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Outline

e Causal representation learning - Learn representations that capture
cause-effect relationships behind the perceptual data u see



Outline

e Causal representation learning - Learn representations that capture
cause-effect relationships behind the perceptual data u see

e Key Idea: Score Functions used in Diffusion and connections to CRL

e Our results: Linear and Non-Linear Transforms



Motivating Position Paper

INVITED
PAPER

Toward Causal
Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial
open problems of machine learning, including transfer learning and generalization,
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHOLKOPF , FRANCESCO LOCATELLO" , STEFAN BAUER", NAN ROSEMARY KE,
NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO



Causal Representation Learning: Motivations

e Gene regulatory mechanisms -> Gene Expression Data captured as
images

Biological

Processes

Moran, Aragam. Towards Interpretable Deep Generative Models
via Causal Representation Learning. arxiv:2504.11609



https://arxiv.org/pdf/2504.11609

Causal Representation Learning: Motivations

e Robotics: Joints are causally related -> image of robot from camera
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Figure: Camera-to-Robot Pose Estimation from a Single Image ICRA 2020



Challenge: Inferring Latent Causal variables from Data
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Figure: Camera-to-Robot Pose Estimation from a Single Image ICRA 2020



Challenge: Inferring Latent Causal variables from Data
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Figure: Camera-to-Robot Pose Estimation from a Single Image ICRA 2020

Causal Variables exhibit sparse changes upon intervention + Conditional Independencies

e Intervention on the shoulder motor changes only the Shoulder -> Elbow
relationship.

e \Variables are not completely independent



Problem Setting

-

Transformation Image
g
(diffeomorphism) Obs x

\

Causal Vars z

Figure: Towards Causal Representation Learning, Scholkopf et. al. 2021.

How can you invert g ?



Disentanglement : Story so far .....
[before 2023]

Disentanglement focuses on forcing . Image
independence in latent dimensions ;";‘)t:é‘et O Transformation Space
[DIP-VAE[2017], beta-VAE [2016], InfoGAN[2016]...] .
ICA - Conditioning on a common cause renders B
latents independent
[Hyvarinen et. al. 2019, Khemakhem et. al. 2019]

ifici Latent Transformation Image
(+ other specific independence models) Space Space

Primarily independent or conditionally independent variables



Why is CRL hard with only one distribution ?

Extreme case: linear transformation and independent |latents (linear ICA)

Rotated Estimate

X=G-z, p2)=]]rz) =

Is linear ICA solution set unique? 1-

{(2,G) : X=G-Z and Z; 1L Z; Vi,j}

no - e.g., Gaussians are rotation invariant

X=GRJRyZ, p(Z)=p(ReZ) .

What can be guaranteed? If at most one Z; is Gaussian:
ID up to permutation (P,) and scaling (D)

Z=P,-D-Z



Interventional Data is needed
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Interventions

L CRL is impossible without sufficient statistical diversity J

_ observational  do  hard(perfect) soft (imperfect)
A @ @ A @
©» &
1 for Z3=2

0 for Zg;«éZ q(Z3) q(



Inference and Data Generation

Multiple intervention on latent space
Observations only from X space.

How do you learn the inverting
transformation ?




What is missing?

Tancform Latent Intervention /
Model node

Ahuja et al. (2023) Polynomial Nonparametric 1do
Squires et al. (2023) Linear Lin. Gaussian 1 hard
Buchholz et al. (2023) Nonparametric Lin. Gaussian 1 hard
? Linear Nonparametric 1 hard / soft

Nonparametric +

faithfulness 2R

von Kigelgen et al. (2023)  Nonparametric

? Nonparametric 2 hard

Provably correct tractable algorithms or differentiable loss functions



Our Contributions

Transformation Causal Model Interventions Identifiability of Identifiability of
Transformation Graph

1-1 Non Linear  Arbitrary 2 Hard/node Upto monotonic Perfect ID
Transform coord. transform

Varici et. al. “General Identifiability and Achievability for
Causal Representation Learning” AISTATS 2024

Differentiable regularizer on Autoencoders
whose global optima provably achieves the ID result



Our Contributions

|dentifiability of
Transformation

Transformation Causal Model Interventions

Upto monotonic

1-1 Non Linear Arbitrary 2 Hard/node

Transform coord. tx
Linear Arbitrary 1 Hard/node Uptq coord

. Transform scaling

i Linear Arbitrary 1 Soft/node Mixing upto
. Transform ancestors

Sample Complexity Results

|dentifiability of
Graph

Perfect ID

Perfect ID

Ancestral
Graph

https://openreview.net/forum?id=XL9aaXIl0u6 NeurlPS 2024


https://openreview.net/forum?id=XL9aaXl0u6

Score Functions

Vz log p(z) Score Function of distribution p(z) (used in diffusion)

Song & Ermon 2019. Generative Modeling by Estimating Gradients of the
Data Distribution



Score Differences in true latent space are sparse

Z3 Z3
p3(23 | zpa(S)) Q3(Z3 | Zpa(3)) /
P(Z) = ps(23 | zoa3) [ [ Pi2i | 2pa(3) | | 0%(2) = 45(25 | 2pacs) [ [ Pi(2i | 2a(3)
_______________________________________________ s dS NN S .os N
]
0 T coordinates of parents of node ¢
X /
V.logp(Z) — V., logp*(Z) = |o
| - —~ _J 0
3 x| node %
s(Z) £(2)




Hard interventions have a sparser score imprint

» Two hard gs(23)
interventions é %f
on the same node
p*(2) = as(zs) [ [ pi(z1 | 2a(0)) ¢i(zi) & Gi(z) 7°(2) = Ga(25) [ [ pil2s | 2pa())
i#3 i#£3

logp*(z) — logp*(z) = logq;(2;) —log g;(z;) function of only z;

Score functions: si(Z) — §Z(Z) —

intervened
node

IO>< o O O O O




Inference and Data Generation




Our result for Non Linear Transforms

Main Result

if given two hard interventions per node
Solve for the encoder

viod [ vied I A e V= e [E[ls'e) - 5@ e
FE

\ ) completeID 7. _ 4 (7)) foralliec|n
- AN J guarantee { ¢z( z) = [ ]
sx — 8x e Sk — 8%

Exact graph recovery

(observational — interventional score): E |s (3) — gi (2)
non-zero at coordinates i and parents of i

]k;éo > k€ pa(i) Us

Varici et. al. “General Identifiability and Achievability for Causal
Representation Learning” AISTATS 2024



Partial identifiability if only some nodes are intervened

if given only

two environments

4

X,
X

| Xd]

| Xd

X,

Xo

4

Solve for the encoder

2

node-level ID ZZ _ [h:‘ (X)]z — ¢z(Zz)

guarantee

qbz-: diffeomorphism (bijection, differentiable)

JMLR 2025
https://imlr.ora/papers/volume26/24-0194/24-0194.pdf



https://jmlr.org/papers/volume26/24-0194/24-0194.pdf

Differentiable Alg: Regularized Autoencoder Training

2
AE
reconstru

ction
loss

17 + 1 0 )y - x1



Score difference in some arbitrary latent space

1

X =g9(%2) px(z) = pz(2) x |det(Jy(2)" Jy(2))| 2

true dec. cand. enc. cand. dec.

s7(2) =% (2) = [Ja-1(2)] " - (s(2) — s™(2))



Differentiable Alg: Regularized Autoencoder Training

2
) +”(¢°h)(X)_X”2 AE
- reconstruction

loss




Proof Sketch:
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Our Contributions

Transformation Causal Model Interventions ldentifiability of Identifiability of

Transformation Graph
1-1 Non Linear Arbitrary 2 Hard/node Upto monotonic Perfect ID
Transform coord. tx
Linear Arbitrary 1 Hard/node Uptq coord Perfect ID
Transform scaling
Linear Arbitrary 1 Soft/node Mixing upto Ancestral
Transform ancestors Graph

JMLR 2025

https://jmlr.org/papers/volume?2
6/24-0194/24-0194.pdf
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Our result: Linear Transforms

nx1 dx1

(GT)T(sz(Z) — S’Z(z)) = sx(x) — SfX— (x) Score differences are linearly related



Our result: Linear Transforms

s(x) — s™(x) (GT)_r s(z) — s™(2)
3_
— X |0
0
O_
- \ /
parents

Infer about the inverse transform using observed score difference

(s(z) — s™(z)) € span{G! : j € pa(i) Ui}



Our result: Linear Transforms and soft interventions

Covariance matrices of score difference

Ry = E[(sx(z) — s (2))(sx (2) — s (2))"], Ry = El(s2(2) — s(2))(sz(2) — s5(2))"]



Our result: Linear Transforms and soft interventions

Covariance matrices of score difference

Ry = E[(sx(z) — s (2))(sx (2) — s (2))"], Ry = El(s2(2) — s(2))(sz(2) — s5(2))"]

Guess for the i-th row of the decoder(X): y ~ Unif over Sphere hz — RZX * Y

Sz(z) — 87’2(Z) is non-zero in i, pa(i) coordinates



Our result: Linear Transforms and soft interventions

Covariance matrices of score difference

Ry = E[(sx(z) — s (2))(sx (2) — s (2))"], Ry = El(s2(2) — s(2))(sz(2) — s5(2))"]

a . - . . Z
Guess for the i-th row of the decoder(X): y ~ Unif over Sphere hz — RX * Y

Sz(z) — 87’2(Z) is non-zero in i, pa(i) coordinates

Partial Disentanglement

Zi — h;FXZ h;FGZ — Z Cij—I—ciZ'

j€pal(i)



Qur result: Linear Transforms and Soft Interventions
pa(m) & {z £ m: ]E[Isz(z;ﬂ) _ sg(Z;ﬂ)L] £ o} .

Estimate a graph using non zero score differences of the new estimate

Ancestral graph of this graph = Ancestral graph of the true graph

Estimate the Ancestral Graph and
A representation that mixes every variable only with its parents




Our result: Linear Transforms and Hard Interventions

« One hard int/node: target node becomes independent of its hon-descendants.
« Additional step: use this property to resolve mixing with parents

« Linear MMSE estimator to update the encoder (in topological order)

2
@ @ u < COV(Zi7 Zp“a(i)) ) [COV(Zp“a(i) )]_1
&3
Z3 AL Zl,ZQ Hi(_Hi_u'Hﬁa(i)

identifiability up to scaling [ H;, =c; - GI — Zi =¢ - 4 }




Further Results: Linear Transforms

Linear Transforms + Non-linear causal models “of sufficient complexity”
e Under soft interventions, can recover the DAG structure and obtain evern
sparser disentanglement - mixing upto a specific subset of parents.

Score-based Causal Representation Learning: Linear and General Transformations (JMLR 2025)



https://arxiv.org/abs/2402.00849

Further Results: Linear Transforms

Linear Transforms + Non-linear causal models “of sufficient complexity”
e Under soft interventions, can recover the DAG structure and obtain evern

sparser disentanglement - mixing upto a specific subset of parents.

Score-based Causal Representation Learning: Linear and General Transformations (JMLR 2025)

Sample Complexity of Linear Transform Case
e  “Sample Complexity of Interventional Causal Representation Learning”,
Emre Acartlrk, Burak Varici, Karthikeyan Shanmugam, Ali Tajer, NeurlPS 2024.

Linear Transforms: When Interventions are unknown and on multiple nodes at once

e “Linear Causal Representation Learning from Unknown Multi-node Interventions”,

Burak Varici, Emre Acartlrk, Karthikeyan Shanmugam, Ali Tajer, NeurlPS 2024.
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Linear Transforms: Unknown multi node interventions

e Multi-node interventional environments:

env. £™ with targets I :  p™(2) = H i (Zi|Zpa(i)) H Pi(2i|2pa(i))
ieIm igIm

Unknown intervention targets: e.g., passive observations, off-target effects

Challenge: score differences are not sparse anymore

Question: under what conditions the single-node intervention guarantees hold?

Idea: use multi-node score differences to find node-level score differences



Linear Transforms: Score combinations in latent space

Find combinations of multi-node interventions to create sparser interventions

10O e b

1 1 0]
\Zy (7}
\@ JL\*A,’,‘ @\\ P4 D=1Io o 1| -2
(7} A7)
gl = _O 1 1_

gL &2 &3

82

82 (z) — 81 (z) + s(z) is the score function of distribution when only 3rd
node was intervened



Linear Transforms: Score combinations in ambient space space

Find combinations of multi-node interventions to create sparser interventions

10O e b

1 1 0]
\Zy (7}
\@ JL\*A,’,‘ @\\ P4 D=1Io o 1| -2
(7} A7)
gl = _O 1 1_

gL &2 &3

82

s’ (:IZ) — st (zc) + S(CI}) is the score of interventional distribution with only
3rd node intervened in the ambient space !



Linear Transforms: Unknown multi node interventions

Need an intervention set where all atomic interventions can be recovered

Iteratively search for mixing vectors w € N**! (in a finite search space),

dim(proj.image(Zwi : st)) =1

1=0

unknown multi-node

soft interventions Zi=Ci+Zi+ Z Ck * Zk gtrans.clos. = gtrans.clos.
kean(z)

unknown multi-node X perfect identifiability )

hard interventions Z; =c; - Z; g=¢g



Synthetic Data Results: General Transforms

Table 9: GSCALE-I for a quadratic causal model with two coupled hard interventions per
node. Noisy scores are obtained using SSM-VR with ng.ore = 30000 samples.

expected num. perfect scores noisy scores
n d ng edges in G MCC SHD(G, G) MCC SHD(G, G)
5 100 200 5 1.00+0.00 0.00+£0.00 | 0.854+0.02 4.50=+0.38
8 100 500 14 0.95+0.01 1.50+£0.27 | 0.754+0.02 12.94+0.44

Transform = Tanh activated 1-hidden layer NN
MCC - maximum correlation coefficient
SSM - Sliced Score Matching is used to estimate scores

N 1 B
MCC(Z, Z) £ max — > corr(Zi, Zng) -

1€[n]



Synthetic Data Results: Linear Transforms

Table 6: LSCALE-I for an MLP causal model with one hard intervention per node

(ns = 50000).
perfect scores noisy scores
n d MCC ecale SHD(G, G) MCC Lscalo SHD(G, G)
5 100 | 1.00£0.00 0.03+0.00 0.0140.01 \ 0.94+0.01 0.624+0.02 4.27+0.20

Table 7: LSCALE-I for a linear causal model with one soft intervention per node.

perfect scores noisy scores
n d ns MCC lpa SHD(Gxe, Gic) MCC lpa SHD(Gic, Gic)
5 100 5000 | 0.984+0.00 0.00 =+ 0.00 0.01 £0.00 0.98 £0.00 0.04 £+0.00 0.59 +0.11
5 100 10000 | 0.98 +0.00 0.00 % 0.00 0.00 £ 0.00 0.98 £0.00 0.03 £0.00 0.36 £ 0.08
5 100 50000 | 0.984+0.00 0.00 =+ 0.00 0.00 £ 0.00 0.98 £0.00 0.01 £0.00 0.28 £ 0.06
8 100 5000 | 0.98+0.00 0.00=+£0.00 0.00 £ 0.00 0.98 £0.00 0.07£0.00 3.84 +0.36
8 100 10000 | 0.98+0.00 0.00+0.00 0.00 £ 0.00 0.98 £0.00 0.05=+0.00 1.23 £ 0.20
8 100 50000 | 0.98+0.00 0.00+0.00 0.00 £ 0.00 0.98 £0.00 0.02 £ 0.00 0.49 +0.10




image: 64 x 64 x 3

o)

encoder-1

Figure 6: Sample images (top row) versus their reconstructions (bottom row).

Y € R%

encoder-2

Z e R

Simplistic Image Datasets: Image rendering = Transformation

Table 14: MCC comparison in image experiments (over 5 runs).

Algorithm SCM # balls # int. / node | int. type mean (std. error)
GSCALE-I linear 2 2 hard 0.80 £ 0.03
GSCALE-I linear 3 2 hard 0.76 £ 0.08
GSCALE-I nonlinear 2 2 hard 0.93 £ 0.02
GSCALE-I linear 2 1 hard 0.79 +0.03
GSCALE-I nonlinear 2 1 hard 0.92 +£0.02
Ahuja et al. (2023 linear 2 1 do 0.13£+0.03
Ahuja et al. (2023) linear 2 3 do 0.73 £0.03
Ahuja et al. (2023 linear 2 5 do 0.83 £0.03
Buchholz et al. (2023) linear 2 1 hard 0.87 +0.03
Buchholz et al. (2023) linear 5 1 hard 0.94 £ 0.01




Conclusions and Future Work

e Presented a differentiable algorithm with guarantees for CRL with general
transforms

e Currently ccaling score based regularizers to large scale setups - robot
simulators

e Future Work:
o Extend our framework by looking at action data from a single long
trajectory

o Can score difference estimation in ambient space be done efficiently
?



Thank You

B. Varici, E. Acartirk, K.Shanmugam, A. Kumar, A. Tajer Score-based Causal
Representation Learning: Linear and General Transformations JMLR 2025.

Varici et. al. General Identifiability and Achievability for Causal Representation Learning
AISTATS 2024 (Oral)
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