal line segment by a basis vector of the representation ρ
and include the appropriate R-matrix element at each crossing;
then sum over all such labelings.



But why is the R-matrix obtained this way the standard rational
solution of the Yang-Baxter equation? (or the standard
trigonometric or elliptic one, if we had done one of those cases).



In his paper, Costello explicitly evaluates the lowest order
correction in R = 1 + ~r +O(~2) from this diagram

and gets the standard answer

r =

∑
a tat

′
a

z − z ′

(where ta, t ′a, a = 1, . . . ,dimG are the generators of the Lie
algebra of G acting in the two representations).

Once the first
order deformation is known, the whole story follows from general
arguments of Drinfeld and others.
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One last comment.

Costello’s theorem is purely about perturbation
theory, but his theorem shows that, in this particular theory (and
rather exceptionally), perturbation theory converges. As a
physicist, one would want to give an a priori “nonperturbative
definition” of the theory, which would have the claimed
perturbative expansion. To do this, it appears that one has to go
to string theory and use a certain “brane” system, the D4-NS5
system. This step would involve ideas somewhat similar to the ones
I used in relating the Jones polynomial to the D3-NS5 system.
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