Entanglement entropy in QM and QFT 1/5 - Entanglement in QM

— II School of Holography and Entanglement Entropy — December, 2020

Overview of the lectures

- Monday 23rd, 10:30h-11:30h Entanglement in QM: basics of QM for discrete systems, subsystems, Schmidt decomposition, entanglement entropy, the first law of EE, additional measures and inequalities.
- Monday 23rd, 13h-14h Entanglement in QFT I: aspects of quantum fields and algebras, the Reeh-Schlieder theorem, EE in QFT.
- Tuesday 24th, 13h-14h **Entanglement in QFT II**: EE for free fields, monotonicity theorems, quantum Bekenstein bound.
- Wednesday 25th, 13h-14h The "extensive mutual information" (EMI) model: general structure of EE and universal terms, explicit calculations for the EMI model.
- Saturday 28th, 13h-14h **Holographic entanglement entropy**: holographic principle and AdS/CFT, Ryu-Takayanagi prescription, corrections to the RT formula, some explicit calculations, gravity from entanglement.

OUTLINE

- 1 Basics of QM for discrete systems
- 2 Subsystems, entanglement and Schmidt decomposition
- 3 Entanglement entropy
- 4 The first law of entanglement entropy
- 5 Additional entanglement measures and inequalities

Some References

- The issue of entanglement in QM, including the Schmidt decomposition appears discussed in many lecture notes that can be found online. To mention a few http://www.hartmanhep.net/topics2015/18-entanglement-intro.pdf, https://arxiv.org/pdf/1801.10352.pdf, http://users.cms.caltech.edu/-vidick/teaching/120_qcrypto/LN_Week2.pdf.
- The first law of EE was introduced in https://arxiv.org/pdf/1305.3182.pdf and https://arxiv.org/pdf/1305.3291.pdf.
- The notions of relative entropy and mutual information are quantum versions of extremely standard notions in classical statistics/information theory. They appear discussed in lots of places. A standard reference is Nielsen and Chuang's "Quantum Computation and Quantum Information" book. This is not an extremely advanced book but it contains a lot of stuff on other topics like quantum computation, algorithms, quantum noise, error-correction, etc.
- The Rényi entropies discussed here are quantum versions of the notions introduced by the person who gives them name in the 60's (https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200512181) in the context of classical information theory.

Basics of QM for discrete systems

Quantum mechanical system \Leftrightarrow Hilbert space \mathcal{H} . A state $|\psi\rangle \in \mathcal{H}$ can be written in some basis $|i\rangle$ as

$$|\psi\rangle = \sum_{i} c_i |i\rangle$$
, $\sum_{i} |c_i|^2 = 1$.

Quantum mechanical system \Leftrightarrow Hilbert space \mathcal{H} . A state $|\psi\rangle \in \mathcal{H}$ can be written in some basis $|i\rangle$ as

$$|\psi\rangle = \sum_{i} c_i |i\rangle$$
, $\sum_{i} |c_i|^2 = 1$.

More generally, states \Leftrightarrow density matrices. Given $|\psi\rangle$, we can associate

$$\rho \equiv |\psi\rangle \langle \psi| = \sum_{ij} c_i c_j^* |i\rangle \langle j| .$$

Quantum mechanical system \Leftrightarrow Hilbert space \mathcal{H} . A state $|\psi\rangle \in \mathcal{H}$ can be written in some basis $|i\rangle$ as

$$|\psi\rangle = \sum_{i} c_i |i\rangle$$
, $\sum_{i} |c_i|^2 = 1$.

More generally, states \Leftrightarrow density matrices. Given $|\psi\rangle$, we can associate

$$\rho \equiv |\psi\rangle \langle \psi| = \sum_{ij} c_i c_j^* |i\rangle \langle j| .$$

Mixed states are those which cannot be described by vectors (only by density matrices), e.g.,

$$\rho = \sum_{a} p_a |\psi_a\rangle \langle \psi_a|, \quad \sum_{a} p_a = 1 \quad p_a \ge 0 \quad \forall a$$

Quantum mechanical system \Leftrightarrow Hilbert space \mathcal{H} . A state $|\psi\rangle \in \mathcal{H}$ can be written in some basis $|i\rangle$ as

$$|\psi\rangle = \sum_{i} c_i |i\rangle$$
, $\sum_{i} |c_i|^2 = 1$.

More generally, states \Leftrightarrow density matrices. Given $|\psi\rangle$, we can associate

$$\rho \equiv |\psi\rangle \langle \psi| = \sum_{ij} c_i c_j^* |i\rangle \langle j| .$$

Mixed states are those which cannot be described by vectors (only by density matrices), e.g.,

$$\rho = \sum_{a} p_a |\psi_a\rangle \langle \psi_a|, \quad \sum_{a} p_a = 1 \quad p_a \ge 0 \quad \forall a$$

Pure states can be both described by vectors and by density matrices (like $|\psi\rangle \Leftrightarrow \rho$ above)

In QM, we are usually interested in expectation values of observables \mathcal{O} :

$$\langle \psi | \mathcal{O} | \psi \rangle \Leftrightarrow \text{Tr}(\rho \mathcal{O})$$

where "Tr" is the trace of the corresponding operator (for matrices, this is just the sum of the elements in the diagonal):

$$\operatorname{Tr}(\mathcal{O}) \equiv \sum_{i} \langle i | \mathcal{O} | i \rangle$$

For example, consider a single qubit system (two-level discrete system). Any pure state can be written as

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle \equiv \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, \quad |c_0|^2 + |c_1|^2 = 1.$$

For example, consider a single qubit system (two-level discrete system). Any pure state can be written as

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle \equiv \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, \quad |c_0|^2 + |c_1|^2 = 1.$$

The density matrix associated reads

$$\rho = |c_0|^2 |0\rangle \langle 0| + c_0 c_1^* |0\rangle \langle 1| + c_1 c_0^* |1\rangle \langle 0| + |c_1|^2 |1\rangle \langle 1| \equiv \begin{bmatrix} |c_0|^2 & c_0 c_1^* \\ c_1 c_0^* & |c_1|^2 \end{bmatrix}.$$

For example, consider a single qubit system (two-level discrete system). Any pure state can be written as

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle \equiv \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, \quad |c_0|^2 + |c_1|^2 = 1.$$

The density matrix associated reads

$$\rho = |c_0|^2 |0\rangle \langle 0| + c_0 c_1^* |0\rangle \langle 1| + c_1 c_0^* |1\rangle \langle 0| + |c_1|^2 |1\rangle \langle 1| \equiv \begin{bmatrix} |c_0|^2 & c_0 c_1^* \\ c_1 c_0^* & |c_1|^2 \end{bmatrix}.$$

Expectation value of $\mathcal{O} \equiv |0\rangle \langle 0|$?

$$\langle \psi | \mathcal{O} | \psi \rangle = (c_0^* \langle 0| + c_1^* \langle 1|) | 0 \rangle \langle 0| (c_0 | 0 \rangle + c_1 | 1 \rangle) = |c_0|^2$$

$$\operatorname{Tr}(\rho \mathcal{O}) = \langle 0| \rho | 0 \rangle \langle 0| | 0 \rangle + \langle 1| \rho | 0 \rangle \langle 0| | 1 \rangle = \langle 0| \rho | 0 \rangle = |c_0|^2$$

Subsystems, entanglement and Schmidt decomposition

Imagine now the system is made of two subsystems A and B. Hilbert space factorizes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. We can write a general state $|\psi\rangle \in \mathcal{H}$ as

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B ,$$

where $\{|i\rangle_A\}$ and $\{|j\rangle_B\}$ are bases of \mathcal{H}_A and \mathcal{H}_B respectively.

Imagine now the system is made of two subsystems A and B. Hilbert space factorizes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. We can write a general state $|\psi\rangle \in \mathcal{H}$ as

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B ,$$

where $\{|i\rangle_A\}$ and $\{|j\rangle_B\}$ are bases of \mathcal{H}_A and \mathcal{H}_B respectively. Density matrices are defined in the same way, $|\psi\rangle \Leftrightarrow \rho \equiv |\psi\rangle\langle\psi|$.

Imagine now the system is made of two subsystems A and B. Hilbert space factorizes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. We can write a general state $|\psi\rangle \in \mathcal{H}$ as

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B ,$$

where $\{|i\rangle_A\}$ and $\{|j\rangle_B\}$ are bases of \mathcal{H}_A and \mathcal{H}_B respectively. Density matrices are defined in the same way, $|\psi\rangle \Leftrightarrow \rho \equiv |\psi\rangle\langle\psi|$. Similarly, for traces:

$$\mathrm{Tr}_{AB}(\mathcal{O}) \equiv \sum_{ij} \left. \left\langle i \right|_A \left\langle j \right|_B \mathcal{O} \left| i \right\rangle_A \left| j \right\rangle_B \right. .$$

The subindex "AB" indicates that we are tracing over both A and B,

Imagine now the system is made of two subsystems A and B. Hilbert space factorizes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. We can write a general state $|\psi\rangle \in \mathcal{H}$ as

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B ,$$

where $\{|i\rangle_A\}$ and $\{|j\rangle_B\}$ are bases of \mathcal{H}_A and \mathcal{H}_B respectively. Density matrices are defined in the same way, $|\psi\rangle \Leftrightarrow \rho \equiv |\psi\rangle\langle\psi|$. Similarly, for traces:

$$\operatorname{Tr}_{AB}(\mathcal{O}) \equiv \sum_{ij} \langle i|_A \langle j|_B \mathcal{O} |i\rangle_A |j\rangle_B .$$

The subindex "AB" indicates that we are tracing over both A and B, but we can also trace over each subsystem:

$$\operatorname{Tr}_A(\mathcal{O}) \equiv \sum_i \left\langle i \right|_A \mathcal{O} \left| i \right\rangle_A \;, \quad \operatorname{Tr}_B(\mathcal{O}) \equiv \sum_j \left\langle j \right|_B \mathcal{O} \left| j \right\rangle_B$$

 $\label{eq:entanglement} \textbf{Entanglement} = \text{non-separability of quantum states}.$

Entanglement = non-separability of quantum states.

Consider

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$
.

If $|\psi\rangle$ cannot be written as $|\psi\rangle=|\phi\rangle_A\otimes|\tilde{\phi}\rangle_B\Rightarrow|\psi\rangle$ is an entangled state.

Entanglement = non-separability of quantum states.

Consider

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$
.

If $|\psi\rangle$ cannot be written as $|\psi\rangle = |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B \Rightarrow |\psi\rangle$ is an entangled state. Most states are entangled!

Entanglement = non-separability of quantum states.

Consider

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$
.

If $|\psi\rangle$ cannot be written as $|\psi\rangle = |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B \Rightarrow |\psi\rangle$ is an entangled state. Most states are entangled! If $|\psi\rangle$ can be written as $|\psi\rangle = |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B$, it is called **separable**.

Example: two qubits

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |00\rangle \right] = |0\rangle_A \otimes \frac{1}{\sqrt{2}} \left[|1\rangle_B + |0\rangle_B \right] \quad \text{(not entangled)} \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |10\rangle \right] \quad \text{(entangled, } |\psi_2\rangle \neq |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B) \end{split}$$

Example: two qubits

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |00\rangle \right] = |0\rangle_A \otimes \frac{1}{\sqrt{2}} \left[|1\rangle_B + |0\rangle_B \right] \quad \text{(not entangled)} \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |10\rangle \right] \quad \text{(entangled, } |\psi_2\rangle \neq |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B) \end{split}$$

In the second case, the state of each subsystem cannot be fully described without the other.

Instituto Balseiro

ENTANGLED STATES

Example: two qubits

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |00\rangle \right] = |0\rangle_A \otimes \frac{1}{\sqrt{2}} \left[|1\rangle_B + |0\rangle_B \right] \quad \text{(not entangled)} \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |10\rangle \right] \quad \text{(entangled, } |\psi_2\rangle \neq |\phi\rangle_A \otimes |\tilde{\phi}\rangle_B) \end{split}$$

In the second case, the state of each subsystem cannot be fully described without the other. The corresponding density matrices read

$$\rho_{1} \equiv |\psi_{1}\rangle \langle \psi_{1}| = \frac{1}{2} [|01\rangle \langle 01| + |00\rangle \langle 01| + |01\rangle \langle 00| + |00\rangle \langle 00|],$$

$$\rho_{2} \equiv |\psi_{2}\rangle \langle \psi_{2}| = \frac{1}{2} [|01\rangle \langle 01| + |01\rangle \langle 10| + |10\rangle \langle 01| + |10\rangle \langle 10|].$$

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron?

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron? We need to define it such that measurements of observables on A coincide with hypothetical measurements over the full state.

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron? We need to define it such that measurements of observables on A coincide with hypothetical measurements over the full state. The state that achieves this is the **reduced-density matrix**, ρ_A , defined as

$$\rho_A \equiv \operatorname{Tr}_B \rho_{AB} = \sum_j \left\langle j \right|_B \rho_{AB} \left| j \right\rangle_B \,,$$

where ρ_{AB} is the full state (e.g., ρ_1 or ρ_2 in our examples).

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron? We need to define it such that measurements of observables on A coincide with hypothetical measurements over the full state. The state that achieves this is the **reduced-density matrix**, ρ_A , defined as

$$\rho_A \equiv \operatorname{Tr}_B \rho_{AB} = \sum_j \langle j|_B \rho_{AB} |j\rangle_B ,$$

where ρ_{AB} is the full state (e.g., ρ_1 or ρ_2 in our examples). In our examples:

$$\begin{split} \rho_{A,1} &= \operatorname{Tr}_{B} \rho_{1} = \left| 0 \right\rangle \left\langle 0 \right| \,, \quad \text{(pure)} \\ \rho_{A,2} &= \operatorname{Tr}_{B} \rho_{2} = \frac{1}{2} \left[\left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \right] \,, \quad \text{(mixed)} \end{split}$$

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron? We need to define it such that measurements of observables on A coincide with hypothetical measurements over the full state. The state that achieves this is the **reduced-density matrix**, ρ_A , defined as

$$\rho_A \equiv \operatorname{Tr}_B \rho_{AB} = \sum_j \left\langle j \right|_B \rho_{AB} \left| j \right\rangle_B \; ,$$

where ρ_{AB} is the full state (e.g., ρ_1 or ρ_2 in our examples). In our examples:

$$\begin{split} \rho_{A,1} &= \operatorname{Tr}_{B} \rho_{1} = \left| 0 \right\rangle \left\langle 0 \right| \,, \quad \text{(pure)} \\ \rho_{A,2} &= \operatorname{Tr}_{B} \rho_{2} = \frac{1}{2} \left[\left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \right] \,, \quad \text{(mixed)} \end{split}$$

- Separable full state ⇒ reduced density matrix is pure.
- Entangled full state \Rightarrow reduced density matrix is mixed.

Imagine we only have access to subsystem A (e.g., the other electron is in Andromeda). How do we describe the state of our electron? We need to define it such that measurements of observables on A coincide with hypothetical measurements over the full state. The state that achieves this is the **reduced-density matrix**, ρ_A , defined as

$$\rho_A \equiv \operatorname{Tr}_B \rho_{AB} = \sum_j \langle j|_B \rho_{AB} |j\rangle_B ,$$

where ρ_{AB} is the full state (e.g., ρ_1 or ρ_2 in our examples). In our examples:

$$\begin{split} &\rho_{A,1} = \operatorname{Tr}_{B} \rho_{1} = \left|0\right\rangle \left\langle 0\right| \;, \quad \text{(pure)} \\ &\rho_{A,2} = \operatorname{Tr}_{B} \rho_{2} = \frac{1}{2} \left[\left|0\right\rangle \left\langle 0\right| + \left|1\right\rangle \left\langle 1\right|\right] \;, \quad \text{(mixed)} \end{split}$$

- Separable full state \Rightarrow reduced density matrix is pure.
- Entangled full state \Rightarrow reduced density matrix is mixed.

Taking partial traces we loose information.

Instituto Balseiro

SCHMIDT DECOMPOSITION

Let's have an even closer look at this...

Instituto Balseiro

SCHMIDT DECOMPOSITION

Let's have an even closer look at this...

Schmidt decomposition: it is always possible to write any pure state

$$|\psi\rangle = \sum_{i,j} c_{ij} |i\rangle_A |j\rangle_B ,$$

in a different basis of $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ such that

$$|\psi\rangle = \sum_{\alpha=1}^{r} \sigma_{\alpha} |v_{\alpha}\rangle_{A} |w_{\alpha}\rangle_{B} , \text{ (single sum!)}$$

with

$$\sigma_{\alpha} > 0 \quad \forall \alpha \,, \quad \sum_{\alpha=1}^{r} \sigma_{\alpha}^{2} = 1 \,.$$

State will be separable if r = 1, entangled otherwise.

SCHMIDT DECOMPOSITION

From the Schmidt decomposition it follows that

$$\rho_A = \sum_{\alpha=1}^r \sigma_\alpha^2 |v_\alpha\rangle \langle v_\alpha| , \quad \rho_B = \sum_{\alpha=1}^r \sigma_\alpha^2 |w_\alpha\rangle \langle w_\alpha| .$$

Reduced density matrices have the same spectrum! The eigenvalues are just the squares of the Schmidt coefficients.

SCHMIDT DECOMPOSITION

From the Schmidt decomposition it follows that

$$\rho_A = \sum_{\alpha=1}^r \sigma_\alpha^2 |v_\alpha\rangle \langle v_\alpha| , \quad \rho_B = \sum_{\alpha=1}^r \sigma_\alpha^2 |w_\alpha\rangle \langle w_\alpha| .$$

Reduced density matrices have the same spectrum! The eigenvalues are just the squares of the Schmidt coefficients.

We will use the σ_{α} to define notions of how entangled A and B are...

• Maximal entanglement if

$$\sigma_{\alpha} = \frac{1}{\sqrt{r}} \quad \forall \alpha$$

• No entanglement at all if

$$\sigma_1 = 1$$
 and $\sigma_{\alpha} = 0 \quad \forall \alpha \neq 1$

SCHMIDT DECOMPOSITION

$$|\psi\rangle = \sum_{\alpha=1}^{r} \sigma_{\alpha} |v_{\alpha}\rangle_{A} \otimes |w_{\alpha}\rangle_{B}$$

Examples:

$$|\psi_1\rangle \equiv \frac{1}{\sqrt{2}} [|01\rangle + |00\rangle] = \frac{1}{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}} [|1\rangle + |0\rangle]\right],$$

SCHMIDT DECOMPOSITION

$$|\psi\rangle = \sum_{\alpha=1}^{r} \sigma_{\alpha} |v_{\alpha}\rangle_{A} \otimes |w_{\alpha}\rangle_{B}$$

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |00\rangle \right] = \mathbf{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}} \left[|1\rangle + |0\rangle \right] \right] \,, \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}} \left[|01\rangle + |10\rangle \right] = \frac{1}{\sqrt{2}} \left| 0\rangle \otimes |1\rangle + \frac{1}{\sqrt{2}} \left| 1\rangle \otimes |0\rangle \,\,, \end{split}$$

SCHMIDT DECOMPOSITION

$$|\psi\rangle = \sum_{\alpha=1}^{r} \sigma_{\alpha} |v_{\alpha}\rangle_{A} \otimes |w_{\alpha}\rangle_{B}$$

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}}\left[|01\rangle + |00\rangle\right] = \frac{1}{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}}\left[|1\rangle + |0\rangle\right]\right] \,, \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}}\left[|01\rangle + |10\rangle\right] = \frac{1}{\sqrt{2}}\left|0\rangle \otimes |1\rangle + \frac{1}{\sqrt{2}}\left|1\rangle \otimes |0\rangle \,, \\ |\psi_3\rangle &\equiv \frac{1}{2}\left[|01\rangle + |00\rangle + |10\rangle + |11\rangle\right] = \frac{1}{1} \cdot \left[\frac{1}{\sqrt{2}}\left[|0\rangle + |1\rangle\right]\right] \otimes \left[\frac{1}{\sqrt{2}}\left[|0\rangle + |1\rangle\right] \,, \end{split}$$

SCHMIDT DECOMPOSITION

$$|\psi\rangle = \sum_{\alpha=1}^{r} \sigma_{\alpha} |v_{\alpha}\rangle_{A} \otimes |w_{\alpha}\rangle_{B}$$

Examples:

$$\begin{split} |\psi_1\rangle &\equiv \frac{1}{\sqrt{2}}\left[|01\rangle + |00\rangle\right] = \mathbf{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}}\left[|1\rangle + |0\rangle\right]\right] \,, \\ |\psi_2\rangle &\equiv \frac{1}{\sqrt{2}}\left[|01\rangle + |10\rangle\right] = \frac{1}{\sqrt{2}}\left|0\rangle \otimes |1\rangle + \frac{1}{\sqrt{2}}\left|1\rangle \otimes |0\rangle \,, \\ |\psi_3\rangle &\equiv \frac{1}{2}\left[|01\rangle + |00\rangle + |10\rangle + |11\rangle\right] = \mathbf{1} \cdot \left[\frac{1}{\sqrt{2}}\left[|0\rangle + |1\rangle\right]\right] \otimes \left[\frac{1}{\sqrt{2}}\left[|0\rangle + |1\rangle\right]\right] \,, \\ |\psi_4\rangle &\equiv \frac{1}{\sqrt{3}}\left[|00\rangle + |01\rangle + |11\rangle\right] = \sqrt{\frac{1}{6}\left[3 + \sqrt{5}\right]}\left|v_1\rangle \otimes |w_1\rangle - \sqrt{\frac{1}{6}\left[3 - \sqrt{5}\right]}\left|v_2\rangle \otimes |w_2\rangle \,. \end{split}$$

where

$$|v_1\rangle \equiv \frac{[\alpha\,|0\rangle + |1\rangle]}{\sqrt{1 + \alpha^2}} \,, \quad |v_2\rangle \equiv \frac{[\beta\,|0\rangle + |1\rangle]}{\sqrt{1 + \beta^2}} \,, \quad |w_1\rangle \equiv \frac{[|0\rangle + \alpha\,|1\rangle]}{\sqrt{1 + \alpha^2}} \,, \quad |w_2\rangle \equiv \frac{[|0\rangle + \beta\,|1\rangle]}{\sqrt{1 + \beta^2}} \,,$$

and $\alpha \equiv -1 + \frac{1}{2}(3 + \sqrt{5}), \beta \equiv -1 + \frac{1}{2}(3 - \sqrt{5}).$

Entanglement entropy

Entanglement entropy

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$S(\rho) \equiv -\operatorname{Tr} \rho \log \rho$$

ENTANGLEMENT ENTROPY

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$S(\rho) \equiv -\operatorname{Tr} \rho \log \rho$$

Let λ_a be the eigenvalues of ρ , then: $S(\rho) = -\sum_a \lambda_a \log \lambda_a$.

Entanglement entropy

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$S(\rho) \equiv -\operatorname{Tr} \rho \log \rho$$

Let λ_a be the eigenvalues of ρ , then: $S(\rho) = -\sum_a \lambda_a \log \lambda_a$.

- $S(\rho) \geq 0$ for any state.
- It vanishes for pure states: $S(\rho) = 0$ if ρ is pure.

ENTANGLEMENT ENTROPY

Now, given a system composed of two subsystems A and B in some pure state ρ_{AB} , the **entanglement entropy** of A with respect to B is defined as the Von Neumann entropy of ρ_A :

ENTANGLEMENT ENTROPY

Now, given a system composed of two subsystems A and B in some pure state ρ_{AB} , the **entanglement entropy** of A with respect to B is defined as the Von Neumann entropy of ρ_A :

$$S_{\text{EE}}(A) \equiv S(\rho_A) = -\operatorname{Tr}_A \rho_A \log \rho_A$$

Remember, $\rho_A \equiv \text{Tr}_B \, \rho_{AB}$ is the reduced density matrix.

- $S_{\text{EE}}(A)$ measures "how entangled" is A with B.
- If ρ_{AB} is pure, this can be written in terms of the Schmidt coefficients as

$$S_{\text{EE}} = -\sum_{\alpha} \sigma_{\alpha}^2 \log \sigma_{\alpha}^2$$

• Remember that ρ_A and ρ_B have the same eigenvalues $\{\sigma_\alpha^2\}$, which implies

$$S_{\text{ee}}(A) = S_{\text{ee}}(B)$$

ENTANGLEMENT ENTROPY

$$S_{\rm EE} = -\sum_{\alpha} \sigma_{\alpha}^2 \log \sigma_{\alpha}^2$$

$$\begin{split} |\psi_1\rangle &= \mathbf{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}} \left[|1\rangle + |0\rangle \right] \right] \\ \Rightarrow S_{\mathrm{EE}}(A) &= -1 \log 1 = 0 \,, \end{split}$$

Entanglement entropy

$$S_{\mathrm{EE}} = -\sum_{lpha} \sigma_{lpha}^2 \log \sigma_{lpha}^2$$

$$\begin{split} |\psi_1\rangle &= \mathbf{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}} \left[|1\rangle + |0\rangle\right]\right] \\ &\Rightarrow S_{\mathrm{EE}}(A) = -1\log 1 = 0 \,, \\ |\psi_2\rangle &= \frac{1}{\sqrt{2}} \left|0\rangle \otimes |1\rangle + \frac{1}{\sqrt{2}} \left|1\rangle \otimes |0\rangle \\ &\Rightarrow S_{\mathrm{EE}}(A) = -\frac{1}{2}\log \frac{1}{2} - \frac{1}{2}\log \frac{1}{2} = \log 2 \simeq 0.6931 \,, \end{split}$$

$$S_{\rm EE} = -\sum_{\alpha} \sigma_{\alpha}^2 \log \sigma_{\alpha}^2$$

$$\begin{split} |\psi_{1}\rangle &= \mathbf{1} \cdot |0\rangle \otimes \left[\frac{1}{\sqrt{2}} \left[|1\rangle + |0\rangle \right] \right] \\ &\Rightarrow S_{\mathrm{EE}}(A) = -1 \log 1 = 0 \,, \\ |\psi_{2}\rangle &= \frac{1}{\sqrt{2}} |0\rangle \otimes |1\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |0\rangle \\ &\Rightarrow S_{\mathrm{EE}}(A) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = \log 2 \simeq 0.6931 \,, \\ |\psi_{4}\rangle &= \sqrt{\frac{1}{6} \left[3 + \sqrt{5} \right]} |v_{1}\rangle \otimes |w_{1}\rangle - \sqrt{\frac{1}{6} \left[3 - \sqrt{5} \right]} |v_{2}\rangle \otimes |w_{2}\rangle \\ &\Rightarrow S_{\mathrm{EE}}(A) = -\frac{1}{6} \left[3 + \sqrt{5} \right] \log \frac{1}{6} \left[3 + \sqrt{5} \right] - \frac{1}{6} \left[3 - \sqrt{5} \right] \log \frac{1}{6} \left[3 - \sqrt{5} \right] \\ &= \log \left[\frac{6}{3 + \sqrt{5}} \right] \simeq 0.1362 \,. \end{split}$$

Density matrices are both Hermitian and (semi)positive-definite.

Density matrices are both Hermitian and (semi)positive-definite. As a consequence, we can write

$$\rho_A \equiv e^{-H_A}$$

where H_A is the so-called "modular Hamiltonian".

Density matrices are both Hermitian and (semi)positive-definite. As a consequence, we can write

$$\rho_A \equiv e^{-H_A}$$

where H_A is the so-called "modular Hamiltonian". For instance, for a thermal state $H_A = H/T$ where H is the actual Hamiltonian of the system and T the temperature.

Density matrices are both Hermitian and (semi)positive-definite. As a consequence, we can write

$$\rho_A \equiv e^{-H_A}$$

where H_A is the so-called "modular Hamiltonian". For instance, for a thermal state $H_A = H/T$ where H is the actual Hamiltonian of the system and T the temperature.

Now consider a small variation of the EE, $S_{\text{EE}}(A) = -\operatorname{Tr} \rho_A \log \rho_A$:

$$\delta S_{\text{EE}}(A) = -\operatorname{Tr}(\delta \rho_A \log \rho_A) - \operatorname{Tr}(\rho_A \rho_A^{-1} \delta \rho_A) = \operatorname{Tr}(\delta \rho_A H_A) - \operatorname{Tr}(\delta \rho_A)$$

Density matrices are both Hermitian and (semi)positive-definite. As a consequence, we can write

$$\rho_A \equiv e^{-H_A}$$

where H_A is the so-called "modular Hamiltonian". For instance, for a thermal state $H_A = H/T$ where H is the actual Hamiltonian of the system and T the temperature.

Now consider a small variation of the EE, $S_{\text{EE}}(A) = -\operatorname{Tr} \rho_A \log \rho_A$:

$$\delta S_{\text{EE}}(A) = -\operatorname{Tr}(\delta \rho_A \log \rho_A) - \operatorname{Tr}(\rho_A \rho_A^{-1} \delta \rho_A) = \operatorname{Tr}(\delta \rho_A H_A) - \operatorname{Tr}(\delta \rho_A)$$

Since ρ_A and $\rho_A + \delta \rho_A$ are both normalized $\Rightarrow \text{Tr}(\delta \rho_A) = 0$ and we can write

$$\delta S_{\text{EE}}(A) = \delta \langle H_A \rangle$$

This is the first-law of entanglement entropy.

Density matrices are both Hermitian and (semi)positive-definite. As a consequence, we can write

$$\rho_A \equiv e^{-H_A}$$

where H_A is the so-called "modular Hamiltonian". For instance, for a thermal state $H_A = H/T$ where H is the actual Hamiltonian of the system and T the temperature.

Now consider a small variation of the EE, $S_{\text{EE}}(A) = -\operatorname{Tr} \rho_A \log \rho_A$:

$$\delta S_{\text{EE}}(A) = -\operatorname{Tr}(\delta \rho_A \log \rho_A) - \operatorname{Tr}(\rho_A \rho_A^{-1} \delta \rho_A) = \operatorname{Tr}(\delta \rho_A H_A) - \operatorname{Tr}(\delta \rho_A)$$

Since ρ_A and $\rho_A + \delta \rho_A$ are both normalized $\Rightarrow \text{Tr}(\delta \rho_A) = 0$ and we can write

$$\left(\delta S_{\text{EE}}(A) = \delta \left\langle H_A \right\rangle\right)$$

This is the **first-law of entanglement entropy**. In particular, for a thermal state:

$$\delta \langle H \rangle = T \delta S$$

quantum version of the first-law of thermodynamics!

Additional entanglement measures and inequalities

RELATIVE ENTROPY

A related notion is the so-called **relative entropy**.

RELATIVE ENTROPY

A related notion is the so-called **relative entropy**. Given two states ρ and σ we define it as

$$S_{\rm rel.}(\rho||\sigma) \equiv \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma$$
.

This is a measure of "how distinguishable" ρ and σ are.

• It is a semi-positive definite quantity:

$$S_{\text{rel.}}(\rho||\sigma) \geq 0$$
.

RELATIVE ENTROPY

A related notion is the so-called **relative entropy**. Given two states ρ and σ we define it as

$$S_{\text{rel.}}(\rho||\sigma) \equiv \text{Tr}\,\rho\log\rho - \text{Tr}\,\rho\log\sigma$$
.

This is a measure of "how distinguishable" ρ and σ are.

• It is a semi-positive definite quantity:

$$S_{\text{rel.}}(\rho||\sigma) \geq 0$$
.

$$\rho = |0\rangle\langle 0|$$
, $\sigma = \frac{1}{\alpha} [|0\rangle\langle 0| + (\alpha - 1)|1\rangle\langle 1|]$ where $\alpha \ge 1$

RELATIVE ENTROPY

A related notion is the so-called **relative entropy**. Given two states ρ and σ we define it as

$$S_{\rm rel.}(\rho||\sigma) \equiv \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma$$
.

This is a measure of "how distinguishable" ρ and σ are.

• It is a semi-positive definite quantity:

$$S_{\text{rel.}}(\rho||\sigma) \geq 0$$
.

$$\begin{split} & \rho = \left| 0 \right\rangle \left\langle 0 \right| \,, \quad \sigma = \frac{1}{\alpha} \left[\left| 0 \right\rangle \left\langle 0 \right| + \left(\alpha - 1 \right) \left| 1 \right\rangle \left\langle 1 \right| \right] \quad \text{where} \quad \alpha \geq 1 \\ & \Rightarrow \operatorname{Tr} \rho \log \rho = 0 \,, \quad -\operatorname{Tr} \rho \log \sigma = - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \log \begin{bmatrix} \frac{1}{\alpha} & 0 \\ 0 & 1 - \frac{1}{\alpha} \end{bmatrix} = -\log \frac{1}{\alpha} = \log \alpha \end{split}$$

RELATIVE ENTROPY

A related notion is the so-called **relative entropy**. Given two states ρ and σ we define it as

$$S_{\rm rel.}(\rho||\sigma) \equiv \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma$$
.

This is a measure of "how distinguishable" ρ and σ are.

• It is a semi-positive definite quantity:

$$S_{\text{rel.}}(\rho||\sigma) \geq 0$$
.

Example:

$$\begin{split} & \rho = \left| 0 \right\rangle \left\langle 0 \right| \,, \quad \sigma = \frac{1}{\alpha} \left[\left| 0 \right\rangle \left\langle 0 \right| + \left(\alpha - 1 \right) \left| 1 \right\rangle \left\langle 1 \right| \right] \quad \text{where} \quad \alpha \geq 1 \\ & \Rightarrow \operatorname{Tr} \rho \log \rho = 0 \,, \quad -\operatorname{Tr} \rho \log \sigma = - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \log \begin{bmatrix} \frac{1}{\alpha} & 0 \\ 0 & 1 - \frac{1}{\alpha} \end{bmatrix} = -\log \frac{1}{\alpha} = \log \alpha \end{split}$$

Hence:

$$S_{\mathrm{rel.}}(\rho||\sigma) = \log \alpha \Rightarrow \begin{cases} S_{\mathrm{rel.}}(\rho||\sigma) \to 0 & \text{as } \alpha \to 1 \\ S_{\mathrm{rel.}}(\rho||\sigma) \to \infty & \text{as } \alpha \to \infty \end{cases}$$

Another important measure is the so-called **mutual information**. This can be defined in terms of the EE or, alternatively, in terms of the relative entropy, as:

$$I(A, B) \equiv S_{\text{EE}}(A) + S_{\text{EE}}(B) - S_{\text{EE}}(AB),$$

$$I(A, B) \equiv S_{\text{rel.}}(\rho_{AB}||\rho_A \otimes \rho_B)$$

Another important measure is the so-called **mutual information**. This can be defined in terms of the EE or, alternatively, in terms of the relative entropy, as:

$$I(A, B) \equiv S_{\text{EE}}(A) + S_{\text{EE}}(B) - S_{\text{EE}}(AB),$$

$$I(A, B) \equiv S_{\text{rel.}}(\rho_{AB}||\rho_A \otimes \rho_B)$$

"How much information is shared between A and B"

- If ρ_{AB} pure $\Rightarrow I(A,B) = 2S_{\text{EE}}(A) = 2S_{\text{EE}}(B)$
- If ρ_{AB} mixed, I(A,B) also captures classical correlations

$$\rho_{AB} = \frac{1}{\alpha} \left[|00\rangle \langle 00| + (\alpha - 1) |11\rangle \langle 11| \right], \quad \alpha \ge 1$$

$$\Rightarrow \rho_A = \rho_B = \frac{1}{\alpha} \left[|0\rangle \langle 0| + (\alpha - 1) |1\rangle \langle 1| \right]$$

$$\rho_{AB} = \frac{1}{\alpha} \left[|00\rangle \langle 00| + (\alpha - 1) |11\rangle \langle 11| \right], \quad \alpha \ge 1$$

$$\Rightarrow \rho_A = \rho_B = \frac{1}{\alpha} \left[|0\rangle \langle 0| + (\alpha - 1) |1\rangle \langle 1| \right]$$

$$\Rightarrow S_{\text{EE}}(AB) = -\frac{1}{\alpha} \log \frac{1}{\alpha} - \left(1 - \frac{1}{\alpha} \right) \log \left(1 - \frac{1}{\alpha} \right)$$

$$= \log \alpha - \left(1 - \frac{1}{\alpha} \right) \log(\alpha - 1)$$

$$S_{\text{EE}}(A) = S_{\text{EE}}(B) = \log \alpha - \left(1 - \frac{1}{\alpha} \right) \log(\alpha - 1)$$

MUTUAL INFORMATION

Example:

$$\begin{split} \rho_{AB} &= \frac{1}{\alpha} \left[\left| 00 \right\rangle \left\langle 00 \right| + \left(\alpha - 1 \right) \left| 11 \right\rangle \left\langle 11 \right| \right] \,, \quad \alpha \geq 1 \\ &\Rightarrow \rho_A = \rho_B = \frac{1}{\alpha} \left[\left| 0 \right\rangle \left\langle 0 \right| + \left(\alpha - 1 \right) \left| 1 \right\rangle \left\langle 1 \right| \right] \\ &\Rightarrow S_{\text{EE}}(AB) = -\frac{1}{\alpha} \log \frac{1}{\alpha} - \left(1 - \frac{1}{\alpha} \right) \log \left(1 - \frac{1}{\alpha} \right) \\ &= \log \alpha - \left(1 - \frac{1}{\alpha} \right) \log (\alpha - 1) \\ S_{\text{EE}}(A) &= S_{\text{EE}}(B) = \log \alpha - \left(1 - \frac{1}{\alpha} \right) \log (\alpha - 1) \end{split}$$

Then:

$$I(A,B) = \log \alpha - \left(1 - \frac{1}{\alpha}\right) \log(\alpha - 1) \Rightarrow \begin{cases} I(A,B) \to 0 & \text{as} \quad \alpha \to 1\\ I_{\max}(A,B) = \log 2 & \text{for} \quad \alpha = 2\\ I(A,B) \to 0 & \text{as} \quad \alpha \to \infty \end{cases}$$

Inequalities

• Strong subadditivity (SSA) property:

$$\begin{split} I(A,BC) &\geq I(A,B) \\ \Leftrightarrow \\ S_{\text{EE}}(AB) + S_{\text{EE}}(BC) &\geq S_{\text{EE}}(ABC) + S_{\text{EE}}(B) \end{split}$$

"A has more information about BC than about B alone".

Inequalities

• Strong subadditivity (SSA) property:

$$\begin{split} I(A,BC) &\geq I(A,B) \\ \Leftrightarrow \\ S_{\text{EE}}(AB) + S_{\text{EE}}(BC) &\geq S_{\text{EE}}(ABC) + S_{\text{EE}}(B) \end{split}$$

"A has more information about BC than about B alone".

• In particular, this implies the subadditivity property:

$$S_{\text{EE}}(A) + S_{\text{EE}}(B) \ge S_{\text{EE}}(AB)$$

Inequalities

• Strong subadditivity (SSA) property:

$$\begin{split} I(A,BC) &\geq I(A,B) \\ \Leftrightarrow \\ S_{\text{EE}}(AB) + S_{\text{EE}}(BC) &\geq S_{\text{EE}}(ABC) + S_{\text{EE}}(B) \end{split}$$

"A has more information about BC than about B alone".

• In particular, this implies the subadditivity property:

$$S_{\text{EE}}(A) + S_{\text{EE}}(B) \ge S_{\text{EE}}(AB)$$

• And also the Araki-Lieb inequality:

$$S_{\text{EE}}(AB) \ge |S_{\text{EE}}(A) - S_{\text{EE}}(B)|$$

Inequalities

Example:

$$\begin{split} &\rho_{ABC} = \frac{1}{4} \left[|000\rangle \left\langle 000| + |010\rangle \left\langle 010| + |011\rangle \left\langle 011| + |111\rangle \left\langle 111| \right| \right. \right] \\ &\Rightarrow S_{\mathrm{EE}}(ABC) = \log 4 \,, \\ &\rho_{AB} = \frac{1}{4} \left[|00\rangle \left\langle 00| + 2 \left| 01 \right\rangle \left\langle 01| + \left| 11 \right\rangle \left\langle 11| \right| \right] \,, \\ &\rho_{BC} = \frac{1}{4} \left[|00\rangle \left\langle 00| + |10\rangle \left\langle 10| + |11\rangle \left\langle 11| \right| \right] \,, \\ &\rho_{BC} = \frac{1}{4} \left[|00\rangle \left\langle 00| + |10\rangle \left\langle 10| + 2 \left| 11 \right\rangle \left\langle 11| \right| \right] \,, \\ &\Rightarrow S_{\mathrm{EE}}(AB) = S_{\mathrm{EE}}(BC) = -\frac{1}{4} \log \frac{1}{4} - \frac{1}{2} \log \frac{1}{2} - \frac{1}{4} \log \frac{1}{4} = \frac{3}{2} \log 2 \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{A} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1 \right\rangle \left\langle 1| \right| \right] \,, \\ &\rho_{B} = \frac{1}{4} \left[|0\rangle \left\langle 0| + 3 \left| 1$$

• SSA?

$$S_{\text{EE}}(BC) + S_{\text{EE}}(AB) = 3 \log 2 \simeq 2.0794$$

$$S_{\text{EE}}(ABC) + S_{\text{EE}}(B) = 2 \log 4 - \frac{3}{4} \log 3 \simeq 1.9486$$

• Subadditivity?

$$S_{\rm EE}(A) + S_{\rm EE}(B) = 2\log 4 - \frac{3}{2}\log 3 \simeq 1.1247\,, \quad S_{\rm EE}(AB) = \frac{3}{2}\log 2 \simeq 1.0397\,$$

RÉNYI ENTROPIES

Another interesting family of entanglement measures are the so-called **Rényi entropies**. This are defined by

$$S_n(A) \equiv \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n$$

The entanglement entropy is a particular case: $S_{\text{EE}} \equiv \lim_{n \to 1} S_n$.

RÉNYI ENTROPIES

Another interesting family of entanglement measures are the so-called **Rényi entropies**. This are defined by

$$S_n(A) \equiv \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n$$

The entanglement entropy is a particular case: $S_{\text{EE}} \equiv \lim_{n \to 1} S_n$. Example:

$$\rho_{A} = \frac{1}{\alpha} \left[|0\rangle \langle 0| + (\alpha - 1) |1\rangle \langle 1| \right] \Rightarrow \rho_{A}^{n} = \begin{bmatrix} \left(\frac{1}{\alpha}\right)^{n} & 0\\ 0 & \left(1 - \frac{1}{\alpha}\right)^{n} \end{bmatrix}$$

$$\Rightarrow \operatorname{Tr} \rho_{A}^{n} = \left(\frac{1}{\alpha}\right)^{n} + \left(1 - \frac{1}{\alpha}\right)^{n} \Rightarrow S_{n} = \frac{1}{1 - n} \log \left[\left(\frac{1}{\alpha}\right)^{n} + \left(1 - \frac{1}{\alpha}\right)^{n} \right]$$

What about the EE?

$$S_{n\to 1} = \frac{1}{1-n} \left(-\left[\frac{\log(\alpha - 1)}{\alpha} - \log\left(1 - \frac{1}{\alpha}\right) \right] (n-1) + \mathcal{O}(n-1)^2 \right)$$
$$= \frac{\log(\alpha - 1)}{\alpha} - \log\left(1 - \frac{1}{\alpha}\right)$$

• Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.
- Entanglement entropy satisfies a "first law".

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.
- Entanglement entropy satisfies a "first law".
- There exist additional interesting measures:

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.
- Entanglement entropy satisfies a "first law".
- There exist additional interesting measures:
 - Relative entropy: measures distinguishability between states.

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.
- Entanglement entropy satisfies a "first law".
- There exist additional interesting measures:
 - Relative entropy: measures distinguishability between states.
 - Mutual information: measures amount of information shared between subsystems. It satisfies SSA: $I(A, BC) \ge I(A, B)$.

- Entanglement = non-separability of quantum states. The individual description of a subsystem corresponding to an entangled system is necessarily incomplete.
- If ρ_{AB} separable $\Rightarrow \rho_A$ pure; If ρ_{AB} entangled $\Rightarrow \rho_A$ mixed.
- Entanglement entropy quantifies degree of entanglement between subsystems.
- Entanglement entropy satisfies a "first law".
- There exist additional interesting measures:
 - Relative entropy: measures distinguishability between states.
 - Mutual information: measures amount of information shared between subsystems. It satisfies SSA: $I(A, BC) \ge I(A, B)$.
 - Rényi entropies: uniparametric family of generalizations of entanglement entropy.