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Introduction

» Complicated Feynman diagram computation of scattering
amplitudes sometimes gives to very simple results.

e -,

» Search for new ways of studying scattering amplitudes: New
methods, new mathematical structures and new symmetries,
new formulations, ...
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Introduction

» Here we try to apply the ideas to effective field theories.

> For an effective field theory, we are interested in low-energy
physics below a certain energy scale A. The effective theory
can be studied in the expansion of 1/A,

1
Lo = —58%50“@5 + 84¢4 + 476 6% +.

» Low-energy physics are constrained by consistent conditions,
symmetries etc.. One efficient way to realize them is using
scattering amplitude with some advantages: independent of
field redefinition, non-linearity is encoded in factorizations...



Outline

» Supersymmetry constraints on the effective action of A/ = 4
SYM in the Coulumb branch.

» Constraints from breaking conformal symmetry in the form of
soft theorems.

» Scale invariance v.s. conformal symmetry.



Effective action of N =4 SYM in Coloumb branch

» We are interested in A/ =4 SYM in the Coloumb branch,
U(N+1) — U(N) x U(1). We focus on the U(1) part.

» Expand in large m,,, the effective action takes the form:
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» Example of perturbation contributions:
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Non-renormalization theorem from N = 4 SUSY

» The "MHV" operator FEF?FZ is /-loop exact due to N’ =4
SUSY. [Chen, Huang, C.W. (2015)]

> Asfor £ =1 (F2F2), this is a known non-renormalization
theorem [Dine, Seiberg (1997)] that F* is one-loop exact in N' = 4
SYM.

> FO (FEFi and its conjugate) is not generated at one loop, but
appears at two loops, and it was conjectured to be two-loop
exact! [Buchbinder, Petrov, Tseytlin (2001)]
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non-renormalization theorem from N = 4 SUSY

» This non-renormalization theorem is due to the fact that, with
N = 4 SUSY, there is no consistent local superamplitude
corresponding to F2F2‘. Thus the contributions (coming

from FEFerq with g < ¢) should sum up to 0.

» It gives to a recursion relation to relate F2 Fsz to F2 FJZF, while
the later is one-loop exact leads to FEF?FE being /-loop exact,

S (LA VRS
= 20 (o)

and it is identical to DBI.

» Go beyond SUSY: Further constraints from the spontaneously
broken symmetries in the form of Soft theorems.
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Soft theorems for N/ = 4 SYM in Coloumb branch

» In the Coloumb branch, six massless scalars are Goldstone
bosons: one is dilaton () of conformal symmetry breaking,
and the other five are Goldston bosons (¢') of R-symmetry
breaking, SU(4) — Sp(4).

» Due to the (broken) symmetries, amplitudes with Goldstone
boson 7 satisfy soft theorems:

n—1

An(¢17 B ¢n—1a 7Tn)|pn~>0 = Z<¢l, ) 5¢i7 ) ¢n71>|LSZ

i=1

d¢; is the infinitesimal transformation of the hard particle ¢;
under the generators of the symmetry.



Soft theorems from spontaneously breaking conformal
symmetry



Soft theorems from spontaneously breaking conformal
symmetry
> In the case of dilaton of conformal symmetry breaking,
6¢p = [D,¢]=i(d+x"0u)0,
Sup = [Kurd] =i (20 — muwx®)0” +2d x,) ¢
> |t leads to the soft theorems of dilatons [Boels, Wormsbecher

(2015), Huang, C.W. (2015), Di Vecchia, Marotta, Mojaza, Nohle
(2015)]

VAol = (o SO 4 7SI Ay i+ O,

with soft factors,
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Systematics of soft theorems: recursion relations

» To utilize the soft theorem constraints systematically:
Recursion relations.

» Standard BCFW cannot apply here due to 'bad’ large-z
behaviour. We instead use recursion relations based on soft
theorems [Cheung, Kampf, Novotny, Sheng, Trnka (2015)][Luo,
C.W. (2015)].

> Recursion relations using soft theorems of the (broken) conformal
symmetry lead to: all the amplitudes up to the order s” are fully
determined by the k-point amplitude at order s* for k < n.



Constraints on pure dilaton effective actions

» Summary:

sk \ # of points | 4 5 6 7
2 X v v v v
3 X v v v v
4 X v v v v
5 v X v v v
6 v Y X v v
7 v o v v X v

Table: The x is to indicate the amplitudes that have to be
computed by other means, then all other amplitudes marked with v/
are completely determined by the soft theorems.



Constraints on pure dilaton effective actions

» If each scalar mostly carries one derivative (Leg (¢, 0¢)): at
2n or (2n+1) points, amplitudes mostly go as s”:

s" \ # of points | 4 5 6 7 8
2 X v o vy v v
3 0 0 v o v v v
4 0 0 0 0 v v
5 0 0 0 0 0 v

It is uniquely fixed and identical to the conformal DBI.
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Constraining effective action with soft theorems and SUSY

» For order-s? amplitudes in A" = 4 SYM in the Coulumb
branch (or 9*®"), we find they are all one-loop exact, and in
fact identical to conformal DBI.

» At order s3 (86<Z>”), they are all two-loop exact, and identical
to conformal DBI.
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» At order s* (98¢"): four-point amplitude has an unique
kinematics structure but with a highly non-trivial coefficient
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cﬂ(fl)(g, N) is expected to receive all-loop and instanton
contributions, and should be constrained by SL(2, Z)
symmetry.



Constraining effective action with soft theorems and SUSY

» At order s* (98¢"): four-point amplitude has an unique
kinematics structure but with a highly non-trivial coefficient

AE{‘) = c£4)(g, N) x (s + t> + v®) F*.

cﬂ(fl)(g, N) is expected to receive all-loop and instanton
contributions, and should be constrained by SL(2, Z)
symmetry.

» All higher-point amplitudes at order s* are completely

determined by a single coefficient c§4)(g, N) via soft theorems.
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1
Z Lamd)n = C4 5(88)(]5’7 + Z EgmB(in .
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Constraining effective action with soft theorems and SUSY

» Up to order s*, the effective action can be summarised as

1 DBI
Z ,Cam¢n = C4 [,(88)(25,, + Z £8m¢n .
m<8 m<8
E(als)qﬁn is the one-loop Lagrangian (fixed by soft theorems!).

» Effective action at order s° are completely determined by two
four-point coefficients:

£310¢n = CLES)( 8, N)L((gll()qun + C£E4) (g’ N)Eglz’dﬂ’ + ﬁaDl%én ’

£@)

oiogn 1S the two-loop Lagrangian (fixed by soft theorems!).
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Scale invariance v.s. Conformal symmetry

» Scale invariance v.s. Conformal in relativistic QFT.

> In our language, the question can be framed as, to what
extent does the subleading soft theorem due to conformal
boost follow from the leading behaviour stemming from
dilation symmetry?

» We find that if n-point order-s¥ amplitude satisfies the leading
soft theorem, it automatically obeys the subleading soft
theorem, with n =5 or n > 2k and the lower-point
amplitudes entering factorizations satisfy both leading and
subleading soft theorems.
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Scale invariance v.s. Conformal symmetry
A seven-point example of order s3:
» Using both leading and sub-leading soft theorems:
(3)

C
AD (s, 1) (2 + (cf’f) (523 + Po)

1
+ (Czsz))2 <(5122 + 573+ 533)&(535 + Si6 + Se6) + 736) :



Scale invariance v.s. Conformal symmetry

A seven-point example of order s3:
» Using both leading and sub-leading soft theorems:

(3)
G
AD (s, 1) (2 + (cf’f) (s23 + Po)

2 1
b (22 (ot st ) (o ot ) 4 P )

» Now, the leading soft theorem alone allows us to determine
order-s3 7-point amplitude

A = (st +Pr) + (e +3(cf7)?) (staa + Pr) — (6720



Scale invariance v.s. Conformal symmetry

A seven-point example of order s3:
» Using both leading and sub-leading soft theorems:
(3)

C
AD (s, 1) (2 + (cf’f) (523 + Po)

1
+ (¢ (2)) <(512 + 53+ Sh3)— 13 (sks + Sag + Sa6) + 736) :

» Now, the leading soft theorem alone allows us to determine
order-s3 7-point amplitude

A = (st +Pr) + (e +3(cf7)?) (staa + Pr) — (6720

> A§3) with particular parameters fixed by the leading soft
theorem does satisfy the sub-leading soft theorem
automatically.



Conclusions and remarks

» The requirement of having consistent S-matrix can impose
highly non-trivial constraints on the theory.

» Both SUSY and soft theorems can strongly constrain the
effective action of N =4 SYM (as well as (2,0)) in the
Coloumb branch, and lead to new non-renormalization
theorems.

» With some conditions, we observe amplitudes determined by
leading soft automatically satisfy the subleading soft theorem.

» It would be interesting to explore other possible constraints
such as SL(2,Z) symmetry.

» We may eventually require explicit higher-loop as well as
multi-instanton data, at least for some lower-point cases.



Thank you!



