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Introduction

I Complicated Feynman diagram computation of scattering
amplitudes sometimes gives to very simple results.

I Search for new ways of studying scattering amplitudes: New
methods, new mathematical structures and new symmetries,
new formulations, ...



Introduction

I Here we try to apply the ideas to effective field theories.

I For an effective field theory, we are interested in low-energy
physics below a certain energy scale Λ. The effective theory
can be studied in the expansion of 1/Λ,

Leff = −1

2
∂µφ∂µφ+

c2
Λ4
∂4φ4 + +

c3
Λ6
∂6φ4 + . . . ,

I Low-energy physics are constrained by consistent conditions,
symmetries etc.. One efficient way to realize them is using
scattering amplitude with some advantages: independent of
field redefinition, non-linearity is encoded in factorizations...
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Outline

I Supersymmetry constraints on the effective action of N = 4
SYM in the Coulumb branch.

I Constraints from breaking conformal symmetry in the form of
soft theorems.

I Scale invariance v.s. conformal symmetry.



Effective action of N = 4 SYM in Coloumb branch

I We are interested in N = 4 SYM in the Coloumb branch,
U(N+1)→ U(N)× U(1). We focus on the U(1) part.

I Expand in large mw , the effective action takes the form:

Seff = −1

4
F 2 +

c
(0)
4

m4
w
F 4 +

c
(0)
6

m8
w
F 6 +

c
(2)
4

m8
w
∂4F 4 +

c
(3)
4

m10
w
∂6F 4 + . . . .

I Example of perturbation contributions:

A1−loop
4 = F 4

∫
d4`

(2π)4
g 4N

(`2 +m2
w )((`+ p1)2 +m2

w )((`+ p12)2 +m2
w )((`− p4)2 +m2

w )
.



Non-renormalization theorem from N = 4 SUSY

I The “MHV” operator F 2
−F

2`
+ is `-loop exact due to N = 4

SUSY. [Chen, Huang, C.W. (2015)]

I As for ` = 1 (F 2
−F

2
+), this is a known non-renormalization

theorem [Dine, Seiberg (1997)] that F 4 is one-loop exact in N = 4
SYM.

I F 6 (F 2
−F

4
+ and its conjugate) is not generated at one loop, but

appears at two loops, and it was conjectured to be two-loop
exact! [Buchbinder, Petrov, Tseytlin (2001)]
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non-renormalization theorem from N = 4 SUSY

I This non-renormalization theorem is due to the fact that, with
N = 4 SUSY, there is no consistent local superamplitude
corresponding to F 2

−F
2`
+ . Thus the contributions (coming

from F 2
−F

2q
+ with q ≤ `) should sum up to 0.

I It gives to a recursion relation to relate F 2
−F

2`
+ to F 2

−F
2
+, while

the later is one-loop exact leads to F 2
−F

2`
+ being `-loop exact,

L
F2
−F2q

+
=
∞∑
`=1

(4)`−1
(
− λ

2(4π)2

)` (F−)2(F+)2`

m2`
w

,

and it is identical to DBI.

I Go beyond SUSY: Further constraints from the spontaneously
broken symmetries in the form of Soft theorems.
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Soft theorems for N = 4 SYM in Coloumb branch

I In the Coloumb branch, six massless scalars are Goldstone
bosons: one is dilaton (ϕ) of conformal symmetry breaking,
and the other five are Goldston bosons (φI ) of R-symmetry
breaking, SU(4)→ Sp(4).

I Due to the (broken) symmetries, amplitudes with Goldstone
boson π satisfy soft theorems:

An(φ1, · · ·, φn−1, πn)|pn→0 =
n−1∑
i=1

〈φ1, · · ·, δφi , · · ·, φn−1〉|LSZ

δφi is the infinitesimal transformation of the hard particle φi
under the generators of the symmetry.
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Soft theorems from spontaneously breaking conformal
symmetry

I In the case of dilaton of conformal symmetry breaking,

δφ = [D, φ] = i(d + xµ∂µ)φ ,

δµφ = [Kµ, φ] = i
(
(2xµxν − ηµνx2)∂ν + 2d xµ

)
φ

I It leads to the soft theorems of dilatons [Boels, Wormsbecher
(2015), Huang, C.W. (2015), Di Vecchia, Marotta, Mojaza, Nohle
(2015)]

v An

∣∣
pn→τpn

→
(
· · ·+ S(0)n + τS(1)n

)
An−1 +O(τ 2) ,

with soft factors,

S(0)
n =

n−1∑
i=1

(
pi ·

∂

∂pi
+

d − 2

2

)
− d From D

S(1)
n = pµ

n

n−1∑
i=1

[
1

2

(
2 pν

i
∂2

∂pν
i ∂p

µ
i

− piµ
∂2

∂piν∂p
ν
i

)
+

d − 2

2

∂

∂pµ
i

]
From Kµ .
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Systematics of soft theorems: recursion relations

I To utilize the soft theorem constraints systematically:
Recursion relations.

I Standard BCFW cannot apply here due to ’bad’ large-z
behaviour. We instead use recursion relations based on soft
theorems [Cheung, Kampf, Novotny, Sheng, Trnka (2015)][Luo,
C.W. (2015)].

I Recursion relations using soft theorems of the (broken) conformal
symmetry lead to: all the amplitudes up to the order sn are fully
determined by the k-point amplitude at order sk for k ≤ n.
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Constraints on pure dilaton effective actions

I Summary:

sk \ # of points 4 5 6 7 · · ·
2 × X X X X
3 × X X X X
4 × X X X X
5 X × X X X
6 X X × X X
7 X X X × X
... · · · · · · · · · · · · · · ·

Table: The × is to indicate the amplitudes that have to be
computed by other means, then all other amplitudes marked with X
are completely determined by the soft theorems.



Constraints on pure dilaton effective actions

I If each scalar mostly carries one derivative (Leff(φ, ∂φ)): at
2n or (2n+1) points, amplitudes mostly go as sn:

sn \ # of points 4 5 6 7 8 · · ·
2 × X X X X X
3 0 0 X X X X
4 0 0 0 0 X X
5 0 0 0 0 0 X
... · · · · · · · · · · · · · · · · · ·

It is uniquely fixed and identical to the conformal DBI.



Constraining effective action with soft theorems and SUSY

I For order-s2 amplitudes in N = 4 SYM in the Coulumb
branch (or ∂4φn), we find they are all one-loop exact, and in
fact identical to conformal DBI.

I At order s3 (∂6φn), they are all two-loop exact, and identical
to conformal DBI.
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Constraining effective action with soft theorems and SUSY

I At order s4 (∂8φn): four-point amplitude has an unique
kinematics structure but with a highly non-trivial coefficient

A(4)
4 = c

(4)
4 (g ,N)× (s2 + t2 + u2)F4 .

c
(4)
4 (g ,N) is expected to receive all-loop and instanton

contributions, and should be constrained by SL(2, Z)
symmetry.

I All higher-point amplitudes at order s4 are completely

determined by a single coefficient c
(4)
4 (g ,N) via soft theorems.
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Constraining effective action with soft theorems and SUSY

I Up to order s4, the effective action can be summarised as∑
m≤8
L∂mφn = c

(4)
4 (g ,N)L(1)

∂8φn
+
∑
m≤8
LDBI
∂mφn .

L(1)
∂8φn

is the one-loop Lagrangian (fixed by soft theorems!).

I Effective action at order s5 are completely determined by two
four-point coefficients:

L∂10φn = c
(5)
4 (g ,N)L(1)

∂10φn
+ c

(4)
4 (g ,N)L(2)

∂10φn
+ LDBI

∂10φn ,

L(2)
∂10φn

is the two-loop Lagrangian (fixed by soft theorems!).
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Scale invariance v.s. Conformal symmetry

I Scale invariance v.s. Conformal in relativistic QFT.

I In our language, the question can be framed as, to what
extent does the subleading soft theorem due to conformal
boost follow from the leading behaviour stemming from
dilation symmetry?

I We find that if n-point order-sk amplitude satisfies the leading
soft theorem, it automatically obeys the subleading soft
theorem, with n = 5 or n > 2k and the lower-point
amplitudes entering factorizations satisfy both leading and
subleading soft theorems.
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Scale invariance v.s. Conformal symmetry

A seven-point example of order s3:

I Using both leading and sub-leading soft theorems:

A
(3)
6 = −c(3)5 (s312 + P6)−

(
c
(3)
5

2
+ (c

(2)
4 )2

)
(s3123 + P6)

+ (c
(2)
4 )2

(
(s212 + s213 + s223)

1

s123
(s245 + s246 + s256) + P6

)
.

I Now, the leading soft theorem alone allows us to determine
order-s3 7-point amplitude

A
(3)
7 = c

(3)
5 (s312 + P7) +

(
c
(3)
5 + 3(c

(2)
4 )2

)
(s3123 + P7)− (c

(2)
4 )2Afac

7 .

I A
(3)
7 with particular parameters fixed by the leading soft

theorem does satisfy the sub-leading soft theorem
automatically.
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Conclusions and remarks

I The requirement of having consistent S-matrix can impose
highly non-trivial constraints on the theory.

I Both SUSY and soft theorems can strongly constrain the
effective action of N = 4 SYM (as well as (2,0)) in the
Coloumb branch, and lead to new non-renormalization
theorems.

I With some conditions, we observe amplitudes determined by
leading soft automatically satisfy the subleading soft theorem.

I It would be interesting to explore other possible constraints
such as SL(2,Z) symmetry.

I We may eventually require explicit higher-loop as well as
multi-instanton data, at least for some lower-point cases.



Thank you!


