Conformal Manifolds, Moduli Spaces, and Chiral Algebras

Strings 2016

Matthew Buican Queen Mary University of London Based on: M.B. and Takahiro Nishinaka, [1603.00887] + ···

August 4, 2016

The Setting... and Some Open Questions

• In this talk, we will focus on 4D $\mathcal{N} = 2$ SCFTs (i.e., 8 Poincaré supersymmetries). We will use relations to 2D chiral algebras as well.

• Will focus primarily on theories with exactly marginal deformations (i.e., conformal manifolds), but will present some results about isolated theories too.

• In the process, we will touch upon some of the open questions in this class of QFTs

The Setting... and Some Open Questions

• The open questions:

(1) $\mathcal{N} = 2$ conformal manifold $\Rightarrow \exists$ cusps with free gauge fields?

(1)' $\mathcal{N} = 4 \text{ QFT} \Rightarrow \text{SYM}?$

(2) New relations between conf. manifolds and moduli spaces? Formulate $\beta = 0$ algebraically/geometrically in "matter" sector?

(3) Relations between chiral rings and chiral algebras?

Upshot: Will get new bounds relating global properties of conformal manifolds and "sizes" of chiral algebras. Will touch upon above and more.

$\mathcal{N} = 2$ Conformal Manifolds

• We have a $U(1)_R \times SU(2)_R R$ symmetry

• $\mathcal{N} = 2$ chiral primaries, $\mathcal{O} \in \mathcal{E}_{-r}$, are charged under $U(1)_R$ but are neutral under $SU(2)_R$

$$\left[\tilde{Q}^{i}_{\dot{\alpha}},\mathcal{O}\right] = 0 , \quad \Delta(\mathcal{O}) = -r .$$
 (1)

• If $\Delta(\mathcal{O}) = 2$, then we have an exactly marginal deformation

$$\delta S = \int d^4x d^4\theta \delta \lambda^i \mathcal{O}_i + \text{h.c.} , \quad g_{i\bar{j}}(\lambda,\bar{\lambda}) \sim x^4 \langle \mathcal{O}(x)_i \bar{\mathcal{O}}_{\bar{j}}(0) \rangle|_{\lambda,\bar{\lambda}}$$
(2)

• $g_{i\bar{j}} > 0$, Kähler-Hodge [Gomis, Hsin, Komargodski, Schwimmer, Seiberg, Theisen]

$\mathcal{N} = 2$ Conformal Manifolds (cont...)

- All known examples have $\delta \lambda = \delta \tau$ where $\tau = \frac{\theta}{2\pi} + i \frac{4\pi}{g^2}$, with $\mathcal{O} \sim \text{Tr} \Phi^2$.
- Example: $SU(2) \mathcal{N} = 2$ SQCD with $N_f = 4$.

$$\Phi^{ij}, Q_a^i \ (i, j = 1, 2 \text{ and } a = 1, \cdots, 8)$$

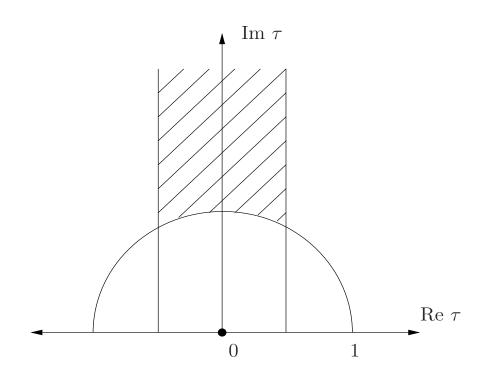
$$\delta W \sim g \Phi^{ij} \mu_{ij} , \quad \mu^{ij} = \delta^{ab} Q_a^i Q_b^j . \tag{3}$$

More invariantly

$$\delta S \sim \delta \tau \int d^4 \theta \operatorname{Tr} \Phi^2 + \text{h.c.} , \qquad (4)$$

• Conformal manifold explored by [Seiberg, Witten]... Many interesting features

$\mathcal{N} = 2$ Conformal Manifolds (cont...)



Q-cohomology and Chiral Algebras

• Other important operators are charged under $SU(2)_R...$ e.g.

$$J_{I,SO(8)}^{AB} = \epsilon_{ij} Q_a^{iA} \left(T^{ab} \right)_I Q_b^{Bj} \subset \widehat{B}_1 \ , \quad J_{\alpha\dot{\alpha}}^{AB} \subset \widehat{\mathcal{C}}_{0(0,0)} \ , \quad \cdots \quad (5)$$

• $SU(2)_R$ highest-weight states represent non-trivial elements of a certain Q-cohomology (a.k.a. "Schur" operators) [Beem, Lemos, Peelears, Rastelli, van Rees], i.e.,

$$\left\{\mathbb{Q}, \mathcal{O}^{1\cdots 1}_{\cdots}(0)\right] = 0 , \quad \mathcal{O}^{1\cdots 1}_{\cdots}(0) \neq \left\{\mathbb{Q}, \mathcal{O}^{\prime 1\cdots 1}_{\cdots}(0)\right] , \quad \mathbb{Q} = S_1^- - \tilde{Q}_{2-} .$$
(6)

Examples:
$$\mathcal{O}_{I}^{11} = \mu_{I,SO(8)} = \epsilon_{ij} Q_{a}^{i} (T^{ab})_{I} Q_{b}^{j}$$
 and $\mathcal{O}_{++}^{11} = J_{++}^{11}$

Q-cohomology and Chiral Algebras (cont...)

• These operators (i) contain a lot of data complementary to the $\mathcal{N} = 2$ chiral ring, (ii) contribute to a simpler but still interesting limit of the index (the "Schur" index)

$$\mathcal{I}(q;x_i) = \operatorname{Tr}_{\mathcal{H}}(-1)^F e^{-\beta\Delta} q^{E-R} \prod_i (x_i)^{f_i} , \quad \Delta = \left\{ \tilde{\mathcal{Q}}_{2-}, (\tilde{\mathcal{Q}}_{2-})^{\dagger} \right\} ,$$
(7)

and (iii) are mapped to elements of a 2D chiral algebra, χ , sitting inside $\mathcal{P} = \mathbb{R}^2 \subset \mathbb{R}^4$ [Beem, Lemos, Peelears, Rastelli, van Rees] (more precisely, the non-trivial cohomology classes are mapped to elements of χ).

Q-cohomology and Chiral Algebras (cont...)

• The details of the map are somewhat technical, but many of the results are intuitive

$$\chi \left[J_{++}^{11} \right] = -\frac{1}{2\pi^2} T , \quad \chi \left[\mu^I \right] = \frac{1}{2\sqrt{2}\pi^2} J^I , \quad \chi \left[\partial_{++} \right] = \partial_z \equiv \partial .$$
(8)

• Also

$$c_{2d} = -12c_{4d}$$
, $k_{2d} = -\frac{1}{2}k_{4d}$, $h = E - R$, (9)

• Importantly, $Z(x,q) = \operatorname{Tr} x^{M^{\perp}} q^{L_0}$ satisfies

$$Z(-1,q) = \mathcal{I}(q) . \tag{10}$$

Q-cohomology and Chiral Algebras (cont...)

 \bullet Have more general non-trivial elements of $\mathbbm{Q}\mbox{-}cohomology$ contained in

$$\widehat{\mathcal{B}}_n$$
, $\widehat{C}_{R(j_1,j_2)}$, $\mathcal{D}_{R(0,j_2)} \oplus \overline{\mathcal{D}}_{R(j_1,0)}$ (11)

• All these states are also mapped to states in χ ... Complicated, so natural to first focus on generators...

• In the SU(2) SQCD example above, $\chi = \widehat{SO(8)}_{-2}$ and the generators are just the 28 AKM currents, $J_{I,SO(8)}$ [Beem, Lemos, Peelears, Rastelli, van Rees].

• Question: Are there some general bounds on the number of generators, $|\chi|$?

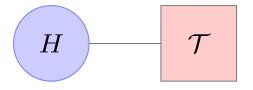
- In general no upper bounds: $N \to \infty$ SU(N) $N_f = 2N$ or T_N .
- In general no interesting lower bound for isolated theories: $\chi((A_1, A_{2n})) = \operatorname{Vir}_{c=-\frac{2n(5+6n)}{3+2n}}$ [Cordova, Shao].
- Claim: If an interacting $\mathcal{N} = 2$ SCFT, \mathcal{T} , has an exactly marginal deformation that corresponds to a gauge coupling, then

$$|\chi(\mathcal{T})| \ge 3 , \qquad (12)$$

i.e., the corresponding chiral algebra has at least three generators.

• Arguing in favor of this assertion will turn out to touch on many of the open questions we mentioned earlier.

• We will consider the following general setup



where \mathcal{T} is an abstract isolated SCFT with a single stress tensor (we do not assume this is the only conserved spin-2 current), $H \subset G_{\mathcal{T}}$ is a flavor symmetry subgroup we conformally gauge.

- We can easily generalize our arguments to arbitrary number of \mathcal{T}_i , but we will stick to a single \mathcal{T} for simplicity.
- We would like to study

$$\delta W = g \cdot \Phi \cdot \mu , \qquad (13)$$

where $\mu \in \mathcal{T}$.

• Turns out to be sufficient to perturbatively (and non-perturbatively) keep track of operators built from λ_{+}^{1} , $\tilde{\lambda}_{2+}$, μ , and J_{++}^{11} .

• Subtlety: $|\chi_{g=0}| > |\chi_{g\neq0}|$. The Q-cohomology elements we will need to study pair up via [Dolan, Osborn]

$$\widehat{\mathcal{C}}_{2\hat{n}-2(0,0)} \oplus \mathcal{D}_{2\hat{n}-1(0,0)} \oplus \overline{\mathcal{D}}_{2\hat{n}-1(0,0)} \oplus \widehat{\mathcal{B}}_{2\hat{n}}$$
(14)

• **Plan:** (i) Show that the isolated theory, \mathcal{T} , has a moduli (sub)space parameterized by vevs of the *H*-holomorphic moment map. (ii) From this result, show that $|\chi| < 3$ implies $a_{4d} \ge c_{4d}$ along the conformal manifold of the gauged theory. (iii) From here, we use the asymptotic Cardy-like behavior of the index to argue that there is no essential singularity in the $q \rightarrow 1$ limit (iv) We argue that this fact implies the existence of fermionic chiral algebra generators and hence $|\chi| \ge 3$.

• Consider the operators

$$\mathcal{O} = \mu^{I} \mu_{I} \in \widehat{\mathcal{B}}_{2} . \tag{15}$$

• We claim that the above operators satisfy

$$\mathcal{O}^n \neq 0, \quad \forall n$$
, (16)

in the Hall-Littlewood (HL) chiral ring of the isolated theory, $\mathcal{T}.$

• Suppose not: $\exists \hat{n}$ such that $\mathcal{O}^{\hat{n}}$ is in a long multiplet (can deal with $\mathcal{O}^{\hat{n}} \equiv 0$ too). Must be of type

$$\widehat{\mathcal{C}}_{2\widehat{n}-2(0,0)} \oplus \mathcal{D}_{2\widehat{n}-1(0,0)} \oplus \overline{\mathcal{D}}_{2\widehat{n}-1(0,0)} \oplus \widehat{\mathcal{B}}_{2\widehat{n}}$$
(17) denote would-be nontrivial Q-cohomology elements as \mathcal{O}'_{++} , \mathcal{O}''_{+} , \mathcal{O}''_{+} .

• At small $g \neq 0$, theory still has a short stress tensor multiplet

$$J_{++}^{11} = (\lambda_{+}^{1})^{I} (\tilde{\lambda}_{2+})_{I} - J_{1++}^{11} , \qquad (18)$$

• Define now

$$\tilde{\mathcal{O}}_{+\dot{+}} = \kappa_{\lambda} (\lambda_{+}^{1})^{I} (\tilde{\lambda}_{2\dot{+}})_{I} + J_{1+\dot{+}}^{11} , \qquad (19)$$

where $\kappa_{\lambda} \neq 0, -1$ is chosen s.t. $\langle J_{++}^{11}(x)\tilde{\mathcal{O}}_{++}(0)\rangle = 0$ at g = 0.

• Clearly, this operator is in a long multiplet, since it pairs up as follows

$$\tilde{\mathcal{O}}_{++} \oplus \tilde{\mathcal{O}}_{+} \oplus \tilde{\mathcal{O}}_{+} \oplus (1+\kappa_{\lambda})\mathcal{O} , \qquad (20)$$

where $\tilde{\mathcal{O}}_{+} = (1 + \kappa_{\lambda})\mu^{I}(\lambda_{+}^{1})_{I}, \ \tilde{\mathcal{O}}_{+} = (1 + \kappa_{\lambda})\mu^{I}(\tilde{\lambda}_{2+})_{I}$, and $\mathcal{O} = \mu^{I}\mu_{I}$.

• It follows that

$$\mathcal{O}^{\hat{n}-1}\tilde{\mathcal{O}}_{+\dot{+}} \oplus \mathcal{O}^{\hat{n}-1}\tilde{\mathcal{O}}_{+} \oplus \mathcal{O}^{\hat{n}-1}\tilde{\mathcal{O}}_{\dot{+}} \oplus (1+\kappa_{\lambda})\mathcal{O}^{\hat{n}} , \qquad (21)$$

- Therefore, we have that $\mathcal{O}'_{++} (1 + \kappa_{\lambda})^{-1} \mathcal{O}^{\hat{n}-1} \tilde{\mathcal{O}}_{++}$ is in a short multiplet for small $g \neq 0$. However, this is a contradiction since the anomalous dimension of $\mathcal{O}^{\hat{n}-1} \tilde{\mathcal{O}}_{++}$ goes to zero (in the limit that $g \to 0$).
- \bullet Therefore, we have that in HL ring of the isolated theory ${\cal T}$

$$\mathcal{O}^n \neq 0$$
, $\forall n > 0 \Rightarrow (\mu_I)^n \neq 0$, $\forall I$. (22)
Note: This is a necessary algebraic condition on the "matter" sector for $\beta = 0$. Next we will formulate a geometrical one.

• $(\mu_I)^n \neq 0$ in the chiral ring $\forall n \Rightarrow \exists$ a SUSY moduli space for $\mathcal{T}, \ \hat{\mathcal{M}}_0^{\mathcal{T}} \subset \mathcal{M}_{SU(2)_R}^{\mathcal{T}}$, parameterized by $\langle \mu^I \rangle$.

• Expect for generic points $\mathcal{M}_{SU(2)_R}^{\mathcal{T}}$ is free (goldstone bosons for broken $SU(2)_R$, ...). Moreover, $U(1)_R$ is preserved and so

$$a_{4d,\mathcal{T}} - c_{4d,\mathcal{T}} \ge -\frac{1}{24} \dim \mathcal{M}_{SU(2)_R}^{\mathcal{T}} .$$
(23)

• Now, we can add gauge fields and show that either $a_{4d} \ge c_{4d}$ or $|\chi| \ge 3...$ Otherwise, there would be non-trivial moduli space parameterized by $\langle \hat{\mathcal{B}}_R \rangle ...$ Hyperkählerity \Rightarrow must have $|\chi| \ge 3$ including the stress tensor.

• To argue that $|\chi| \ge 3$ even for $a_{4d} \ge c_{4d}$, we will need to make an assumption that has been proven in many cases by [Di Pietro and Komargodski] (confirmed in infinitely many interacting $\mathcal{N} = 2$ SCFTs M. B. and T. Nishinaka]; see also [Ardehali]).

• Roughly speaking, it turns out that if we take $q = e^{-\beta}$

$$\lim_{\beta \to 0} \log \mathcal{I}_S(q) = -\frac{8\pi^2}{\beta} (a_{4d} - c_{4d}) + \cdots$$
 (24)

- It is then very easy to rule out the case of Vir (as in the (A_1, A_{2n}) theories).
- If $\not\exists$ null vectors (besides trivial one), get

$$\mathcal{I} = \chi_{(1,1)} = \mathsf{P}.\mathsf{E}.\left(\frac{q^2}{1-q}\right) ,$$
 (25)

where

$$\mathsf{P.E.}(f(x_1, \cdots, x_i)) = \exp\left(\sum_{n=1}^{\infty} n^{-1} f(x_1^n, \cdots, x_i^n)\right)$$
(26)

This clearly has an essential singularity as $q \rightarrow 1$ and so $a_{4d} < c_{4d}$.

• Therefore, need cases with non-trivial null vectors.

• Kac determinant with h = 0 + modular properties of vacuum character + unitarity in 4D \Rightarrow null vector exists only if

$$\mathcal{I} \sim e^{\frac{\pi^2}{6\beta} \left(1 - \frac{6}{pp'}\right) + \mathcal{O}(1)} , \qquad (27)$$

where $pp' \ge 10$.

• As a result, there is an essential singularity, and so we must add fermions to cancel and get $a_{4d} \ge c_{4d}$... For interacting theory

$$|\chi| \ge 3 , \qquad (28)$$

as claimed.

Note: Pure $\mathcal{N} = 2$ SCFTs w/ $a \ge c$ must, like $\mathcal{N} > 2$ SCFTs, have fermionic χ gens. Way to get handle on 1st and 3rd q's.

Saturating the Bounds

- This begs the question, can we saturate these bounds?
- Answer is yes, although clearly this theory cannot be a Lagrangian theory (this would have too much flavor symmetry / too many AKM generators in 2d or, more generally, too large HL ring).

$$(A_1, A_3) 2 (A_1, A_3) (A_1, A_3)$$

Saturating the Bounds (cont...)

- Corresponding chiral algebra is $\mathcal{A}(6)$ theory of [Feigin, Feigin, and Tipunin]. Can match partition function using [M.B., Nishinaka] and [Cordova, Shao]
- We have $a_{\widehat{\mathcal{T}}} = c_{\widehat{\mathcal{T}}} = 2$ and so $c_{2d} = -12c_{\mathcal{T}} = -24$
- \mathcal{W} algebra obtained by adding two Virasoro primaries $\Phi^{\pm}(z)$ of holomorphic dimension 4 to c = -24 Virasoro algebra.
- Therefore, we have

$$\chi(\widehat{\mathcal{T}}) = \mathcal{A}(6) , \quad |\chi(\widehat{\mathcal{T}})| = 3 .$$
 (29)

• Interestingly, even though no flavor symmetry in 4D, still have non-trivial action of an sl(2) symmetry from rotations transverse to the chiral algebra plane.

Conclusions

• We found a bound on chiral algebras related to conformal manifolds, some new connections between conformal manifolds and moduli spaces, and we saw that $\mathcal{N} = 2$ theories with $a \ge c$ must have additional fermionic chiral algebra generators.

• Some open questions

(i) It appears (empirically) that all chiral algebras arising from conformal manifolds admit non-trivial actions of certain extra bosonic algebras. Is there a deep explanation for this phenomenon? Are there counterexamples?

Conclusions (cont...)

(ii) It follows from our work that if there is an $\mathcal{N} = 2$ theory (satisfying the usual Cardy-like scaling) with $|\chi| < 3$ and an exactly marginal deformation, then that marginal deformation is exotic: it cannot be interpreted as a gauge coupling.

(iii) What additional structures associated with chiral algebras coming from conformal manifolds in 4D (e.g., understand roles of lines and logs)?