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OVERVIEW OF THE LECTURES Ineiuto

Balseiro

@ Monday 23rd, 10:30h-11:30h - Entanglement in QM: basics of
QM for discrete systems, subsystems, Schmidt decomposition,
entanglement entropy, the first law of EE, additional measures
and inequalities.

@ Monday 23rd, 13h-14h - Entanglement in QFT I: aspects of quan-
tum fields and algebras, the Reeh-Schlieder theorem, EE in QFT.

@ Tuesday 24th, 13h-14h - Entanglement in QFT II: EE for free
fields, monotonicity theorems, quantum Bekenstein bound.

@ Wednesday 25th, 13h-14h - The “extensive mutual information”
(EMI) model: general structure of EE and universal terms, ex-
plicit calculations for the EMI model.

@ Saturday 28th, 13h-14h - Holographic entanglement entropy:
holographic principle and AdS/CFT, Ryu-Takayanagi prescrip-
tion, corrections to the RT formula, some explicit calculations,
gravity from entanglement.
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OUTLINE Instituto
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© Basics oF QM FOR DISCRETE SYSTEMS

© SUBSYSTEMS, ENTANGLEMENT AND SCHMIDT
DECOMPOSITION

© ENTANGLEMENT ENTROPY

e THE FIRST LAW OF ENTANGLEMENT ENTROPY

e ADDITIONAL ENTANGLEMENT MEASURES AND
INEQUALITIES
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@ The issue of entanglement in QM, including the Schmidt decomposition ap-
pears discussed in many lecture notes that can be found online. To mention a
few http://www.hartmanhep.net/topics2015/18-entanglement-intro.pdf, https://arxiv.org/
pdf/1801.10352.pdf, http://users.cms.caltech.edu/~vidick/teaching/120_qcrypto/LN_Week2.pdf.

@ The first law of EE was introduced in https://arxiv.org/pdf/1305.3182.pdf and
https://arxiv.org/pdf/1305.3291.pdf.

@ The notions of relative entropy and mutual information are quantum ver-
sions of extremely standard notions in classical statistics/information theory.
They appear discussed in lots of places. A standard reference is Nielsen and
Chuang’s “Quantum Computation and Quantum Information” book. This
is not an extremely advanced book but it contains a lot of stuff on other top-
ics like quantum computation, algorithms, quantum noise, error-correction,
etc.

@ The Rényi entropies discussed here are quantum versions of the notions in-
troduced by the person who gives them name in the 60’s (https://projecteuclid.
org/download/pdf _1/euclid.bsmsp/1200512181) in the context of classical information
theory.
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Basics of QM for discrete systems

Basics of QM for discrete
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Basics of QM for discrete systems

SOME BASICS OF QUANTUM MECHANICS

. d
can be written in some basis |i) as

Quantum mechanical system < Hilbert space H. A state |¢)) € H

Instituto
Balseiro

|¢>=Zci|z'>, Z|ci|2=1.



Basics of QM for discrete systems

.
SOME BASICS OF QUANTUM MECHANICS

Instituto

Balseiro

Quantum mechanical system < Hilbert space H. A state |¢)) € H
can be written in some basis |i) as
i

Z|Ci|2=1~

More generally, states < density matrices. Given |¢)), we can associate

p= 1w (vl =3 e i) 4
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SOME BASICS OF QUANTUM MECHANICS

Quantum mechanical system < Hilbert space H. A state |¢)) € H
can be written in some basis |i) as

Instituto
¢> = Z Ci |7’> 3
i
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Z |Ci|2 =
i
More generally, states < density matrices. Given |¢)), we can associate
(W= cicj i)
ij

density matrices), e.g.,

Mixed states are those which cannot be described by vectors (only by

pP= Zpa |wa ",ba 5 Zpa—l pa>0 Ya



o
SOME BASICS OF QUANTUM MECHANICS infiuto

Balseiro

Quantum mechanical system < Hilbert space H. A state |¢)) € H
can be written in some basis |i) as

)= aliy, Y lal*=
i i
More generally, states < density matrices. Given |¢), we can associate

Wl =Y 1) U

Mixed states are those which cannot be described by vectors (only by
density matrices), e.g.,

pP= Zpa |wa "ﬁa 5 Zpa—l pa>0 Ya

Pure states can be both described by vectors and by density matrices
(like |¢) < p above)

L 52
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O:

In QM, we are usually interested in expectation values of observables
(¥10[¢) < Tr(pO)

where “Tr” is the trace of the corresponding operator (for matrices,

this is just the sum of the elements in the diagonal):

Tr(0) = (il Oi)

%
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For example, consider a single qubit system (two-level discrete sys-
tem). Any pure state can be written as
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tem). Any pure state can be written as
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For example, consider a single qubit system (two-level discrete sys-

¢
9 =alt+al =] ol +al -1
The density matrix associated reads
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Basics of QM for discrete systems

.
SOME BASICS OF QUANTUM MECHANICS
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tem). Any pure state can be written as

Instituto
For example, consider a single qubit system (two-level discrete sys-

¢
9 =alt+aln =]l +al =1,
The density matrix associated reads

|col?

cocy
€165 |01|2} '
(¥101¥) = (cg (0] + ¢ (1])10) (0] (co [0) + e1 [1)) = |eo|?

Ti(pO) = (0] p10) (0110) + (1] p10) (O[[1) = (0] p|0) = |co|”

p = leol* |0} (0 +coct [0) (1 +crcg [1) 0l+|er[* [1) (1] = [

Expectation value of O = |0) (0|7

u]
8
I
il
it
N

0
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Basics of QM for discrete systems

Subsystems, entanglement and
Schmidt decomposition
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Subsystems, entanglement and Schmidt decomposition

QM OF SUBSYSTEMS

|) € H as

space factorizes as H Ha @ Hp

=2 lila
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where {|i) ,} and {|j) 3} are bases of H4 and Hp respectively.

We can write a general state
®1i) s

Imagine now the system is made of two subsystems A and B. Hilbert
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A®1i)p

Imagine now the system is made of two subsystems A and B. Hilbert

We can write a general state

where {|i) ,} and {|j) 3} are bases of H4 and Hp respectively.

Density matrices are defined in the same way, [¢) < p = |[¢) (¢|
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QM OF SUBSYSTEMS

|) € H as

space factorizes as H = Ha @ Hp
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Z cis i)

where {|i) ,} and {|j) 3} are bases of H4 and Hp respectively.
Similarly, for traces

A®1i)p

Imagine now the system is made of two subsystems A and B. Hilbert

We can write a general state

Z<i|A<j|BO| >A 7)

Dl g -
The subindex “AB” indicates that we are tracing over both A and B,
SRy =, «=» T Hace
D R W YO

Density matrices are defined in the same way, [¢) < p = |[¢) (¢|
Trap(0)
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Imagine now the system is made of two subsystems A and B. Hilbert
space factorizes as H = Ha ® Hp. We can write a general state

|) € H as
ZCZ]| A®17)p

where {|t) ,} and {|j) 5} are bases of Ha and Hp respectively.
Density matrices are defined in the same way, |[¢) < p = |¢) (.
Similarly, for traces:

Trap(0) = Z (ilo Ulp Oli) 413} 5

The subindex “AB” indicates that we are tracing over both A and B,
but we can also trace over each subsystem:

Tra(0) =Y (i, Oli)y, Trp(0) = (ilzOli)g

i J

L Y
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ENTANGLED STATES
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Consider
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If 1)) cannot be written as [¢)) = |¢),4 ® |@)z = [¢) is an
entangled state.
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Entanglement = non-separability of quantum states.
Consider

V) = Zcij i) A @ 13)p -
7

If 1)) cannot be written as [¢)) = |¢),4 ® |@)z = [¢) is an
entangled state. Most states are entangled!
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ENTANGLED STATES
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Entanglement = non-separability of quantum states.
Consider

V) = Zcij i) A @ 13)p -
7

If 1)) cannot be written as [¢)) = |¢),4 ® |@)z = [¢) is an
entangled state. Most states are entangled! If [¢)) can be written
as |[¢) = |¢) 4 ® |¢) g, it is called separable.
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ENTANGLED STATES
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Example: two qubits
1) = —=
\/_

|¢2)

Sl

[01) +100)] = [0) , %[|1>B+|0>] (not entangled)
[|01>+|10>]

(entangled, [1hy) # [¢) 4 ® |) )
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ENTANGLED STATES
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Example: two qubits

1
1) = NG
1

[h2) = —=

Ql

[01) + 00)] = [0) , © % 1) +10),]  (not entangled)
_[101) + 10)

(entangled, [¢h) # () 4 ® |6) )
scribed without the other.

In the second case, the state of each subsystem cannot be fully de-
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Example: two qubits

) = 7 101 +00)] = [0} , ® % 1) +10) 5] (not entangled)
o) = ﬁ [01) +10)]  (entangled, [t2) # [¢) , ® |#) 5)

In the second case, the state of each subsystem cannot be fully de-
scribed without the other. The corresponding density matrices read

p1 = 1) (1] =
p2 = |¥2) (Po| =

[|01) (01| 4+ |00) (01| + |01) (00| 4 |00) (00]] ,

l\3|>—l[\3|.—\

[/01) (01] 4 |01) (10] 4 |10) (01| + |10) (10]] .
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron?
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron? We

need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state.
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron? We
need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state. The state that
achieves this is the reduced-density matrix, p 4, defined as

PA ETI'B/)AB =Z<j|BPAB |]>B 5
J

where pap is the full state (e.g., p1 or py in our examples).
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron? We
need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state. The state that
achieves this is the reduced-density matrix, p 4, defined as

pa=Trppap = Z<j|BPAB 17) 5

J

where pap is the full state (e.g., p1 or py in our examples).
In our examples:

pa1=Trgp1 =10)(0], (pure)
1
pas=Teppa = L10) 01+ |1) (1] . (mixed)

] 11/ 24
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron? We
need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state. The state that
achieves this is the reduced-density matrix, p 4, defined as

pa=Trppap =Y (ilgpraslilp

J

where pap is the full state (e.g., p1 or py in our examples).
In our examples:

pa1=Trgp1 =10)(0], (pure)
1
pas=Teppa = L10) 01+ |1) (1] . (mixed)

@ Separable full state = reduced density matrix is pure.

@ Entangled full state = reduced density matrix is mixed.

L TWED
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Imagine we only have access to subsystem A (e.g., the other electron
is in Andromeda). How do we describe the state of our electron? We
need to define it such that measurements of observables on A coincide
with hypothetical measurements over the full state. The state that
achieves this is the reduced-density matrix, p 4, defined as

pa=Trppap =Y (ilgpraslilp

J

where pap is the full state (e.g., p1 or py in our examples).
In our examples:

pa1=Trgp1 =10)(0], (pure)
1
pas=Teppa = L10) 01+ |1) (1] . (mixed)

@ Separable full state = reduced density matrix is pure.
@ Entangled full state = reduced density matrix is mixed.

Taking partial traces we loose information.

I, TWED
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SCHMIDT DECOMPOSITION
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Let’s have an even closer look at this...
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Subsystems, entanglement and Schmidt decomposition

SCHMIDT DECOMPOSITION

Let’s have an even closer look at this...
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W) = Zcij li)ali)s
]

in a different basis of H = H 4 ® Hp such that

Schmidt decomposition: it is always possible to write any pure state
with

T
[y = Z Oa [Va) 4 |Wa) g »  (single sum!)
a=1

0o >0 Vo, Zoizl.
a=1
State will be separable if r = 1, entangled otherwise.
or «F = E z 9ac
W 2



Subsystems, entanglement and Schmidt decomposition

SCHMIDT DECOMPOSITION

.
From the Schmidt decomposition it follows that
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PA = Zoi [va) (val s pB = 2‘73 [wa) (Wal -
a=1 a=1

Reduced density matrices have the same spectrum! The eigenvalues
are just the squares of the Schmidt coefficients.
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SCHMIDT DECOMPOSITION

.
From the Schmidt decomposition it follows that
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PA = Zoi [va) (val s pB = Zai [wa) (Wal -
a=1 a=1

We will use the o, to define notions of how entangled A and B are...
@ Maximal entanglement if

Reduced density matrices have the same spectrum! The eigenvalues
are just the squares of the Schmidt coefficients.
O =

1
v
vro

op=1 and o0,=0 Va#1
or @ = E z 9ac
D N £ W YO

@ No entanglement at all if
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SCHMIDT DECOMPOSITION

Examples:

2
) = calva)s @lwa)p
a=1
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1

)= = 101 +100)] = 1-10) & | = 11)+10)]]
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SCHMIDT DECOMPOSITION
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) = calva)s @lwa)p
a=1
Examples:
_ ! —1. x
)= = 101 +100)] = 1-10) & | = 11)+10)]]
— 1 —_
[vp2) = 7 [101) + |10)] = 7 0)®[1) +

1
7§|1>®|0),
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[0) =) o lva) 4 ©lwa)
a=1

Examples:
I >=i[|01>+|oo>1—1-|o>®[i [|1>+|o>1]
1) = \/i - \/§ )
_ 1 _ 1 L
wa) = = 101 +10)] = <= ) & )+ = 1) @10}
1

[a) = 5 1100) +100) + 110} + [11)) = 1 [ 75 10+ )] @ [ 75 19y + )]
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:ZUO‘ [va) 4 ® |wa) g
a=1
Examples:
) = = 101 +100)] = 1-10) @ | = 11) + [0}
1) = \/i - \/§ )
_ 1 _ 1 L
|¢2>:7§HOI>+|10>]_\/§|0)®|1>+\/§|1>®|0>’
0a) = 3 (00 +100) + 110} + |11)] = 1- [ 7= 0} + 0] © [ 2= 10y + 23]
) = 7[|00)+|01)+|11 3+\/5 ] fo1) ® fuor) — é [3 = V5] Jug) @ ws)
where
oy D] O] a0+ 8]
T Vita?2 T o182 T Vit a? T o148

and o= -1+ = (3+\f)ﬂ:—1+ (3 \/5)

] = =
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ENTANGLEMENT ENTROPY
any quantum state p:
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Von Neumann entropy < standard notion of entropy associated to
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S(p)=—Trplogp
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any quantum state p:

Von Neumann entropy < standard notion of entropy associated to

S(p)=—Trplogp

Let A, be the eigenvalues of p, then: S(p) = =3 AslogA,.



ENTANGLEMENT ENTROPY

Instituto
Balseiro

any quantum state p:

Von Neumann entropy < standard notion of entropy associated to

S(p)=—Trplogp

Let A, be the eigenvalues of p, then: S(p) = =3 AslogA,.
@ S(p) > 0 for any state.

@ It vanishes for pure states: S(p) = 0 if p is pure.
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ENTANGLEMENT ENTROPY
Now, given a system composed of two subsystems A and B in some
pure state pap, the entanglement entropy of A with respect to B is
defined as the Von Neumann entropy of pa:



Entanglement entropy V
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ENTANGLEMENT ENTROPY Insfituto
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Now, given a system composed of two subsystems A and B in some
pure state pap, the entanglement entropy of A with respect to B is
defined as the Von Neumann entropy of pa:

Ser(A) = S(pa) = —Trapalogpa

Remember, p4 = Trp pap is the reduced density matrix.
® Spp(A) measures “how entangled” is A with B.

@ If pap is pure, this can be written in terms of the Schmidt coef-
ficients as

SEE = - Zgi log Ui
«a

@ Remember that ps and pp have the same eigenvalues {02},
which implies

See(A) = Ser(B)

L e
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Examples:

k) = 1-10) ® [% 1)+ o]



ENTANGLEMENT ENTROPY
SEE = — Z Ji logai
Examples:

|¢1>:1-|0>®[
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1
25 [0+ )]
1 1
[2) = 7 [0) ® [1) + 7 1) ® |0)
= Spe(d) = -1

2 2

1
log — — —log — =log2 ~ 0.6931,



ENTANGLEMENT ENTROPY
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SEE:_ E O'gthgO'2
«
Examples

) = 1-10) ® [% 1 +10)]

1 1
lh2) = —=[0) ® 1) + —=[1) @ |0)
V2 V2
1 1
= Ser(A ———log———log—

log 2 ~ 0.6931 ,
[s) = V 3 + \[ |v1 [w1) \/ 3 - |v2 |wa)

= Sun( )—f— [:’,Jr\f]logg [3+f]—5 [3— V5] log = [3— V5]
6
= log |:3+\/5} ~ (0.1362




The first law of entanglement entropy

The first law of entanglement
entropy
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The first law of entanglement entropy

THE FIRST LAW OF ENTANGLEMENT ENTROPY

Density matrices are both Hermitian and (semi)positive-definite.
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The first law of entanglement entropy

sequence, we can write

THE FIRST LAW OF ENTANGLEMENT ENTROPY
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Density matrices are both Hermitian and (semi)positive-definite. As a con-

pa=e”
where H 4 is the so-called “modular Hamiltonian”.



The first law of entanglement entropy

sequence, we can write

THE FIRST LAW OF ENTANGLEMENT ENTROPY

Instituto
pA=e

Balseiro
Hy

~d
Density matrices are both Hermitian and (semi)positive-definite. As a con-
T the temperature.

where H 4 is the so-called “modular Hamiltonian”. For instance, for a ther-

mal state Ha = H/T where H is the actual Hamiltonian of the system and



The first law of entanglement entropy ®
THE FIRST LAW OF ENTANGLEMENT ENTROPY
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Density matrices are both Hermitian and (semi)positive-definite. As a con-
sequence, we can write

pa = e Ha

where H 4 is the so-called “modular Hamiltonian”. For instance, for a ther-
mal state Ha = H/T where H is the actual Hamiltonian of the system and
T the temperature.

Now consider a small variation of the EE, Sgr(A4) = —Trpalogpa:

6Sem(A) = — Tr(6palog pa) — Tr(papa'dpa) = Tr(3paHa) — Tr(5pa)
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Density matrices are both Hermitian and (semi)positive-definite. As a con-
sequence, we can write
_ —Ha
pA =e€
where H 4 is the so-called “modular Hamiltonian”. For instance, for a ther-
mal state Ha = H/T where H is the actual Hamiltonian of the system and

T the temperature.
Now consider a small variation of the EE, Sgr(A) = — Trpalogpa:
6Sem(A) = — Tr(6palog pa) — Tr(papa'dpa) = Tr(3paHa) — Tr(5pa)

Since pa and pa + dpa are both normalized = Tr(dpa) = 0 and we can
write

0Sun(A) = 8 (Ha) |

This is the first-law of entanglement entropy.

L D
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Density matrices are both Hermitian and (semi)positive-definite. As a con-
sequence, we can write
_ —Ha
pA =e€
where H 4 is the so-called “modular Hamiltonian”. For instance, for a ther-
mal state Ha = H/T where H is the actual Hamiltonian of the system and

T the temperature.
Now consider a small variation of the EE, Sgr(A) = — Trpalogpa:
5Sem(A) = = Tr(6palog pa) — Tr(paps'6pa) = Tr(6paHa) — Tr(dpa)

Since pa and pa + dpa are both normalized = Tr(dpa) = 0 and we can
write

0Sun(A) = 8 (Ha) |

This is the first-law of entanglement entropy. In particular, for a thermal
state:

5 (H) = T6S

quantum version of the first-law of thermodynamics!

L D
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Additional entanglement
measures and inequalities
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Additional entanglement measures and inequalit;

RELATIVE ENTROPY
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A related notion is the so-called relative entropy.
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Additional entanglement measures and inequalities

RELATIVE ENTROPY

. d
states p and o we define it as

A related notion is the so-called relative entropy. Given two
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Srer.(plle) = Trplogp — Trplogo .

This is a measure of “how distinguishable” p and o are.
e It is a semi-positive definite quantity:

Srel.(pllo) > 0.
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RELATIVE ENTROPY

. d
states p and o we define it as

A related notion is the so-called relative entropy. Given two
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Srer.(plle) = Trplogp — Trplogo .

This is a measure of “how distinguishable” p and o are.
Example:

e It is a semi-positive definite quantity:

Srel.(pllo) > 0.
p:

001, o= —[10) (0] + (= 1) (1] where a>1



Additional entanglement measures and inequalities

RELATIVE ENTROPY

. d
states p and o we define it as

A related notion is the so-called relative entropy. Given two
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Srer.(plle) = Trplogp — Trplogo .
This is a measure of “how distinguishable” p and o are.

e It is a semi-positive definite quantity:

Example:

Srel.(pllo) > 0.
p:

001, o= —[10) (0] + (= 1) (1] where a>1

= Trplogp =0, —Trplogo=— |:

10 1
0 0] log [a

0 1 ! 1
=—log— =loga
0 1_& ga g
= = - = = 9ace
D S T W YO



Additional entanglement measures and inequalities

RELATIVE ENTROPY
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A related notion is the so-called relative entropy. Given two
states p and o we define it as
Srer.(plle) = Trplogp — Trplogo .
This is a measure of “how distinguishable” p and o are.
o It is a semi-positive definite quantity
Srer.(pllo) = 0.
Example:
p=10)0], o= % [10) O + (= 1) [1) (1]]  where a>1
= Trplogp =0, —Trplogo=— |:
Hence:

10 1
0 0] log [a

0 log + — 1
1| = —1log— =loguw
0 1-= «
Srer.(pllo) >0 as a—1
S :l :> rel.
rel. (pl|o) = loga {Srel.(pHo')—)oo as o — oo
- 5 = = E DA
D S T W YO
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of the relative entropy, as:

Another important measure is the so-called mutual information.
This can be defined in terms of the EE or, alternatively, in terms

(A, B) = Sun(A) + Ses(B) — Sen(AB),
I(A, B) = Srer.(paBllpa @ pB)
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Another important measure is the so-called mutual information.
This can be defined in terms of the EE or, alternatively, in terms
of the relative entropy, as:

I(A, B) = Sgp(A) + See(B) — Ses(AB),

I(A, B) = Sre1.(paBllpa ® pB)

“How much information is shared between A and B”
o If pap pure = I(A, B) = 2Spi(A) = 2Sux(B)

o If pap mixed, I(A, B) also captures classical correlations

L YED
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MUTUAL INFORMATION
Example:

o
1

pag = —[|00
(0%

= pA=pB =
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~

(00] + (v = 1) 11) (1],

S

a>1

[10) O + (e = 1) [1) (1]]

u]
8
I
il
it
S
»
i)
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MUTUAL INFORMATION
Example:
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pan = —[100) (00 + (a = D) [11) (1], @ >1
1
= pa=pp = _[l0){0] + (a = 1)[1) (1]}
= Spe(AB) = —é log

(-l
zloga_<

u]
8
I
il
it
S
»
i)
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MUTUAL INFORMATION
Example:

PAB =

~ oo

(00] + (o = 1) 11) 1]
= pa=pp = —[0) 0]+ (= 1) 1) (1]
1
= ——log

1
(-2
1—§>bga—n

1
1——1 -1
(12t
) I(A,B) -0 as a—1
I(A,B)zloga—(l——)log(a 1) = ¢ Inax(A, B) =log2 for a=2
I(A,B) -0 as a—
Or «Fr «=» «Er T DAC
202

a>1
Then
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e Strong subadditivity (SSA) property:
I(A,BC) > I(A, B)
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Ses(AB) + Sps(BC) > Swn(ABC) + Se(B)

“A has more information about BC than about B alone”.
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e Strong subadditivity (SSA) property:
I(A,BC) > I(A, B)
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Ses(AB) + Sps(BC) > Swn(ABC) + Se(B)

“A has more information about BC than about B alone”.
o In particular, this implies the subadditivity property:

Sen(A) + See(B) > Spp(AB)
o> <« = E z 9ac
D R S W YO
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.
e Strong subadditivity (SSA) property:
I(A,BC) > I(A, B)
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Ses(AB) + Sps(BC) > Swn(ABC) + Se(B)

“A has more information about BC than about B alone”.
o In particular, this implies the subadditivity property:

Sex(A) + Seu(B) > Spn(AB)
e And also the Araki-Lieb inequality:
Ser(AB) > [Spe(A) — See(B)
o «F = E T 9ace
D R S I YO



Additional entanglement measures and inequalities
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Example:
PABC = i [/000) (000| + [010) (010] + |011) (011| + |111) (111[]

1
pap = 71[100){00] +201) (01| + [11) (11]] , ppc = 7 (100) (00| + [10) (10| + 2[11) (11]] ,
1.1 1. 1 1. 1 3
Spr(AB) = Spr(BC) = ——log — — —log — — — log — = = log 2
= See(AB) = See(BC) Jlogy —glogs — log o = o log2,

1
4

1 1
pe = 7 [10) (O +3[1) (1, pa = 7 [310) 0] + [1) (1]
1 1 3 3 3
B) = A)=——log— — -log- =log4 — -1
= Sge(B) = See(A) 1 0g4 1 og4 og 1 og3,
@ SSA?

Ser(BC) + Spx(AB) = 3log 2 ~ 2.0794
3
@ Subadditivity?

3 3
=} (=) = =
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RENYI ENTROPIES o

Another interesting family of entanglement measures are the
so-called Rényi entropies. This are defined by

1
Sn(A) = . log Tr p'y

—n

The entanglement entropy is a particular case: Sgg = lim,, 1 S),.
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Another interesting family of entanglement measures are the
so-called Rényi entropies. This are defined by

Sn(A) = log Tr p'y

1—n

The entanglement entropy is a particular case: Sgg = lim,, 1 S),.
Example:

pa =~ 10) 0 + (@ = 1) |1) (1} = o} = [(‘1‘0)“ - )n]
e () (-2 s () (-2
What about the EE?

e
oy = 1 (_ [log(o;— 1 log (1 _ é)} (n=1)+O(n— 1)2)

1—n

el (i 1)
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vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

@ If pap separable = p4 pure; If pap entangled = p4 mixed.
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@ Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

@ If pap separable = p4 pure; If pap entangled = p4 mixed.

@ Entanglement entropy quantifies degree of entanglement between
subsystems.
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Entanglement entropy quantifies degree of entanglement between
subsystems.

@ Entanglement entropy satisfies a “first law”.
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@ Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

@ If pap separable = p4 pure; If pap entangled = p4 mixed.

@ Entanglement entropy quantifies degree of entanglement between
subsystems.

@ Entanglement entropy satisfies a “first law”.

@ There exist additional interesting measures:
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@ Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

o If pap separable = p4 pure; If p4p entangled = p4 mixed.

@ Entanglement entropy quantifies degree of entanglement between
subsystems.

@ Entanglement entropy satisfies a “first law”.
@ There exist additional interesting measures:
e Relative entropy: measures distinguishability between states.
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@ Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

o If pap separable = p4 pure; If p4p entangled = p4 mixed.

@ Entanglement entropy quantifies degree of entanglement between
subsystems.

@ Entanglement entropy satisfies a “first law”.
@ There exist additional interesting measures:

e Relative entropy: measures distinguishability between states.
e Mutual information: measures amount of information shared
between subsystems. It satisfies SSA: I(A4, BC) > I(A, B).
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@ Entanglement = non-separability of quantum states. The indi-
vidual description of a subsystem corresponding to an entangled
system is necessarily incomplete.

o If pap separable = p4 pure; If p4p entangled = p4 mixed.

@ Entanglement entropy quantifies degree of entanglement between
subsystems.

@ Entanglement entropy satisfies a “first law”.
@ There exist additional interesting measures:

e Relative entropy: measures distinguishability between states.

e Mutual information: measures amount of information shared
between subsystems. It satisfies SSA: I(A, BC) > I(A, B).

e Rényi entropies: uniparametric family of generalizations of
entanglement entropy.

L e
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