Probing the structure of quantum phases of matter with holography

Sera Cremonini (Cambridge and Texas A&M)

- ➤ Traces of holography in many settings some better understood than others
 → how broad is its range of applicability?
- Recently, applications to a number of condensed matter systems [see talks by Erdmenger, Gauntlett, Liu, Takayanagi,...]
 - materials with unconventional scalings (e.g. `strange metals')
 - new poorly understood phases of matter
 - entangled systems
 - ...

- Common feature: systems whose d.o.f. are not weakly coupled
 - → no notion of quasi-particles + Boltzmann/Landau theory does not apply

- Natural setting to use holography
 - a set of analytic tools to probe mechanisms behind such systems

- On the GR side, from the dialogue between the two communities:
 - new classes of (black hole) solutions
 - new types of instabilities
 - ground states with reduced symmetries (broken translations and/or rotations, anisotropic, non-relativistic geometries ...)
 - new emergent scaling IR behavior
 - •

layered structure in cuprate superconductor

My focus today:

- the vacuum structure of some of these novel scaling geometries (Lisfhitz scaling and hyperscaling violation)
- features and questions associated with the rich landscape of IR phases

smectic order in a napoleon

charge density waves on sheets of high T superconductor (CaC₆)

Lifshitz scaling and hyperscaling violation

Non-relativistic Lifshitz scaling

Dynamical critical exponent $z \rightarrow$ anisotropy between space and time

$$\omega \sim k^z$$
 $x \to \lambda x, \quad t \to \lambda^z t$

Characterizes scaling of thermo quantities $s(T) \sim T^{\frac{d}{z}}$

- \rightarrow Hyperscaling violation $\theta \rightarrow$ anomalous scaling of free energy
- → critical excitations do not live in the naïve number of dimensions

$$s(T) \sim T^{\frac{d-\theta}{z}} \qquad \qquad \text{shifts effective dimensionality} \\ \text{of the system d}_{\text{eff}} = \text{d} - \theta$$

d_{eff}=1 of interest for compressible states and systems w/ Fermi surface (S_{ent}~ A log A) [Huijse/Sachdev/Swingle,Takayanagi et al] But FS not easily captured by holography.

How do we geometrize these scalings?

'Minimal' model:

Exact solutions to simple EMD theory (either electric or magnetic field)

$$\mathcal{L}_{d+2} = R - 2(\partial \phi)^2 - e^{2\alpha\phi} F^2 - V_0 e^{-\eta\phi}$$

How do we geometrize these scalings?

'Minimal' model:

Exact solutions to simple EMD theory (either electric or magnetic field)

$$\mathcal{L}_{d+2} = R - 2(\partial\phi)^2 - e^{\frac{2\alpha\phi}{\hbar}F^2} - V_0$$

$$ds_{d+2}^2 = \left(-r^{-2z}dt^2 + \frac{dr^2 + d\vec{x}^2}{r^2}\right)$$
$$t \to \lambda^z t, \quad \vec{x} \to \lambda \vec{x}, \quad r \to \lambda r$$
$$\phi(r) \sim \log(r)$$

How do we geometrize these scalings?

'Minimal' model:

Exact solutions to simple EMD theory (either electric or magnetic field)

$$\mathcal{L}_{d+2} = R - 2(\partial\phi)^2 - e^{2\alpha\phi}F^2 - V_0e^{-\eta\phi}$$

$$\begin{split} ds_{d+2}^2 &= \left(-r^{-2z} dt^2 + \frac{dr^2 + d\vec{x}^2}{r^2} \right) r^{2\theta/d} \\ t &\to \lambda^z t \,, \quad \vec{x} \to \lambda \vec{x} \,, \quad r \to \lambda r \qquad ds \to \lambda^{\theta/d} ds \\ \phi(r) &\sim \log(r) & \qquad \qquad \uparrow \\ & \qquad \qquad \text{no longer scale invariant} \end{split}$$

In general, anomalous scaling of gauge field important to understand conductive properties [Gouteraux, Gouteraux/Kiritsis, Karch]

Natural question: IR endpoint of these scaling solutions?

Solutions are supported by a running dilatonic scalar $\phi \sim \log r$ \rightarrow not expected to be a good description of the geometry in the deep IR

$$\mathcal{L} = R - 2(\partial\phi)^2 - e^{2\alpha\phi}F^2 - V_0e^{-\eta\phi}$$

Effective gauge coupling of the theory $g \equiv e^{-\alpha\phi}$ drives system to

strong coupling (magnetic case)

Expect modifications to $g(\phi)$, e.g.

$$\frac{1}{g^2} \to \frac{1}{g^2} + \xi_1 + \xi_2 g^2 + \dots$$

(toy model for QM corrections)

weak coupling (electric case)

Expect higher derivative terms no longer negligible

(tree level terms comparable to F^4 ,...)

Also curvature + tidal singularities [Copsey/Mann, Horowitz/Way, Bao/Dong/Harrison/Silverstein]

IR completion of hyperscaling violation

[arXiv:1208.1752 – J. Bhattacharya, S.C., A. Sinkovics]

In the Lifshitz case, a toy model for QM corrections generates $AdS_2 \times R^2$ in deep IR [Harrison/Kachru/Wang 1202.6635]

Our starting point:

$$\mathcal{L} = R - 2(\partial \phi)^2 - f(\phi)F^2 - V(\phi)$$

$$f(\phi) = e^{2\alpha\phi}$$
, $V(\phi) = -V_0 e^{-\eta\phi}$

Explored conditions for emergence of $AdS_2 \times R^2$ in deep IR:

• **generic IR modifications to** $f(\phi)$ **and** $V(\phi) \rightarrow$ whether of classical or `quantum' origin (toy model of QM corrections as baby example)

AdS
$$_2$$
 x R 2 (z, θ) geometry AdS $_4$ deep IR \uparrow UV e.g. $\xi_2 g^4 + \xi_1 g^2 \simeq 1$ e.g. $V = -V_0 (e^{-\eta \phi} + c_1 e^{\eta_1 \phi})$

[arXiv:1208.1752]

Main Message:

- > These scaling geometries should be thought of as intermediate solutions
- ▶ In many cases their `naïve' IR completion is $AdS_2 \times R^2$

[arXiv:1208.1752]

Main Message:

- These scaling geometries should be thought of as intermediate solutions
- ▶ In many cases their `naïve' IR completion is $AdS_2 \times R^2$

This picture has emerged in a number of setups:

- ▶ Dyonic charges yield stabilizing potential for scalar \rightarrow AdS₂ x R² [Trivedi et al, 1208.2008]
- → Higher derivative and QM corrections provide stabilization mechanism \rightarrow AdS₂ x R² [Knodel/Liu, Peet et al, Cardoso/Haack et al,...]
- Various SUGRA truncations (sometimes with `η-geometries' in IR or mid-IR)
 [Donos/Gauntlett/Pantelidou, Kulaxizi/Parnachev/Schalm,...]

Spatially Modulated Instabilities of (z,θ) geometries [S.C. arXiv:1310.3279, S.C. and A. Sinkovics arXiv:1212.4172]

- Well-known extensive ground state entropy of AdS₂ x R² in violation of 3rd law (highly degenerate ground state pathology or feature?)
- ▶ New phases expected to emerge \rightarrow AdS₂ x R² should not be typical ground state

Spatially Modulated Instabilities of (z,θ) geometries [S.C. arXiv:1310.3279, S.C. and A. Sinkovics arXiv:1212.4172]

- Well-known extensive ground state entropy of AdS₂ x R² in violation of 3rd law (highly degenerate ground state pathology or feature?)
- ▶ New phases expected to emerge \rightarrow AdS₂ x R² should not be typical ground state
- AdS₂ x R² suffers from spatially modulated instabilities in a variety of setups [Nakamura/Ooguri/Park, Donos/Gauntlett/Pantelidou,...]
 - note also non-linear instability to inhomogeneous horizons Hartnoll/Santos 1403.4612

Our logic:

- use knowledge of instabilities of AdS_2 region to identify (z, θ) geometries which are unstable to spatially modulated phases
 - → ubiquitous in CM systems (smectics, spin/charge density waves...)

Spatially modulated instabilities

Simple EMD setup:
$$\mathcal{L} = R - V(\phi) - 2(\partial \phi)^2 - f(\phi)F_{\mu\nu}F^{\mu\nu}$$

Strategy:

Magnetic case 1212.4172 Purely electric in 1310.3279

- 1) require $f(\phi)$ and $V(\phi)$ to give:
 - $AdS_2 \times R^2$ in the deep IR
 - an intermediate regime of (z, θ) scaling:

$$f(\phi) = e^{2\alpha\phi} + \dots$$
$$V(\phi) = V_0 e^{-\eta\phi} + \dots$$

corrections negligible in intermediate region

- 2) identify conditions for existence of IR instabilities (modes that violate AdS₂ bound)
 - \rightarrow instability conditions for generic $f(\phi_h)$ and $V(\phi_h)$
- 3) map to conditions on (z, θ) and remaining parameters in the theory

Spatially modulated instabilities

Turn on spatially modulated fluctuations about IR $AdS_2 \times R^2$

Purely magnetic case [1212.4172]:

$$\delta g_{tt} = L^2 r^2 h_{tt}(r) \cos(kx), \quad \delta g_{xx} = L^2 b^2 h_{xx}(r) \cos(kx), \quad \delta g_{yy} = L^2 b^2 h_{yy}(r) \cos(kx)$$

$$\delta A_y = a(r) \sin(kx), \qquad \delta \phi = w(r) \cos(kx),$$

k=0 case

No unstable modes for $AdS_2 \times R^2$ (Almuhairi/Polchinski, Donos/Gauntlett/Pantelidou)

Spectrum of scaling dimensions:

$$\delta_{\pm} = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 + L^2 V'' + \frac{f''}{f}} \longrightarrow V''_{eff} > 0$$

Possible instabilities controlled by curvature of effective scalar potential

 \rightarrow none if scalar settles to min of its effective potential (e.g. AdS₂ x R²)

Spatially modulated instabilities

Finite k case

• spectrum of scaling dimensions (small k expansion):

$$\delta_{1,2,3,4} = \frac{1}{2} \pm \sqrt{\text{mess}}$$

$$V''_{eff} = \frac{f''}{f} + L^2 V''$$

$$\text{mess} = [k = 0 \text{ terms}] \pm k^2 \left[\frac{3}{2} \pm \frac{1}{2} \pm \frac{2}{8 - V''_{eff}} \frac{f'^2}{f^2} \right]$$

AdS₂ x R² unstable to spatial modulations (for some k-range) whenever

$$8 - 2\left(\frac{f'}{f}\right)^2 < \frac{f''}{f} + L^2V'' < 8 + \left(\frac{f'}{f}\right)^2$$

• so far we have a **generic scalar potential and gauge kinetic function** (here constant B field but analogous results for purely electric case)

Connecting with the intermediate regime

Require $f(\phi)$ and $V(\phi)$ to give rise to intermediate scaling regime, e.g.

$$f(\phi) = e^{2\alpha\phi} + \dots$$
$$V(\phi) = V_0 e^{-\eta\phi} + \dots$$

corrections negligible in intermediate region

Fully specifying $f(\phi)$ and $V(\phi) \rightarrow$ values of (z,θ) associated with instabilities

Connecting with the intermediate regime

Require $f(\phi)$ and $V(\phi)$ to give rise to intermediate scaling regime, e.g.

$$f(\phi) = e^{2\alpha\phi} + \dots$$

$$V(\phi) = V_0 e^{-\eta \phi} + \dots$$

corrections negligible in intermediate region

Fully specifying $f(\phi)$ and $V(\phi) \rightarrow$ values of (z,θ) associated with instabilities

Concrete example [from electric case 1310.3279]

$$f(\phi) = e^{\alpha\phi}, \qquad V = V_0 e^{-\eta\phi} + \mathcal{V}(\phi)$$

spatially modulated instabilities provided constraint — is obeyed

$$\frac{8}{\theta - 2z + 2} = L^2 \left(\mathcal{V}''(\phi_0) - \frac{\theta^2}{(\theta - 2)(\theta - 2z + 2)} \mathcal{V}(\phi_0) \right)$$

Take home message:

 \rightarrow evidence for spatially modulated phases (`stripes') as possible ground states of (certain) (z,θ) geometries

We took a shortcut to identify instabilities and used the naïve IR $AdS_2 \times R^2$

> one should be able to see these unstable modes by analyzing the (z,θ) geometries directly \rightarrow Iizuka, Maeda 1301.5677

An AdS_4 IR completion of (z,θ) geometries [Work with J. Bhattacharya and B. Gouteraux, 1407.???]

Natural question: are there other possible ground states?

 \rightarrow not all (z,θ) solutions are unstable to spatial modulations or even approach AdS₂ x R²

Emergent conformal symmetry in the IR?

An AdS_4 IR completion of (z,θ) geometries [Work with J. Bhattacharya and B. Gouteraux, 1407.???]

Natural question: are there other possible ground states?

 \rightarrow not all (z,θ) solutions are unstable to spatial modulations or even approach $AdS_2 \times R^2$

Emergent conformal symmetry in the IR?

Picture we are exploring:

deep IR UV

AdS₄ (z,θ) geometry (different) AdS₄

Analog of ground state of holographic superconductor but with intermediate hyperscaling violating regime

[Gubser/Rocha 0807.1737, Gubser /Nellore 0908.1972 ..., Horowitz/Roberts 0908.3677]

Our toy model
$$\mathcal{L} = R - \frac{1}{2}(\partial \phi)^2 - f(\phi)F^2 - W(\phi)A^2 - V(\phi)$$

 \rightarrow broken-symmetry phase of theory w/ U(1) symmetry and charged complex scalar

Note:

- scalar potential must be carefully engineered to get intermediate scaling
- massive gauge field needed to source IR AdS₄
- intermediate scaling regime sensitive to where charge density is concentrated

Features

- new stable ground state for scaling solutions w/out extensive entropy issues
- (z,θ) scaling regime in mid-infrared region \rightarrow tunable knobs
- expect interplay between different scalings at different energy scales
 - → Applications to transport?

Rich structure of IR phases

This story falls into the recent efforts to classify IR geometries (Gouteraux + Kiritsis, Iizuka et al, Kachru et al, ...)

- scaling IR asymptotics at finite density
- homogeneous Bianchi geometries (e.g. helical structure)
- broken translations (`smectic' order) and/or rotations (`nematic' order)

Breaking of translational invariance <u>crucial</u> for transport

→ lots of work on resulting phenomenology [e.g. talks by Erdmenger and Gauntlett]

IR phases breaking only rotations can also be realized and mirror CM systems

$$ds^{2} = -r^{2z}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{2p}dx^{2} + r^{2q}dy^{2}$$

$$t \to \lambda^{z}t, \quad x \to \lambda^{p}x, \quad y \to \lambda^{q}y, \quad r \to \lambda^{-1}r$$

underlying theme → ground states with reduced symmetries

A number of interesting questions once symmetries are relaxed, e.g.

- Can we geometrize the interplay between different phases and scalings?
 - e.g. nematic phases with no smectic instabilities at weak coupling. At strong coupling? or Isotropic nematic smectic transitions?

- Competing orders?
 - competition between possible sources of instabilities and phases [new ω-deformed SO(8) gauged SUGRA theories, work in progress with Y. Pang, C. Pope, J. Rong]

- Holographic RG flows w/out Lorentz invariance: any monotonicity?
 [SC + Xi Dong, arXiv:1311.3307]
 - generically breakdown of monotonicity w/out Lorentz invariance
 - in certain cases, one can still identify <u>criteria on UV geometry that ensure monotonicity</u> (c-function from entanglement entropy of a strip)
 - more fundamental understanding? [e.g. talk by Casini]

To wrap up...

- The structure of phases from gravity is much richer than anticipated, with interesting emergent IR behaviors
- Novel ground states with reduced symmetries
- As the dialogue between gravity and quantum field theories continues, we gain more insight into the mechanisms driving strongly coupled phases of matter

Thank You