Integrable spin systems and four-dimensional gauge theory

Based on 1303.2632 and joint work with Robbert Dijkgraaf, Edward Witten and Masahito Yamizaki

Kevin Costello

Perimeter Institute of theoretical physics Waterloo, Ontario

Strings, 2016

Kevin Costello Integrable spin systems and gauge theory

・聞き ・ヨト ・ヨト

2-dimensional integrable spin systems

- Links of a lattice are labelled by spins $i \in \{1, ..., n\}$.
- At nodes of a lattice have interaction *R*^{ij}_{kl}(z) depending on a spectral parameter z.
- Transfer matrix

$$T_{j_1...j_n}^{i_1...i_n}(z) = \sum_{k_j} R_{j_1k_2}^{k_1i_1}(z) R_{j_2k_3}^{k_2i_2}(z) \dots R_{j_nk_1}^{k_ni_n}(z).$$

• Partition function (on $n \times m$ lattice) is

$$\sum_{\text{configurations nodes}} \prod_{kl} R_{kl}^{ij}(z) = \text{Tr } T(z)^m$$

 Integrability: [T(z), T(z')] = 0. Follows from the Yang-Baxter equation for R(z).

Three basic classes of examples:

- Spectral parameter $z \in \mathbb{C}$. Zero-field 6-vertex model / XXX spin chain.
- 2 Spectral parameter $z \in \mathbb{C}^{\times}$. 6-vertex model / XXZ model.
- Spectral parameter $z \in E$, elliptic curve. 8-vertex model/ *XYZ* spin chain.

Where do spin systems come from? Why are they integrable? Special case (Witten 89):

Spin systems with no spectral parameter come from Wilson lines in Chern-Simons theory

ヘロト ヘ戸ト ヘヨト ヘヨト

Three basic classes of examples:

- Spectral parameter $z \in \mathbb{C}$. Zero-field 6-vertex model / XXX spin chain.
- 2 Spectral parameter $z \in \mathbb{C}^{\times}$. 6-vertex model / XXZ model.
- Spectral parameter $z \in E$, elliptic curve. 8-vertex model/ *XYZ* spin chain.

Where do spin systems come from? Why are they integrable?

Special case (Witten 89): Spin systems with no spectral parameter come from Wilson lines in Chern-Simons theory

くロト (過) (目) (日)

Three basic classes of examples:

- Spectral parameter $z \in \mathbb{C}$. Zero-field 6-vertex model / XXX spin chain.
- 2 Spectral parameter $z \in \mathbb{C}^{\times}$. 6-vertex model / XXZ model.
- Spectral parameter $z \in E$, elliptic curve. 8-vertex model/ *XYZ* spin chain.

Where do spin systems come from? Why are they integrable? Special case (Witten 89):

Spin systems with no spectral parameter come from Wilson lines in Chern-Simons theory

ヘロト 人間 ト ヘヨト ヘヨト

Goal of this talk:

- Introduce a 4-dimensional cousin of Chern-Simons theory
- Explain how Wilson lines here lead to integrable spin systems
- Extra dimension allows you to see the spectral parameter
- Will also see integrability of 2-dimensional σ -models from this theory

Integrable systems with spectral parameter will arise from a 4-dimensional gauge theory on $\mathbb{R}^2\times\mathbb{C}.$

Gauge field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}.$$

Action

$$S(A) = \int \mathrm{d}z C S(A).$$

• Equations of motion:

$$F(A)_{xy} = F(A)_{x\overline{z}} = F(A)_{y\overline{z}} = 0.$$

- Theory is topological in x y plane, holomorphic in the *z*-plane.
- There are Wilson lines in the x y (topological) plane.

(日本) (日本) (日本)

Integrable systems with spectral parameter will arise from a 4-dimensional gauge theory on $\mathbb{R}^2\times\mathbb{C}.$

Gauge field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}.$$

Action

$$S(A) = \int \mathrm{d}z C S(A).$$

• Equations of motion:

$$F(A)_{xy} = F(A)_{x\overline{z}} = F(A)_{y\overline{z}} = 0.$$

- Theory is topological in x y plane, holomorphic in the *z*-plane.
- There are Wilson lines in the x y (topological) plane.

(日本) (日本) (日本)

Integrable systems with spectral parameter will arise from a 4-dimensional gauge theory on $\mathbb{R}^2\times\mathbb{C}.$

Gauge field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}.$$

Action

$$S(A) = \int \mathrm{d}z C S(A).$$

Equations of motion:

$$F(A)_{xy} = F(A)_{x\overline{z}} = F(A)_{y\overline{z}} = 0.$$

- Theory is topological in x y plane, holomorphic in the *z*-plane.
- There are Wilson lines in the x y (topological) plane.

(日本) (日本) (日本)

Integrable systems with spectral parameter will arise from a 4-dimensional gauge theory on $\mathbb{R}^2\times\mathbb{C}.$

Gauge field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}.$$

Action

$$S(A) = \int \mathrm{d}z CS(A).$$

Equations of motion:

$$F(A)_{xy} = F(A)_{x\overline{z}} = F(A)_{y\overline{z}} = 0.$$

- Theory is topological in *x y* plane, holomorphic in the *z*-plane.
- There are Wilson lines in the x y (topological) plane.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Integrable systems with spectral parameter will arise from a 4-dimensional gauge theory on $\mathbb{R}^2\times\mathbb{C}.$

Gauge field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}.$$

Action

$$S(A) = \int \mathrm{d}z C S(A).$$

Equations of motion:

$$F(A)_{xy}=F(A)_{x\overline{z}}=F(A)_{y\overline{z}}=0.$$

- Theory is topological in *x y* plane, holomorphic in the *z*-plane.
- There are Wilson lines in the x y (topological) plane.

(過) (ヨ) (ヨ)

R-matrix from Wilson lines

- Put this theory on ℝ² × ℂ, gauge group SU(2).
- Consider Wilson lines at z, w ∈ C for the spin 1/2 representation of SU(2), which cross in the topological plane.
- The space of states at the end of each Wilson line is C².
- Gluon exchange leads to the *R*-matrix

$$R(z-w): \mathbb{C}^2_z \otimes \mathbb{C}^2_w \to \mathbb{C}^2_w \otimes \mathbb{C}^2_z.$$

Theorem

This is the R-matrix for zero-field six-vertex model (related to XXX spin chain).

Yang-Baxter equation

The Yang-Baxter equation follows from topological invariance of the theory on \mathbb{R}^2 :

ъ

- Put the theory on ℝ × S¹ × C with n Wilson lines wrapping ℝ.
- The Hilbert space

 $\mathbb{C}^2\otimes \cdots \otimes \mathbb{C}^2$

of the spin system is the space of states at the end of the Wilson lines.

- The transfer matrix *T*(*w*) arises from an additional Wilson line on *S*¹.
- [T(w), T(w')] = 0 from topological invariance
- The partition function of the spin system is the expectation value of Wilson lines on a torus.

▲ 同 ▶ ▲ 臣 ▶

- Put the theory on ℝ × S¹ × C with n Wilson lines wrapping ℝ.
- The Hilbert space

 $\mathbb{C}^2\otimes \cdots \otimes \mathbb{C}^2$

of the spin system is the space of states at the end of the Wilson lines.

- The transfer matrix *T*(*w*) arises from an additional Wilson line on *S*¹.
- [T(w), T(w')] = 0 from topological invariance
- The partition function of the spin system is the expectation value of Wilson lines on a torus.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Put the theory on ℝ × S¹ × C with n Wilson lines wrapping ℝ.
- The Hilbert space

 $\mathbb{C}^2\otimes \cdots \otimes \mathbb{C}^2$

of the spin system is the space of states at the end of the Wilson lines.

- The transfer matrix *T*(*w*) arises from an additional Wilson line on *S*¹.
- [*T*(*w*), *T*(*w'*)] = 0 from topological invariance
- The partition function of the spin system is the expectation value of Wilson lines on a torus.

・ 同 ト ・ 三 ト ・

- Put the theory on ℝ × S¹ × C with n Wilson lines wrapping ℝ.
- The Hilbert space

 $\mathbb{C}^2\otimes \cdots \otimes \mathbb{C}^2$

of the spin system is the space of states at the end of the Wilson lines.

- The transfer matrix *T*(*w*) arises from an additional Wilson line on *S*¹.
- [*T*(*w*), *T*(*w'*)] = 0 from topological invariance
- The partition function of the spin system is the expectation value of Wilson lines on a torus.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Put the theory on ℝ × S¹ × C with n Wilson lines wrapping ℝ.
- The Hilbert space

 $\mathbb{C}^2\otimes \cdots \otimes \mathbb{C}^2$

of the spin system is the space of states at the end of the Wilson lines.

- The transfer matrix *T*(*w*) arises from an additional Wilson line on *S*¹.
- [*T*(*w*), *T*(*w'*)] = 0 from topological invariance
- The partition function of the spin system is the expectation value of Wilson lines on a torus.

How do we know that crossing of Wilson lines leads to the *R*-matrix? The *R*-matrix has an expansion

$$R(z-w) = 1 + \hbar \frac{c}{z-w} + O(\hbar^2)$$

 $c \in \mathfrak{g} \otimes \mathfrak{g}$ is the Casimir, \hbar loop expansion parameter.

 First, we calculate explicitly the exchange of a single gluon, which is

$$\hbar \frac{c}{z-w}$$
.

Remaining terms in ħ expansion are determined by the YBE and location of poles (use results of Drinfeld). • Choose gauge where

$$\frac{\partial}{\partial x}A_x + \frac{\partial}{\partial y}A_y + \frac{\partial}{\partial z}A_{\overline{z}} = 0.$$

 Vertical Wilson line at x = z = 0 sources gauge field

$$\frac{\partial}{\partial z} \left(\frac{\mathrm{d}x}{(x^2 + z\overline{z})^{1/2}} \right)$$

 Integrate over other Wilson line yields 1/z.

- We find other spin systems by replacing \mathbb{C} by another Riemann surface with a holomorphic 1-form.
- *XXZ* spin chain arises from the theory on $\mathbb{R}^2 \times \mathbb{C}^{\times}$, with 1-form $\frac{dz}{z}$.
- *XYZ* spin chain (8 vertex model) from elliptic curve *E*, working with a rigid holomorphic *SO*(3)-bundle.
- More general models: use other groups, other representations for Wilson lines.

・過 と く ヨ と く ヨ と

Continuum limits

Continuum limits of lattice models are integrable 2d theories. Can see this from the gauge theory point of view:

- Put a continuum of Wilson lines in the x direction at z_0 . This will give a surface operator
- 2 A continuum of Wilson lines in the y direction at z_1 , gives another surface operator.
- Integrable 2*d* theory arises when surface operators are coupled by gluon exchange

• A Wilson line (for G = SU(2)) is described by a quantum mechanical system

$$egin{aligned} f &: \mathbb{R} o \mathbb{CP}^1 \ g \in C^\infty(\mathbb{R}, f^*T^*\mathbb{CP}^1) \ S(f,g) &= \int g \mathsf{d}_A f \end{aligned}$$

 Continuum of Wilson lines in the x direction is modelled by a field theory

$$egin{aligned} f: \mathbb{R}^2 & o T^*\mathbb{CP}^1 \ g \in C^\infty(\mathbb{R}^2, f^*T^*\mathbb{CP}^1) \ S(f,g) &= \int g \mathsf{d}_A f \mathsf{d} y. \end{aligned}$$

After Wick rotation, this is a $\beta - \gamma$ system.

 A continuum of Wilson lines at z₁ in the y direction gives a *β* - *γ*-system.
 Coupled theory has action

$$\int \mathrm{d}z CS(A) + \int_{z=z_0} \beta \overline{\partial}_A \gamma \mathrm{d}w + \int_{z=z_1} \overline{\beta} \partial_A \overline{\gamma} \mathrm{d}\overline{w}$$

(w = x + iy)Chiral anomaly is cancelled by Chern-Simons term

$$\int_{\mathbb{R}^2\times[z_0,z_1]} CS(A).$$

Exchange of gluon leads to interaction between surface defects

$$\frac{1}{z_0-z_1}\int_{\mathbb{R}^2}\beta\overline{\beta}dwd\overline{w}$$

This is equivalent to the $\mathbb{CP}^1 \sigma$ -model!

 \mathbb{CP}^1 σ -model from interacting surface operators

$$(z_0-z_1)\simeq 1/\operatorname{Vol}(\mathbb{CP}^1)$$

Wilson lines at $w \neq z_0, z_1$ give an infinite number of commuting conserved currents

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Gauge group *G*, can insert $\beta - \gamma$ systems on other homogeneous Kähler *G*-manifolds *X* with $p_1(X) = 0$. Yields the σ -model on *X*.

Examples: σ -models on flag varieties, supersymmetric \mathbb{CP}^n model, etc.

Can NOT see integrable $S^n \sigma$ -model or (non-integrable) $\mathbb{CP}^n \sigma$ -model when n > 1.

Insertion of chiral fermion surface defect at z_0 and anti-chiral fermion surface defect at z_1 leads to the Thirring model.

ヘロン ヘアン ヘビン ヘビン