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Overview of the lectures

Monday 23rd, 10:30h-11:30h - Entanglement in QM: basics of
QM for discrete systems, subsystems, Schmidt decomposition,
entanglement entropy, the first law of EE, additional measures
and inequalities.

Monday 23rd, 13h-14h - Entanglement in QFT I: aspects of quan-
tum fields and algebras, the Reeh-Schlieder theorem, EE in QFT.

Tuesday 24th, 13h-14h - Entanglement in QFT II: EE for free
fields, monotonicity theorems, quantum Bekenstein bound.

Wednesday 25th, 13h-14h - The “extensive mutual information”
(EMI) model: general structure of EE and universal terms, ex-
plicit calculations for the EMI model.

Saturday 28th, 13h-14h - Holographic entanglement entropy:
holographic principle and AdS/CFT, Ryu-Takayanagi prescrip-
tion, corrections to the RT formula, some explicit calculations,
gravity from entanglement.
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Outline

1 Basics of QM for discrete systems

2 Subsystems, entanglement and Schmidt
decomposition

3 Entanglement entropy

4 The first law of entanglement entropy

5 Additional entanglement measures and
inequalities
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Some References

The issue of entanglement in QM, including the Schmidt decomposition ap-
pears discussed in many lecture notes that can be found online. To mention a
few http://www.hartmanhep.net/topics2015/18-entanglement-intro.pdf, https://arxiv.org/

pdf/1801.10352.pdf, http://users.cms.caltech.edu/~vidick/teaching/120_qcrypto/LN_Week2.pdf.
The first law of EE was introduced in https://arxiv.org/pdf/1305.3182.pdf and
https://arxiv.org/pdf/1305.3291.pdf.
The notions of relative entropy and mutual information are quantum ver-
sions of extremely standard notions in classical statistics/information theory.
They appear discussed in lots of places. A standard reference is Nielsen and
Chuang’s “Quantum Computation and Quantum Information” book. This
is not an extremely advanced book but it contains a lot of stuff on other top-
ics like quantum computation, algorithms, quantum noise, error-correction,
etc.
The Rényi entropies discussed here are quantum versions of the notions in-
troduced by the person who gives them name in the 60’s (https://projecteuclid.

org/download/pdf_1/euclid.bsmsp/1200512181) in the context of classical information
theory.
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Basics of QM for discrete systems

Basics of QM for discrete
systems
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Basics of QM for discrete systems

Some basics of Quantum Mechanics
Quantum mechanical system ⇔ Hilbert space H. A state |ψ〉 ∈ H
can be written in some basis |i〉 as

|ψ〉 =
∑
i

ci |i〉 ,
∑
i

|ci|2 = 1 .

More generally, states⇔ density matrices. Given |ψ〉, we can associate

ρ ≡ |ψ〉 〈ψ| =
∑
ij

cic
∗
j |i〉 〈j| .

Mixed states are those which cannot be described by vectors (only by
density matrices), e.g.,

ρ =
∑
a

pa |ψa〉 〈ψa| ,
∑
a

pa = 1 pa ≥ 0 ∀a

Pure states can be both described by vectors and by density matrices
(like |ψ〉 ⇔ ρ above)
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Basics of QM for discrete systems

Some basics of Quantum Mechanics

In QM, we are usually interested in expectation values of observables
O:

〈ψ|O|ψ〉 ⇔ Tr(ρO)

where “Tr” is the trace of the corresponding operator (for matrices,
this is just the sum of the elements in the diagonal):

Tr(O) ≡
∑
i

〈i| O |i〉
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Basics of QM for discrete systems

Some basics of Quantum Mechanics

For example, consider a single qubit system (two-level discrete sys-
tem). Any pure state can be written as

|ψ〉 = c0 |0〉+ c1 |1〉 ≡
[
c0
c1

]
, |c0|2 + |c1|2 = 1 .

The density matrix associated reads

ρ = |c0|2 |0〉 〈0|+c0c
∗
1 |0〉 〈1|+c1c

∗
0 |1〉 〈0|+|c1|2 |1〉 〈1| ≡

[
|c0|2 c0c

∗
1

c1c
∗
0 |c1|2

]
.

Expectation value of O ≡ |0〉 〈0|?

〈ψ|O|ψ〉 = (c∗
0 〈0|+ c∗

1 〈1|) |0〉 〈0| (c0 |0〉+ c1 |1〉) = |c0|2

Tr(ρO) = 〈0| ρ |0〉 〈0| |0〉+ 〈1| ρ |0〉 〈0| |1〉 = 〈0| ρ |0〉 = |c0|2
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Basics of QM for discrete systems

Subsystems, entanglement and
Schmidt decomposition
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Subsystems, entanglement and Schmidt decomposition

QM of subsystems
Imagine now the system is made of two subsystems A and B. Hilbert
space factorizes as H = HA ⊗ HB . We can write a general state
|ψ〉 ∈ H as

|ψ〉 =
∑
i,j

cij |i〉A ⊗ |j〉B ,

where {|i〉A} and {|j〉B} are bases of HA and HB respectively.

Density matrices are defined in the same way, |ψ〉 ⇔ ρ ≡ |ψ〉 〈ψ|.
Similarly, for traces:

TrAB(O) ≡
∑
ij

〈i|A 〈j|B O |i〉A |j〉B .

The subindex “AB” indicates that we are tracing over both A and B,
but we can also trace over each subsystem:

TrA(O) ≡
∑
i

〈i|AO |i〉A , TrB(O) ≡
∑
j

〈j|B O |j〉B
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Subsystems, entanglement and Schmidt decomposition

Entangled states

Entanglement = non-separability of quantum states.

Consider

|ψ〉 =
∑
i,j

cij |i〉A ⊗ |j〉B .

If |ψ〉 cannot be written as |ψ〉 = |φ〉A ⊗ |φ̃〉B ⇒ |ψ〉 is an
entangled state. Most states are entangled! If |ψ〉 can be written
as |ψ〉 = |φ〉A ⊗ |φ̃〉B, it is called separable.
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Subsystems, entanglement and Schmidt decomposition

Entangled states

Example: two qubits

|ψ1〉 ≡
1√
2

[|01〉+ |00〉] = |0〉A ⊗
1√
2

[|1〉B + |0〉B ] (not entangled)

|ψ2〉 ≡
1√
2

[|01〉+ |10〉] (entangled, |ψ2〉 6= |φ〉A ⊗ |φ̃〉B)

In the second case, the state of each subsystem cannot be fully de-
scribed without the other. The corresponding density matrices read

ρ1 ≡ |ψ1〉 〈ψ1| =
1
2 [|01〉 〈01|+ |00〉 〈01|+ |01〉 〈00|+ |00〉 〈00|] ,

ρ2 ≡ |ψ2〉 〈ψ2| =
1
2 [|01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 〈10|] .
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Subsystems, entanglement and Schmidt decomposition

Entangled states
Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron?

We
need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state. The state that
achieves this is the reduced-density matrix, ρA, defined as

ρA ≡ TrB ρAB =
∑
j

〈j|B ρAB |j〉B ,

where ρAB is the full state (e.g., ρ1 or ρ2 in our examples).
In our examples:

ρA,1 = TrB ρ1 = |0〉 〈0| , (pure)

ρA,2 = TrB ρ2 = 1
2 [|0〉 〈0|+ |1〉 〈1|] , (mixed)

Separable full state ⇒ reduced density matrix is pure.
Entangled full state ⇒ reduced density matrix is mixed.

Taking partial traces we loose information.
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Subsystems, entanglement and Schmidt decomposition

Schmidt decomposition

Let’s have an even closer look at this...

Schmidt decomposition: it is always possible to write any pure state

|ψ〉 =
∑
i,j

cij |i〉A |j〉B ,

in a different basis of H = HA ⊗HB such that

|ψ〉 =
r∑

α=1
σα |vα〉A |wα〉B , (single sum!)

with

σα > 0 ∀α ,
r∑

α=1
σ2
α = 1 .

State will be separable if r = 1, entangled otherwise.
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Subsystems, entanglement and Schmidt decomposition

Schmidt decomposition
From the Schmidt decomposition it follows that

ρA =
r∑

α=1
σ2
α |vα〉 〈vα| , ρB =

r∑
α=1

σ2
α |wα〉 〈wα| .

Reduced density matrices have the same spectrum! The eigenvalues
are just the squares of the Schmidt coefficients.

We will use the σα to define notions of how entangled A and B are...

Maximal entanglement if

σα = 1√
r
∀α

No entanglement at all if

σ1 = 1 and σα = 0 ∀α 6= 1
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Subsystems, entanglement and Schmidt decomposition

Schmidt decomposition

|ψ〉 =
r∑

α=1

σα |vα〉A ⊗ |wα〉B

Examples:

|ψ1〉 ≡
1
√

2
[|01〉+ |00〉] = 1 · |0〉 ⊗

[ 1
√

2
[|1〉+ |0〉]

]
,

|ψ2〉 ≡
1
√

2
[|01〉+ |10〉] =

1
√

2
|0〉 ⊗ |1〉+

1
√

2
|1〉 ⊗ |0〉 ,

|ψ3〉 ≡
1
2

[|01〉+ |00〉+ |10〉+ |11〉] = 1 ·
[ 1
√

2
[|0〉+ |1〉]

]
⊗
[ 1
√

2
[|0〉+ |1〉]

]
,

|ψ4〉 ≡
1
√

3
[|00〉+ |01〉+ |11〉] =

√
1
6
[
3 +
√

5
]
|v1〉 ⊗ |w1〉−

√
1
6
[
3−
√

5
]
|v2〉 ⊗ |w2〉

where

|v1〉 ≡
[α |0〉+ |1〉]
√

1 + α2
, |v2〉 ≡

[β |0〉+ |1〉]√
1 + β2

, |w1〉 ≡
[|0〉+ α |1〉]
√

1 + α2
, |w2〉 ≡

[|0〉+ β |1〉]√
1 + β2

,

and α ≡ −1 + 1
2 (3 +

√
5), β ≡ −1 + 1

2 (3−
√

5).
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Entanglement entropy

Entanglement entropy
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Entanglement entropy

Entanglement entropy

Von Neumann entropy ⇔ standard notion of entropy associated to
any quantum state ρ:

S(ρ) ≡ −Tr ρ log ρ

Let λa be the eigenvalues of ρ, then: S(ρ) = −
∑
a λa log λa.

S(ρ) ≥ 0 for any state.

It vanishes for pure states: S(ρ) = 0 if ρ is pure.
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Entanglement entropy

Entanglement entropy

Now, given a system composed of two subsystems A and B in some
pure state ρAB , the entanglement entropy of A with respect to B is
defined as the Von Neumann entropy of ρA:

SEE(A) ≡ S(ρA) = −TrA ρA log ρA

Remember, ρA ≡ TrB ρAB is the reduced density matrix.

SEE(A) measures “how entangled” is A with B.

If ρAB is pure, this can be written in terms of the Schmidt coef-
ficients as

SEE = −
∑
α

σ2
α log σ2

α

Remember that ρA and ρB have the same eigenvalues {σ2
α},

which implies
SEE(A) = SEE(B)
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Entanglement entropy

Entanglement entropy

SEE = −
∑
α

σ2
α log σ2

α

Examples:

|ψ1〉 = 1 · |0〉 ⊗
[ 1
√

2
[|1〉+ |0〉]

]
⇒ SEE(A) = −1 log 1 = 0 ,

|ψ2〉 =
1
√

2
|0〉 ⊗ |1〉+

1
√

2
|1〉 ⊗ |0〉

⇒ SEE(A) = −
1
2

log
1
2
−

1
2

log
1
2

= log 2 ' 0.6931 ,

|ψ4〉 =

√
1
6
[
3 +
√

5
]
|v1〉 ⊗ |w1〉−

√
1
6
[
3−
√

5
]
|v2〉 ⊗ |w2〉

⇒ SEE(A) = −
1
6
[
3 +
√

5
]

log
1
6
[
3 +
√

5
]
−

1
6
[
3−
√

5
]

log
1
6
[
3−
√

5
]

= log
[ 6

3 +
√

5

]
' 0.1362 .
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The first law of entanglement entropy

The first law of entanglement
entropy
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The first law of entanglement entropy

The first law of entanglement entropy

Density matrices are both Hermitian and (semi)positive-definite.

As a con-
sequence, we can write

ρA ≡ e−HA

where HA is the so-called “modular Hamiltonian”. For instance, for a ther-
mal state HA = H/T where H is the actual Hamiltonian of the system and
T the temperature.

Now consider a small variation of the EE, SEE(A) = −Tr ρA log ρA:

δSEE(A) = −Tr(δρA log ρA)− Tr(ρAρ−1
A δρA) = Tr(δρAHA)− Tr(δρA)

Since ρA and ρA + δρA are both normalized ⇒ Tr(δρA) = 0 and we can
write

δSEE(A) = δ 〈HA〉

This is the first-law of entanglement entropy. In particular, for a thermal
state:

δ 〈H〉 = TδS

quantum version of the first-law of thermodynamics!
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Additional entanglement measures and inequalities

Additional entanglement
measures and inequalities
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Additional entanglement measures and inequalities

Relative entropy
A related notion is the so-called relative entropy.

Given two
states ρ and σ we define it as

Srel.(ρ||σ) ≡ Tr ρ log ρ− Tr ρ log σ .

This is a measure of “how distinguishable” ρ and σ are.
It is a semi-positive definite quantity:

Srel.(ρ||σ) ≥ 0 .
Example:

ρ = |0〉 〈0| , σ =
1
α

[|0〉 〈0|+ (α− 1) |1〉 〈1|] where α ≥ 1

⇒ Tr ρ log ρ = 0 , −Tr ρ log σ = −
[

1 0
0 0

]
log
[

1
α

0
0 1− 1

α

]
= − log

1
α

= logα

Hence:

Srel.(ρ||σ) = logα⇒
{
Srel.(ρ||σ)→ 0 as α→ 1
Srel.(ρ||σ)→∞ as α→∞
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Additional entanglement measures and inequalities

Mutual information

Another important measure is the so-calledmutual information.
This can be defined in terms of the EE or, alternatively, in terms
of the relative entropy, as:

I(A,B) ≡ SEE(A) + SEE(B)− SEE(AB) ,
I(A,B) ≡ Srel.(ρAB||ρA ⊗ ρB)

“How much information is shared between A and B”
If ρAB pure ⇒ I(A,B) = 2SEE(A) = 2SEE(B)
If ρAB mixed, I(A,B) also captures classical correlations
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Additional entanglement measures and inequalities

Mutual information
Example:

ρAB = 1
α

[|00〉 〈00|+ (α− 1) |11〉 〈11|] , α ≥ 1

⇒ ρA = ρB = 1
α

[|0〉 〈0|+ (α− 1) |1〉 〈1|]

⇒ SEE(AB) = − 1
α

log 1
α
−
(

1− 1
α

)
log
(

1− 1
α

)
= logα−

(
1− 1

α

)
log(α− 1)

SEE(A) = SEE(B) = logα−
(

1− 1
α

)
log(α− 1)

Then:

I(A,B) = logα−
(

1− 1
α

)
log(α−1)⇒


I(A,B)→ 0 as α→ 1
Imax(A,B) = log 2 for α = 2
I(A,B)→ 0 as α→∞
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Additional entanglement measures and inequalities

Inequalities

Strong subadditivity (SSA) property:

I(A,BC) ≥ I(A,B)
⇔

SEE(AB) + SEE(BC) ≥ SEE(ABC) + SEE(B)

“A has more information about BC than about B alone”.

In particular, this implies the subadditivity property:

SEE(A) + SEE(B) ≥ SEE(AB)

And also the Araki-Lieb inequality:

SEE(AB) ≥ |SEE(A)− SEE(B)|
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Additional entanglement measures and inequalities

Inequalities
Example:

ρABC =
1
4

[|000〉 〈000|+ |010〉 〈010|+ |011〉 〈011|+ |111〉 〈111|]

⇒ SEE(ABC) = log 4 ,

ρAB =
1
4

[|00〉 〈00|+ 2 |01〉 〈01|+ |11〉 〈11|] , ρBC =
1
4

[|00〉 〈00|+ |10〉 〈10|+ 2 |11〉 〈11|] ,

⇒ SEE(AB) = SEE(BC) = −
1
4

log
1
4
−

1
2

log
1
2
−

1
4

log
1
4

=
3
2

log 2 ,

ρB =
1
4

[|0〉 〈0|+ 3 |1〉 〈1|] , ρA =
1
4

[3 |0〉 〈0|+ |1〉 〈1|]

⇒ SEE(B) = SEE(A) = −
1
4

log
1
4
−

3
4

log
3
4

= log 4−
3
4

log 3 ,

SSA?

SEE(BC) + SEE(AB) = 3 log 2 ' 2.0794

SEE(ABC) + SEE(B) = 2 log 4−
3
4

log 3 ' 1.9486

Subadditivity?

SEE(A) + SEE(B) = 2 log 4−
3
2

log 3 ' 1.1247 , SEE(AB) =
3
2

log 2 ' 1.0397
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Additional entanglement measures and inequalities

Rényi entropies
Another interesting family of entanglement measures are the
so-called Rényi entropies. This are defined by

Sn(A) ≡ 1
1− n log Tr ρnA

The entanglement entropy is a particular case: SEE ≡ limn→1 Sn.

Example:

ρA =
1
α

[|0〉 〈0|+ (α− 1) |1〉 〈1|]⇒ ρnA =
[

( 1
α

)n 0
0 (1− 1

α
)n

]
⇒ Tr ρnA =

( 1
α

)n
+
(

1−
1
α

)n
⇒ Sn =

1
1− n

log
[( 1

α

)n
+
(

1−
1
α

)n]
What about the EE?

Sn→1 =
1

1− n

(
−
[ log(α− 1)

α
− log

(
1−

1
α

)]
(n− 1) +O(n− 1)2

)
=

log(α− 1)
α

− log
(

1−
1
α

)
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Additional entanglement measures and inequalities

Summary

Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

If ρAB separable ⇒ ρA pure; If ρAB entangled ⇒ ρA mixed.
Entanglement entropy quantifies degree of entanglement between
subsystems.
Entanglement entropy satisfies a “first law”.
There exist additional interesting measures:

Relative entropy: measures distinguishability between states.
Mutual information: measures amount of information shared
between subsystems. It satisfies SSA: I(A,BC) ≥ I(A,B).
Rényi entropies: uniparametric family of generalizations of
entanglement entropy.
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