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Traces of holography in many settings — some better understood than others
—> how broad is its range of applicability?

Recently, applications to a number of condensed matter systems [see talks
by Erdmenger, Gauntlett, Liu, Takayanagji,...]

e materials with unconventional scalings (e.g. ‘strange metals’)
* new poorly understood phases of matter
* entangled systems

Iron pnictides

3 BaFe,(As, .P.),
scaling of aFe,(AsP,),

resistivity

O Al

ordinary metal

(Fermi Liquid)




Common feature: systems whose d.o.f. are not weakly coupled
- no notion of quasi-particles + Boltzmann/Landau theory does not apply

Natural setting to use holography
 aset of analytic tools to probe mechanisms behind such systems

On the GR side, from the dialogue between the two communities:

* new classes of (black hole) solutions

* new types of instabilities

« ground states with reduced symmetries (broken translations and/or rotations,
anisotropic, non-relativistic geometries ...)

* new emergent scaling IR behavior

\..,'. e

layered structure in cuprate superconductor



My focus today:

the vacuum structure of some of these novel scaling geometries
(Listhitz scaling and hyperscaling violation)

features and questions associated with the rich landscape of IR phases

charge density waves on sheets of

smectic order in a napoleon
high T superconductor (CaCy)




Lifshitz scaling and hyperscaling violation

> Non-relativistic Lifshitz scaling

Dynamical critical exponent z = anisotropy between space and time

w ~ k* Tz —Ar, t— Nt

d
Characterizes scaling of thermo quantities  s(7") ~ T'=

» Hyperscaling violation 6 - anomalous scaling of free energy
- critical excitations do not live in the naive number of dimensions

é\ shifts effective dimensionality
of the system d 4=d -0

d.s=1 of interest for compressible states and systems w/ Fermi surface (S,.,~ A log A)
[Huijse/Sachdev/Swingle, Takayanagi et al] But FS not easily captured by holography.




How do we geometrize these scalings?

"Minimal’ model:
Exact solutions to simple EMD theory (either electric or magnetic field)

Ld_l_z = R — 2(8(,f))2 - 62a¢F2 — ‘/(]B_Wj
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How do we geometrize these scalings?

"Minimal’ model:
Exact solutions to simple EMD theory (either electric or magnetic field)

Ld_l_z = R — 2(8(,f))2 — 62(¥R¢F2 — Vge_”&b\

z 0

2

dr? + dz?
d8?1+2 = (—7“_2zdt2 + 4 ’ ) r20/d

T
t— Nt, T—AE, r—= r  ds— M

$(r) ~ log(r) !

no longer scale invariant

In general, anomalous scaling of gauge field important to understand conductive
properties [Gouteraux, Gouteraux/Kiritsis, Karch]




Natural question: IR endpoint of these scaling solutions?

Solutions are supported by a running dilatonic scalar ¢ ~logr
- not expected to be a good description of the geometry in the deep IR

L=R—20¢)* —*PF* — Vye "

Effective gauge coupling of the theory g = e~ drives system to

strong coupling weak coupling
(magnetic case) (electric case)

Expect modifications to g(9), e.g. Expect higher derivative terms
1 1 no longer negligible
9—2—)‘ 9_2+§1+5292+

(tree level terms comparable to F4,...)
(toy model for QM corrections)

Also curvature + tidal singularities [Copsey/Mann, Horowitz/Way,
Bao/Dong/Harrison/Silverstein]




IR completion of hyperscaling violation
[arXiv:1208.1752 —J. Bhattacharya, S.C., A. Sinkovics]

In the Lifshitz case, a toy model for QM corrections generates AdS, x R? in deep IR
[Harrison/Kachru/Wang 1202.6635]

Our starting point: L=R—-204)*— f(¢p)F* -V (¢)
f(ﬁb) _ e?aqb’ V(Qb) — _Voe—m}b

Explored conditions for emergence of AdS, x R? in deep IR:

« generic IR modifications to f(¢) and V (¢) = whether of classical or "quantum’
origin (toy model of QM corrections as baby example)

AdS, x R? (z,0) geometry

deep IR 1‘
eg. &' +&g°~1




Main Message: [arXiv:1208.1752 ]

These scaling geometries should be thought of as intermediate solutions

In many cases their " naive ’
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Main Message: [arXiv:1208.1752 ]

These scaling geometries should be thought of as intermediate solutions
In many cases their " naive ’

(z, 0) AdS,

20500, 1= % fixed double scaling lim.it,
0 Hartnoll/Shaghoulian

This picture has emerged in a number of setups:
Dyonic charges yield stabilizing potential for scalar > AdS, x R? [Trivedi et al, 1208.2008]

Higher derivative and QM corrections provide stabilization mechanism = AdS, x R?
[Knodel/Liu, Peet et al, Cardoso/Haack et al,...]

Various SUGRA truncations (sometimes with ' n-geometries” in IR or mid-IR)
[Donos/Gauntlett/Pantelidou, Kulaxizi/Parnachev/Schalm,...]
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Spatially Modulated Instabilities of (z,0) geometries
[S.C. arXiv:1310.3279, S.C. and A. Sinkovics arXiv:1212.4172]

Well-known extensive ground state entropy of AdS, x R? in violation of 3™ law
(highly degenerate ground state — pathology or feature?)

New phases expected to emerge > AdS, x R? should not be typical ground state
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Spatially Modulated Instabilities of (z,0) geometries
[S.C. arXiv:1310.3279, S.C. and A. Sinkovics arXiv:1212.4172]

Well-known extensive ground state entropy of AdS, x R? in violation of 3™ law
(highly degenerate ground state — pathology or feature?)

New phases expected to emerge - AdS, x R? should not be typical ground state

AdS, x R? suffers from spatially modulated instabilities in a variety of setups
[Nakamura/Ooguri/Park, Donos/Gauntlett/Pantelidou,...]

note also non-linear instability to inhomogeneous horizons Hartnoll/Santos 1403.4612

Our logic:

use knowledge of instabilities of AdS, region to identify (z, 0) geometries
which are unstable to spatially modulated phases

- ubiquitous in CM systems (smectics, spin/charge density waves...)
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Spatially modulated instabilities

Simple EMD setup: L =R —V(¢) —2(9¢)° — f(¢)F,, F"

Magnetic case 1212.4172
Strategy: Purely electric in 1310.3279

1) require f(¢) and V (¢) to give:
AdS, x R? in the deep IR

an intermediate regime of (z, 0) scaling:

flo) = 2% corrections negligible
V( qb) — 7 e—’r}gb n in intermediate region

2) identify conditions for existence of IR instabilities (modes that violate AdS, bound)

- instability conditions for generic f(¢,) and V (¢;)

3) map to conditions on (z, 8) and remaining parameters in the theory




Spatially modulated instabilities

Turn on spatially modulated fluctuations about IR AdS, x R?
Purely magnetic case [1212.4172 ]:

oy L*r? hyy(r) cos(kz),  0gex = L*b* hyz(r) cos(kz), gy = L*b? hyy(r) cos(kx)
0Ay = a(r) sin(kz), 0¢ = w(r) cos(kx) ,

k=0 case
No unstable modes for AdS, x R? (Almuhairi/Polchinski, Donos/Gauntlett/Pantelidou)

Spectrum of scaling dimensions:

J :lil 1 L2V”—|—f” — 1/
7979 7 eff >0

Possible instabilities controlled by curvature of effective scalar potential

> none if scalar settles to min of its effective potential (e.g. AdS, x R?)




Spatially modulated instabilities

Finite k case

spectrum of scaling dimensions (small k expansion):

1
51,2,3’4 5 + 4/ 1Mess

= + 2 Ststg
[k =0 terms] + k 5% 3 VP

3 1 p f’2]

AdS, x R? unstable to spatial modulations (for some k-range) whenever

Lf J 2y, (f,)
8 — (f)<f—|—LV<8+f

so far we have a generic scalar potential and gauge kinetic function

(here constant B field but analogous results for purely electric case)




Connecting with the intermediate regime

Require f(¢p) and V (¢p) to give rise to intermediate scaling regime, e.g.

S (¢) = ¢ . corrections negligible
V(gp) = Voe_w + ... in intermediate region

Fully specitying f(¢) and V (¢p) > values of (z,0) associated with instabilities




Connecting with the intermediate regime

Require f(¢p) and V (¢p) to give rise to intermediate scaling regime, e.g.

S (¢) = ¢ . corrections negligible
V(gp) = Voe_w + ... in intermediate region

Fully specitying f(¢) and V (¢p) > values of (z,0) associated with instabilities

Concrete example [from electric case 1310.3279]

flp)=e*, V=V +V(¢)

z dire 'tion

spatially modulated instabilities

provided constraint \15 obeyed

92
(0 —2)(0—2z42)

8 —_
0—22+2

2 (v'(o0) -

V(o))

0 direction




Take home message:
evidence for spatially modulated phases ('stripes’) as possible ground states
of (certain) (z,0) geometries

We took a shortcut to identify instabilities and used the naive IR AdS, x R?

one should be able to see these unstable modes by analyzing the (z,0)
geometries directly = lizuka, Maeda 1301.5677




An AdS, IR completion of (z,0) geometries
[ Work with J. Bhattacharya and B. Gouteraux, 1407.22??]

Natural question: are there other possible ground states?

not all (z,0) solutions are unstable to spatial modulations or even approach AdS, x R2

Emergent conformal symmetry in the IR?
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An AdS, IR completion of (z,0) geometries
[ Work with J. Bhattacharya and B. Gouteraux, 1407.22??]

Natural question: are there other possible ground states?

not all (z,0) solutions are unstable to spatial modulations or even approach AdS, x R?

Picture we are exploring;:

deep IR (MY

—

AdS, (z,0) geometry (different) AdS,

Analog of ground state of holographic superconductor but with intermediate
hyperscaling violating regime
[Gubser/Rocha 0807.1737, Gubser /Nellore 0908.1972 ..., Horowitz/Roberts 0908.3677]




Ourtoymodel £ = R~ 5(09)? — [($)F* — W($)4* — V(¢)

- broken-symmetry phase of theory w/ U(1) symmetry and charged complex scalar

UV AdS,

— (z,0) regime
V(o) =-6/L7g |

duv

Note:

« scalar potential must be carefully engineered to get intermediate scaling

« massive gauge field needed to source IR AdS,

 intermediate scaling regime sensitive to where charge density is concentrated




Features

Emergent conformal symmetry

— (z,0) regime

V(dR) =- 6/ LZIR -

duv

« new stable ground state for scaling solutions w/out extensive entropy issues
* (z,0) scaling regime in mid-infrared region = tunable knobs
« expect interplay between different scalings at different energy scales

—> Applications to transport?




Rich structure of IR phases

intermediate
Lifshitz and hyperscaling
violating geometry

A\

spatially modulated AdS, AdS, x R2 #(AdS,x R?) Lifshitz
geometries




This story falls into the recent efforts to classify IR geometries (Gouteraux + Kiritsis,
lizuka et al, Kachru et al, ...)

scaling IR asymptotics at finite density
homogeneous Bianchi geometries (e.g. helical structure)
broken translations (‘smectic’ order) and/or rotations (‘nematic’ order)

Breaking of translational invariance crucial for transport
- lots of work on resulting phenomenology [e.g. talks by Erdmenger and Gauntlett]

IR phases breaking only rotations can also be realized and mirror CM systems

2p 7,2 | 247, 2
+ rPdz® + r*ldy

y— Ny, = A1r

underlying theme 2 ground states with reduced symmetries
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A number of interesting questions once symmetries are relaxed, e.g.

Can we geometrize the interplay between different phases and scalings?

e.g. nematic phases with no smectic instabilities at weak coupling. At strong
coupling? or Isotropic — nematic — smectic transitions?

Competing orders?

competition between possible sources of instabilities and phases [new w-deformed
SO(8) gauged SUGRA theories, work in progress with Y. Pang, C. Pope, J. Rong]

Holographic RG flows w/out Lorentz invariance: any monotonicity?
[SC + Xi Dong, arXiv:1311.3307]

generically breakdown of monotonicity w/out Lorentz invariance

in certain cases, one can still identify criteria on UV geometry that ensure monotonicity
(c-function from entanglement entropy of a strip)

more fundamental understanding? [e.g. talk by Casini]
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To wrap up...

The structure of phases from gravity is much richer than anticipated,
with interesting emergent IR behaviors

Novel ground states with reduced symmetries
As the dialogue between gravity and quantum field theories continues,

we gain more insight into the mechanisms driving strongly coupled
phases of matter

Thank You
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