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Abstract

We discuss the (2,0) superconformal field theory in six dimensions
and its relation to D = 5 maximally supersymmetric Yang-Mills
theory, mostly based on arXiv:1012.2880.
We also report on arXiv:1210.7709 with Zvi Bern, John Joseph
Carrasco, Lance Dixon, Matt von Hippel and Henrik Johansson in
which we showed that D = 5 MSYM diverges at six loops.
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Introduction

Inspired by string/M theory and AdS/CFT, many superconformal field
theories have been discovered and studied. The most mysterious and
arguably the most important is the (2,0) theory in six dimensions
(Witten, 1995). There is a free or “abelian” (2,0) theory, a field theory
of a self-dual tensor (3 physical modes), 5 scalars and 8 fermions.
There are also “nonabelian” (2,0) theories, with various indirect
definitions and relations to other superconformal theories:

Type IIb string theory on a four-dimensional ADE singularity,
leading to an ADE classification of these theories.
N coincident M5-branes, leading to the AN−1 theory.
The large N limit is dual to M theory on AdS7 × S4.
After compactification on T 2, one gets N = 4 maximally
supersymmetric Yang-Mills theory, with complex gauge coupling τ
equal to the complex modulus of T 2. This gives S-duality a
geometric explanation.
Twisted compactifications on manifolds with d = 2,3,4 lead to
new superconformal theories in D = 4,3,2.
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Introduction

However there is no satisfactory Lagrangian, and since the theory has
no dimensionless coupling, no argument that there must be one, nor is
any other usable microscopic definition known.
Here are some of the ideas which have been tried:

As discussed here by John Schwarz, on the Coulomb branch
there are BPS strings, with tension proportional to differences of
scalar vevs φi − φj . In the unbroken limit φi → φj , these might lead
to “tensionless strings” as fundamental degrees of freedom.
One can conjecturally define M theory in the light-cone frame as
the large N limit of D0-branes in IIa theory – BFSS “Matrix theory.”
This idea also leads to a definition of the AN and DN (2,0)
theories as large N limits of D0-D4 systems.
One might start with the theory compactified on S1, T 2 or possibly
other manifolds, add in “Kaluza-Klein” and other extra degrees of
freedom of the D = 6 theory, and take the large volume limit.
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Introduction

What do we think we know about (2,0) theory, beyond its defining
properties and BPS spectrum?

It is a local field theory, with local correlation functions, which can
be defined in any (nonsingular) space-time with a fixed metric.
It has no dimensionless parameters, and no relevant operators
(but scales can be introduced by going on the Coulomb branch).
The AN and DN theories have O(N3) degrees of freedom, as
measured by the free energy, or by the Weyl anomaly
(Henningson and Skenderis 1998). Maxwell and Sethi 1204.2002
have a (complicated) field theory argument that the conformal
anomaly is O(N3).
The theory involves extended objects – not only do they exist, but
if we remove them the theory becomes non-interacting.

Extended objects in a conformal theory must be very strange indeed,
as they can have no preferred size – they are “scale-free.” Why do we
believe the last claim?
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Introduction

There is a very general argument that continuum theories of weakly
interacting particles cannot exist in more than four space-time
dimensions. The paths which contribute to the path integral of a free
quantum particle have fractal dimension 2 (this is perhaps more
familiar in the statistical mechanical analog of Brownian motion). Two
generic submanifolds of dimension d , embedded in a D-dimensional
space-time, would be expected to intersect in a manifold of dimension
2d − D. Thus, for D > 4, particle paths will not intersect (more
precisely the probability or amplitude of their intersection is zero).
In a cutoff theory, the cutoff will spread out the interaction and evade
this argument, but then the interactions will go to zero in the IR as a
power of the cutoff. This has even been made rigorous in some (rather
restrictive) cases (Aizenman, 1981).
Could this be evaded by strongly interacting particles, perhaps
because any picture in terms of paths involves infinitely many
particles? Maybe – but if these particles each carry an infinitesimal
portion of the momentum of a process, then it looks like they are
forming an extended object. Would be nice to make this sharp.
Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 6 / 49
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Introduction

If we grant that (2,0) theory involves extended objects, what are they?
The original answer to this question, motivated by the string theory
arguments, is that they are tensionless strings – literally tensionless in
the symmetry limit, and effectively tensionless at energies high
compared to |φi − φj |.
There are actions for tensionless strings, starting with Schild 1977, and
a modest literature which began before the proposal of (2,0) theory, in
good part motivated by the desire to understand the high energy limit
of string scattering amplitudes, which has many interesting properties
(Gross and Mende 1988; Amati, Ciafaloni, and Veneziano 1988;
Sundborg 1988; ...). The simplest action (Lindström Sundborg
Theodoridis 1991) is

S =

∫
d2σ VαV βDαX · DβX + λX 2 (1)

where X embeds the string into the lightcone of RD,2, there is a
gauged scale invariance, and V is a 2d vector (the world-sheet metric
is rank 1).
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Introduction

So far most work is inconclusive, while the few conclusive works are
negative – for example Gustafsson et al hep-th/9410143 showed that
the action above can only be quantized in D = 2. Any string
description would also have to address the problem that strings
normally do not allow defining local correlation functions.

Another idea is that (2,0) theory is simpler in twistor space or some
other formulation which is not manifestly local, evading the arguments
above – e.g. see Mason and Reid-Edwards 1212.6173 and Sämann
and Wolf 1205.3108.

Finally, there is the idea that these concrete classical descriptions are
not worth developing, because the theory is strongly coupled anyways.
Despite this obstacle, one might find particular amplitudes which can
be understood perturbatively, one might find ways to resum
perturbation theory, or one might work with a Hamiltonian formulation
and explicit wave functions. There is no reason to be defeatist!
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Introduction

So far most work is inconclusive, while the few conclusive works are
negative – for example Gustafsson et al hep-th/9410143 showed that
the action above can only be quantized in D = 2. Any string
description would also have to address the problem that strings
normally do not allow defining local correlation functions.

Another idea is that (2,0) theory is simpler in twistor space or some
other formulation which is not manifestly local, evading the arguments
above – e.g. see Mason and Reid-Edwards 1212.6173 and Sämann
and Wolf 1205.3108.

Finally, there is the idea that these concrete classical descriptions are
not worth developing, because the theory is strongly coupled anyways.
Despite this obstacle, one might find particular amplitudes which can
be understood perturbatively, one might find ways to resum
perturbation theory, or one might work with a Hamiltonian formulation
and explicit wave functions. There is no reason to be defeatist!

Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 8 / 49



Introduction

So far most work is inconclusive, while the few conclusive works are
negative – for example Gustafsson et al hep-th/9410143 showed that
the action above can only be quantized in D = 2. Any string
description would also have to address the problem that strings
normally do not allow defining local correlation functions.

Another idea is that (2,0) theory is simpler in twistor space or some
other formulation which is not manifestly local, evading the arguments
above – e.g. see Mason and Reid-Edwards 1212.6173 and Sämann
and Wolf 1205.3108.

Finally, there is the idea that these concrete classical descriptions are
not worth developing, because the theory is strongly coupled anyways.
Despite this obstacle, one might find particular amplitudes which can
be understood perturbatively, one might find ways to resum
perturbation theory, or one might work with a Hamiltonian formulation
and explicit wave functions. There is no reason to be defeatist!

Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 8 / 49



Relation to D = 5 MSYM

The simplest relation between (2,0) theory and a conventional field
theory is to compactify on S1. This leads to D = 5 maximally
supersymmetric Yang-Mills – the self-dual tensor reduces to an
ordinary vector boson in D = 5 (the extra components HIJK are dual to
H5LM = FLM ). Non simply laced gauge groups in D = 5 come from
twisted boundary conditions on S1.
The Yang-Mills coupling g2

5 in D = 5 has dimensions of length. Thus,
as suggested by dimensional analysis, and confirmed by BPS
arguments, one has

g2
5 = R5

in terms of the radius of S1. Thus the prefactor 1/g2
5 of the action is not

what would come from standard KK reduction and
∫

dx5.

This theory is of course nonrenormalizable. The perturbative
expansion is controlled by the effective dimensionless coupling g2

5E ,
where E is the energy scale of a process. At low energies, the
expansion should be good, while for E ∼ 1/g2

5 it will break down.
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Relation to D = 5 MSYM

The BPS objects are derived from the standard solitons, instantons
and dyons of Yang-Mills theory, which have new interpretations in
D = 5:

The self-dual solutions lead to particles. The sector with
topological charge n has lowest energy n/g2

5 = n/R5,
corresponding to a state with KK momentum n.
The ’t Hooft-Polyakov solution (in the Coulomb phase) becomes
an infinite string. This is the D = 5 counterpart of the D = 6 string
or M theory M2-brane stretched between M5-branes.
These monopole strings can form string junctions, which are 1/4
BPS states. They have O(N3) multiplicity and might be relevant
for explaining the N3 free energy (Lee and Yee 2007, Bolognesi
and Lee 2011).
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Relation to D = 5 MSYM

The self-dual solutions can be 1/2 BPS and were identified as KK
excitations of the elementary (2,0) multiplets in the early works
(Berkooz, Rozali, Seiberg 1997) and also have this interpretation in the
Matrix theory realization (Berkooz and Douglas 1996). However they
have never been well understood. Self-dual solutions have many
additional moduli, including a scale size ρ, which do not fit with a
conventional particle interpretation.
Some of these puzzles can be solved more easily on the Coulomb
branch. For example, Lambert et al 2010 found 1/4 BPS dyonic
instantons, which correspond to self-dual strings wrapped on S1, and
have no scale size modulus. However as we restore symmetry they
blow up.
It seems that the interpretation of these objects and specifically the
scale size is a key point in understanding these theories. We will
suggest that they are in fact the scale-free extended objects we argued
must exist in a nontrivial D > 4 CFT.
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Relation to D = 5 MSYM

One can make various hypotheses about the precise relation between
the two theories. The first question to address is the expected UV
divergences in D = 5 MSYM. By power counting, one expects an
`-loop amplitude in pure D = 5 YM to go as

A` ∼ g2`−2
5 Λ`

where Λ is a UV cutoff. These divergences are mitigated in MSYM but,
at least according to superspace arguments, are still expected (more
on this point below).

On the other hand, (2,0) theory has no scale, and no UV divergences.
Thus it provides a UV completion of D = 5 super Yang-Mills and an
effective cutoff Λ.
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Relation to D = 5 MSYM

While there are many examples of UV completions of
nonrenormalizable theories, this one seems somehow different:

The Fermi theory of weak interactions has as UV completion the
Weinberg-Salam model (and ultimately a GUT). In this example,
the underlying theory has two dimensionless gauge couplings.
More generally, given a nonrenormalizable theory with a coupling
g ∼ (length), and a cutoff Λ, one expects to get a dimensionless
coupling gΛ in the UV completion. Another example is the string
theory UV completion of D = 10 supergravity.
A different example is the M theory UV completion of D = 11
supergravity. In this case, we believe the cutoff Λ ∼ 1/lp11, and is
fixed in terms of the coupling.

This last example seems most relevant, and thus we postulate

Λ = 1/g2
5 = 1/R5

in D = 5 MSYM with the (2,0) completion. Like M theory, there is no
dimensionless coupling. A significant difference is that in (2,0) theory,
the cutoff only arises after we compactify.
Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 13 / 49
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Relation to D = 5 MSYM

To be more precise, we consider exact correlation functions or
S-matrix elements in compactified (2,0) theory. These will be
functions of an overall energy scale E and will cross over from D = 5
behavior at E << 1/R5 to (2,0) behavior at E >> 1/R5. The
crossover scale defines a cutoff Λ ∼ 1/R5 ∼ 1/g2

5 .
Where does this cutoff come from in D = 5 terms?
One can make various hypotheses:

1 Contrary to expectations, there are no UV divergences in standard
D = 5 MSYM – it is perturbatively finite. This turns out not to be
the case.

2 New degrees of freedom come in at the energy E ∼ 1/g2
5 and

cancel the UV divergences, providing an effective cutoff. They
might also explain the O(N3) free energy.

3 There are no new degrees of freedom, but somehow resummation
of the perturbative series eliminates the divergences.

4 The whole discussion is based on a misconception, because
S-matrix elements and other observables do not have a consistent
definition between the two theories.
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Relation to D = 5 MSYM

Indeed, while one can usually define the S-matrix of a superconformal
theory (as for D = 4 MSYM), this is not yet clear for the (2,0) theory.
For example, the D = 6 3-point S-matrix element for self-dual tensor
multiplets vanishes for symmetry reasons (Huang and Lipstein,
1004.4735). Although one can get interactions between two tensors
and a higher spin field, in fact these can only be supergravity
amplitudes (Czech, Huang and Rozali, 1110.2791).

Although there may well be subtleties in defining the D = 6 and even
the D = 5 S-matrix in the unbroken phase, these can be dealt with by
working on the Coulomb branch, on which the theory is free at low
energies. The question of UV divergences can be asked for low energy
scattering as well, so we cannot answer it just in terms of subtleties in
defining the S-matrix.
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Relation to D = 5 MSYM

Thus we are led to possibility 2, new degrees of freedom. There are
three possibilities:

1 They are BPS and we can already see them in D = 5 MSYM.
2 They are finite size analogs of infinite size BPS objects, such as

finite tensionless strings.
3 They are non-BPS and have no BPS analogs.

I have no ideas for the last possibility. In all three cases, we should
explain why in the compactified theory, the new degrees of freedom
only make their appearance at length scales L . 1/Λ = R5.
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Relation to D = 5 MSYM

Let us think about the second possibility. Consider the Coulomb
branch with |φi − φj | << 1/g2

5 , then the monopole strings are very
light, and it is plausible that these become infinite tensionless strings in
the symmetry limit. What is their dynamics? Could they vibrate and
intercommute, leading to finite loops of tensionless string?
Since D = 5 YM is very weakly coupled in this regime, we can study
this question before taking the symmetry limit, on the Coulomb branch.
The problem is very similar to that of vortex strings in D = 4, whose
tension is T = 2π〈φ〉2. Whlie one can make finite loops of vortex
string, they are very unstable, and not important dynamically.
As for the monopole string, its size and energy densities are set by
|φi − φj |, so it is not clear why its nature should change at the length
scale g2

5 . Taking the symmetry limit only increases this length scale, so
there is no reason to think it plays a role in the cutoff Λ. These seem to
me good arguments against possibility 2.
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Relation to D = 5 MSYM

To be more precise, there could be a description of (2,0) in terms of
fundamental tensionless strings, and they might be good descriptions
of D = 6 dynamics (at L << R5), but at long distances their dynamics
would have to be quite different than that of the monopole strings of
D = 5 SYM. Thus they do not seem like a good way to think about the
UV completion of the D = 5 theory.

Thus, we return to the first alternative. The instantonic particle has
mass 1/R5 = Λ so it naturally appears at the scale we need to cutoff
the theory. A simple and attractive hypothesis is that it also contributes
to loop amplitudes, and will change the UV divergences, perhaps
cancelling them. To study this we need to develop the perturbation
theory.
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General structure of SYM perturbation theory

Superspace arguments are more or less dimension independent and
lead to the following:

The YM action tr F2 + . . . is not renormalized.
The leading renormalization is of tr F4 + . . ., but this is only at one
loop.
Terms tr D2F4 + . . . and higher order terms can be generated at all
loop orders.

Since D2F4 is dimension 10, power counting predicts the first D = 5
UV divergence at

(D− 4)` = 10− 4 = 6 loops.

In Bern et al 1210.7709 we have verified that there is such a
divergence, by explicit computation. If time permits we will discuss this
later.
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General structure of SYM perturbation theory

It is hard to know what properties we should look for in D = 5
amplitudes, but we do know a fair amount about the D = 4 amplitudes
obtained by compactification on T 2. Let the volume of the T 2 be L2,
then as L→ 0 we recover N = 4 SYM, while we expect corrections to
come with positive powers of L. For example,

Seff =

∫
1
g2

4
tr F 2 + θtr F ∧ F + cL4tr F 4 + . . . .

The coefficients c should be computable functions of τ = 4π/g2
4 + iθ,

and by the geometric origin of τ , should satisfy S-duality.
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General structure of SYM perturbation theory

If we follow the chain (2,0)→ D = 5→ D = 4, we can use these
properties to try to constrain D = 5 MSYM. The perturbative argument
is straightforward: compactify D = 5 MSYM on a circle of radius R4,
then

g2
5

∫
dp4 f (p4)→ R5

R4

∑
n

f
(

n
R4

)
and the perturbative expansion is a series in g2

4 = R5/R4.

Furthermore, the limit L→ 0 takes R4,R5 ∝ L→ 0, so the 5d KK states
go to infinite energy and can be dropped. This is the usual argument
for the relation between (2,0) theory, D = 5 and D = 4 MSYM.
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General structure of SYM perturbation theory

g2
5

∫
dp4 f (p4)→ R5

R4

∑
n

f
(

n
R4

)
However, UV divergences in D = 5 can potentially spoil this argument.
These clearly come from states with nonzero p4 (since the D = 4
theory was finite) and start to appear at energies E ∼ 1/R4. Such KK
modes look like D = 4 particles with mass M ∼ n/R4.

Because the underlying theory is (2,0) theory, there are no actual UV
divergences – an apparent D = 5 UV divergence, is cutoff at the scale
Λ ∼ 1/R5. Compared to pure D = 4 MSYM, one gets finite quantum
corrections from states with 1/R4 ≤ E ≤ 1/R5.

Thus, an apparent D = 5 divergence Λn, produces a correction(
Λ

M

)n

∼
(

R4

R5

)n

∼ τn,

or log τ for a log divergence. Note that L has cancelled out, and these
corrections need not disappear as L→ 0.
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General structure of SYM perturbation theory

Taken at face value, this argument suggests that D = 5 MSYM must
be UV finite, to prevent these problematic corrections. However this
would be too quick:

There might be other positive powers of L in front of these
corrections, and
There is a problem with taking g4 → 0 at fixed L.

To explain the second point, since

R4 =
L
g4
, R5 = g4L,

taking g4 → 0 at fixed L decompactifies the fifth dimension. We need
to take L→ 0 faster than g4 → 0 to keep the four dimensional
interpretation.
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General structure of SYM perturbation theory

Thus, compactified D = 5→ D = 4 results are only guaranteed to
have a clear interpretation, if we can compute them at finite g4. There
is one case where we can unambiguously do this, namely the tr F 4

term, which receives no higher loop corrections. Summing the
one-loop contributions of KK modes with p4 6= 0, we find a coefficient∑

p4 6=0

g4
4

p4
4

= ζ(4)L4

since the g4 dependence of p4 cancels that of the numerator.

This result is not S-dual. It can be promoted to an S-dual result by the
ansatz of summing over both p4 and p5, leading to the coefficient∑

(m,n)6=(0,0)

(
(Im τ)2

|mτ + n|2

)2

= ζ(4)E(τ,2)L4,

where E(τ,2) is a nonholomorphic Eisenstein series. As a protected
amplitude, this should be checkable in string theory, perhaps IIa little
string theory (the throat region of NS 5-branes) on T 2.
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General structure of SYM perturbation theory

As we will explain in detail later, the leading candidate divergent
amplitude in D = 5 MSYM, at six loops, is indeed log divergent,
leading to a term in the 4d effective action

c · L6τ4tr D2F 4 × log τ (2)

where log τ = log(Λ/M4), the τ4 comes from g14
4 for a four-point six

loop amplitude and 1/g6
4 relating 1/M6

5 to L6. This makes sense at
fixed g4 and looks like an example of the “non-regular” UV contribution
we discussed above.
Of course, there is every reason to expect that higher loop
computations will lead to higher and higher power divergences. By
dimensional analysis, all contributions to D2F 4 go as L6. What is less
obvious, but can be checked, is that the leading divergences all come
with the same power of τ . This is because the loop counting g2

4 is
compensated by the cutoff relation Λ/M4 = 1/g2

4 . Thus there is no loop
counting parameter.
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General structure of SYM perturbation theory

Although it might be that this perturbation theory is simply nonsense, if
we are summing over the correct states, this would be (to my mind) a
very strange way for it to break down. In every other QFT, either there
are new degrees of freedom, or the series makes some sort of
qualitative sense (as in critical phenomena, QCD, semiclassical
effects, etc.). Thus it is worth considering the alternative, that we have
left out states which cancel the UV divergences. By the previous
discussion, these must be the BPS states of our previous discussion,
the self-dual “particles”.

Thus we come to the hypothesis of 1012.2880 and of Lambert,
Papageorgakis and Schmidt-Sommerfeld 1012.2882, that D = 5
MSYM is more than a low-energy effective description of (2,0) theory
– it already contains all the degrees of freedom of (2,0) theory, we just
need to find out how to incorporate them in our computations.
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A speculative approach

The most straightforward way to work on this hypothesis is to define 5d
MSYM with another auxiliary cutoff, take it to infinity and see what
happens. This is not totally ridiculous as 5d MSYM is not chiral and
could be put on the lattice, along the lines of Catterall hep-lat/0503036.
Another approach is “deconstruction” as in Arkani-Hamed, Cohen and
Georgi 0104005, in which we discretize the 5th dimension as the
nodes and links of an N = 2 4d Âk quiver gauge theory (i.e., a
discretized circle). Giving a vev v · 1 to each link matrix couples
adjacent nodes with a discretized derivative term v2tr (Ai − Ai+1)2.
This has the advantage of keeping 8 supercharges manifest.
It was reconsidered in Lambert et al 1212.3337 who rederive the old
claim of Arkani-Hamed et al 0110146 that as k →∞ this becomes the
(2,0) theory, with the 6d KK modes visible as the S-dual partners of
the W bosons with momentum in the 5th dimension.
These straightforward approaches give meaning to (and perhaps
imply) the hypothesis, but do not directly answer questions such as
how UV divergences in 5d are cutoff, or how an interacting 6d CFT can
exist at all.
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A speculative approach

An obstacle to understanding 5d and 6d microscopic definitions from
deconstruction is that in the 5d continuum limit, the node 4d gauge
couplings G2

4 go to infinity. This is because the action for the 5d zero
modes is

S =
1

G2
4

k∑
i=1

tr F 2
i + . . . (3)

→ k
G2

4
tr F 2 + . . . (4)

and the resulting YM coupling (in 4d or 5d) is proportional to G2
4/k .

Thus, the existence of the nodes does not seem helpful. One needs to
go to 5d momentum space to work with the theory, and back to our
previous description. But this does give another argument that the
naive cutoff prescription is reasonable:∫ Λ

−Λ
dp5 →

k/2∑
n5>−k/2

(5)
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A speculative approach

This brings us back to the idea that extra states in 5d MSYM,
presumably the instantonic particles, provide the UV cutoff. Is it
reasonable to look for this in perturbation theory? One might object
that solitons generally have a form factor and their loop contributions
will be exponentially suppressed.
This objection has been answered by Papageorgakis and Roysten
(talk at String-Math and to appear). Using crossing symmetry, the
soliton pair creation amplitude can be related to a form factor and
computed in the Manton approximation:

〈P ′|Jµ(x)|P〉 =

∫
dnm Ψ∗(m)Jµ(φ(m))Ψ(m), (6)

where m are coordinates on soliton moduli space, φ(m) is the
corresponding field configuration, and Ψ(m) is the wave function for a
particular soliton state.
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A speculative approach

One finds that, as expected, a soliton of size R has a form factor
exp−R|p − p′| which is exponentially suppressed at large momentum
transfer.
However, in the case at hand of self-dual solutions, the moduli include
a scale size which can be arbitrarily small. After integrating over the
scale size, the form factor becomes powerlike. Thus the instantonic
particles could contribute at finite order in the coupling.
In principle we could use these techniques to constrain or compute
their couplings. We might then work with the ansatz we used at one
loop, and extend the sums over KK momenta p4 to double sums over
(p4,p5). Thus we get an L-loop amplitude as a sum over finite 4d
amplitudes, similar to MSYM amplitudes, with massive internal states:

AL ≡
L∏

i=1

∑
pi

4,p
i
5∈Z

∫
d4Lp integrand. (7)
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A speculative approach

We can also try to guess the couplings. One constraint is S-duality in
4d. For example, the ansatz which led to the one-loop result we
discussed earlier constrains the KK mode couplings to the D = 5
MSYM massless states, as was worked out in Czech, Huang and
Rozali 1110.2791. In a generic gauge theory, there are many one-loop
four point diagrams; only in special cases such as MSYM do these
reduce to the box diagram with no bubbles or triangles. Combining this
constraint with the lack of KK momentum dependence in the one-loop
amplitude leads to a vertex

fijkAi
µB(p5)j

νρ∂
[µB(−p5)k ,νρ] (8)

where Aµ is the 5d gauge field and B are the massive KK tensors, plus
a generalization with one more parameter.
This is a sort of massive chiral generalization of the 5d YM vertex.
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A speculative approach

Another, probably stronger constraint is that if we are really going to
get finite amplitudes to all orders, this will almost certainly be because
of a supersymmetry involving the new modes. This may sound
problematic as it is a short step to saying that we are computing with a
6d action containing the new states, but there is no conventional local
action describing nonabelian tensors in 6d.
Actually, there has been some progress in writing actions in 5d which
contain the entire spectrum of BPS Kaluza-Klein modes, by Ho, Huang
and Matsuo 1104.4040; Samtleben, Sezgin and Wimmer, 1108.4060;
and Bonetti, Grimm and Hohenegger 1209.3017. These contain the
vertex derived by Czech et al.
The main loophole they exploit is that these actions are nonlocal in the
sixth dimension – at the very least they treat the zero modes differently
from the nonzero modes, and some work uses explicit inverse
derivatives. So, these would not be acceptable fundamental
formulations – but they might make sense as descriptions of couplings
to 5d solitons. It will be interesting to try to understand the UV
finiteness of the theory in these terms.
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A speculative approach

Even if it worked, the ansatz of letting instantonic particles run around
loops would raise many questions. The basic point that we have not
understood is that, because of their scale size modulus, the instantonic
particles are really extended objects. I repeat the point that this is an
inevitable part of a nontrivial CFT in D > 4.
Time evolution of a single instantonic particle consists not just of
motion of its center of mass, but also of its scale size. Should we think
of the scale size as another asymptotic direction, something like the
radial dimension of AdS/CFT ?
The charge k -instanton moduli space has real dimension 4kN. It has
limits which look like k SU(2) instantons, but the general configuration
does not. There have been many suggestions that an SU(N) instanton
can “fractionate” into N constituents. This idea was explored in D = 5
MSYM by Collie and Tong 0905.2267, who develop an interesting
analogy to solitons in the D = 3 CPN model.
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D = 5 MSYM at six loops

D = 5 MSYM at six loops

Given the problematic interpretation of the D = 5 six loop divergence,
and the analogy to other interesting problems such as the possible
seven loop divergence in N = 8 supergravity, Zvi Bern, John Joseph
Carrasco, Lance Dixon, Matt von Hippel and Henrik Johansson and I
were motivated to actually do the computation.
Although a six loop computation may seem prohibitively difficult, a
combination of recent advances in techniques for working with gauge
theory amplitudes, and advances in numerical integration of Feynman
diagrams, made it possible. The basic formalism for MSYM amplitudes
is largely independent of dimension, so D = 4, N = 4 SYM results can
be adapted to this case.
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D = 5 MSYM at six loops

To get the contribution to D2F 4, we need to insert four external gluons
and take the limit of zero external momenta. Using superspace
arguments this can be reduced to a vacuum diagram, but with some
doubled propagators. In general there are also complicated numerator
factors, but these can be greatly simplified by working out the on-shell
amplitude with the method of unitarity cuts. The resulting diagrams
have no UV subdivergences in D = 5.

Further simplifications are obtained by working with on-shell D = 6
superspace, as in arXiv:1010.0494 (Bern, Carrasco, Dennen, Huang,
and Ita).

Finally, one can use integration by parts to derive many relations
between different topologies. For the present amplitude, all of the
topologies can be re-expressed in terms of the pentagonal prism with
various numerator factors and doubled propagators.

Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 35 / 49



D = 5 MSYM at six loops

There are 68 different
triangle-free six loop
planar graphs which
contribute; here are 35
of them.
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D = 5 MSYM at six loops

Using integration by parts identities, these vacuum diagrams can all be
reduced to the pentagonal prism:

Michael R. Douglas (Simons Center) Thoughts on (2, 0) Strings 2013 37 / 49



D = 5 MSYM at six loops

It turns out that all of the numerator and denominator factors can be
placed on a single one-loop subdiagram of the prism,

leading to an explicit integrand, with the dressing factor

F =
s2

l21 l23
+

s t
l22 l24

+2
s t

m2
1m2

2
+

s l22
m2

3l23
+

s l24
m2

4l23
+

s l21
m2

2l22
+

s l21
m2

1l24
+

s l23
m2

3l22
+

s l23
m2

4l24
−2

l21
l23

where s = (m1 + m4)2 and t = (m1 + m2)2.
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D = 5 MSYM at six loops

It turns out that by further use of IBP relations, one can simplify this to

F ′ = 5

(
(l1 + l3)2

l22
+

l23
l21

+
l21
l23

)
− 1

= 5
(l1 + l3)2

l22
+

9
2

(
l23
l21

+
l21
l23

)
+

1
2

(l21 − l23 )2

l21 l23
> 0,

so the D2F 4 contribution is indeed log divergent.
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Numerical evaluation of six loop integrals

We did not have these IBP relations until late in our work and thus we
went on to numerically estimate the integral by Monte Carlo
integration. The fifteen propagators of the prism mean that this will be
a fifteen dimensional integral, which one might think would be easy for
a computer to estimate.

However, the reason Monte Carlo is not used more often for Feynman
integrals, is because it behaves badly for divergent integrands.
Although in the present case the integrand has only integrable
divergences, this is bad enough – the error estimate is proportional to
the variance of the integrand, but this is not square integrable.
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Numerical evaluation of six loop integrals

Now given any integrable endpoint divergence, for example∫
dx1dx2dx3

xα1
1 xα2

2 xα3
3
,

it can be resolved by the change of variables yi = x1−αi
i , and then

done by Monte Carlo.
The problem is that the integrand has many endpoints – up to 15! in
this case – and each one requires a different change of variable.

An approach to deal with this is sector decomposition, as developed
by Binoth and Heinrich (hep-ph/0004013, 0402265), Bogner and
Weinzierl (arXiv:0709.4092, 0806.4307), and A. and V. Smirnov and
M. Tentyukov (arXiv:0912.0158). The idea is simply to decompose the
integration region (the unit simplex) into many sectors, each containing
at most one singularity, and then integrate each sector separately. This
can also be used for UV and IR divergent integrands, by making
subtractions or using Mellin-Barnes techniques.
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Numerical evaluation of six loop integrals

The basic problem can be seen by looking at a planar scalar field
theory Feynman diagram with E edges, L loops, and no numerator
factors:

I =

∫ L∏
a=1

dDpa

E∏
i=1

1
p2

i + m2
i
,

where the edge momenta pi depend linearly on the loop momenta pa
in a way determined by the graph topology Γ.

In this case, the Feynman parameterization is

I = C
∫
αi≥0

E∏
i=1

dαi
(
det ′∆Γ(α)

)−D/2
,

where ∆Γ(α) is a graph Laplacian which acts on functions on the
vertices of the dual graph (i.e. faces of Γ) as

∆Γ(α) = d†(α) · d(α); d(α)f =
E∑

i=1

ei

αi
(f (start(i))− f (end(i))) .
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Numerical evaluation of six loop integrals

This determinant is equal to the Kirchhoff polynomial of Γ, which is a
sum over spanning trees T ⊂ Γ,

det ′∆Γ(αi) =
∑

T

∏
i∈T

αi . (9)

Thus one has an explicit integrand, which diverges wherever this
polynomial vanishes.

The Kirchhoff polynomial vanishes whenever the graph Laplacian
obtains extra zero modes. It can be shown that, for αi ≥ 0, this only
happens when the graph obtained by removing all edges with αi = 0,
is disconnected. There are many ways to do this and thus the
vanishing (or discriminant) locus is a complicated subvariety of the unit
simplex, with components of various dimensions. The goal of sector
decomposition is to subdivide the simplex into sectors each
intersecting at most one component of the discriminant locus.
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Numerical evaluation of six loop integrals

The problem of separating out the various ways in which the Kirchoff
polynomial can vanish is a problem in resolution of singularities, and
can be treated by these methods. The basic operation is a blow-up:
we choose a variable αi and make the change of variables

xi = αi ; xixj = αj ∀j 6= i .

This converts the region of integration 0 ≤ αj ≤ αi ∀j 6= i into the
region 0 ≤ xj ≤ 1 ∀j 6= i . Thus, the original N-dimensional region
αi ≥ 0 ∀i turns into a union of N “primary sectors,” each with an
integrand homogeneous in xi . The xi integral is easy to do (and
produces the log divergence in our case) leaving a nontrivial integral
over the N − 1-dimensional hypercube for each primary sector.
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Numerical evaluation of six loop integrals

Having factored out one variable xi , the rest of the denominator will
take the form

D =
∑

T

∏
j∈T ,j 6=i

xj

and is no longer homogeneous – some terms are degree L and others
are degree L− 1.
Now, in each primary sector, we iterate the blow-up process, choosing
a subset of variables xk with k ∈ S, and dividing the sector into |S| new
sectors labelled by k ∈ S. In sector k , we make the change of
variables

x ′k = xk ; x ′kx ′j = xj ∀j 6= k .

This subdivides the N − 1-cube into |S| unit cubes, in each of which
the denominator will have a higher power of some variable x ′k . If the
resulting denominator has the form

D = xn1
k1
. . . xnr

kr
(1 + x . . .) ,

then the singularity has been resolved in that sector, and the integral
can be done by change of variable (if the ni > −1) or other procedures.
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Numerical evaluation of six loop integrals

This iterative procedure can be related to resolution of a singularity by
blow-up, and Hironaka’s proof of resolution of singularities can be
adapted to show that there always exists a decomposition into
nonsingular sectors and that it can be found by an algorithm.

Several such algorithms have been implemented in computer
packages. We adapted A. and V. Smirnov’s FIESTA 2 package, which
uses Mathematica for symbolic manipulation, then sends the
integrands for each sector to a C++ Monte Carlo integrator (Vegas).
Such a sector integral at 10−3 precision takes a few seconds on one
CPU.

Among the sector decomposition algorithms of FIESTA 2 is a
“heuristic” algorithm which follows the procedure we described, and
chooses the set S at each step to be the one which leads to factoring
out a maximal degree

∑
ni monomial. This algorithm is not

guaranteed to terminate, but often works in practice.
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Numerical evaluation of six loop integrals

Applied to our six loop diagram, the heuristic algorithm works,
producing about 106 sectors (the precise number depends on the term
in the dressing factor). This is much less than 15! and the resulting
integral can be done on a 1000 node cluster in a few hours. The result
is

AL=6 = −1
ε

stuAtree

(4π)15 × (68.68± 0.17). (10)

An amusing and rather mysterious fact is that the known leading log
divergent amplitudes in dimensions D = 4 + 6/` can be fit to a simple
formula:

A` = (−1)`−1 1
ε

stuAtree

(4π)2L−3

(
b + c`+a/`

)
(11)

with a = 3.99, b = 1.74× 10−5 and c = 9.77.
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Numerical evaluation of six loop integrals

A seven loop calculation would be expected to lead to about 108

sectors and should also be doable, so if the leading potentially log
divergent seven loop amplitude in N = 8 supergravity can be brought
to a reasonable size, this long-standing question could also be settled
by direct computation.
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