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The World as a Hologram

» The Covariant Entropy Bound is a relation between
information and geometry. RB 1999
» Motivated by holographic principle
Bekenstein 1972; Hawking 1974
't Hooft 1993; Susskind 1995; Susskind and Fischler 1998

» Conjectured to hold in arbitrary spacetimes, including
cosmology.

» The entropy on a light-sheet is bounded by the difference
between its initial and final area in Planck units.

» If correct, origin must lie in quantum gravity.



A Proof of the Covariant Entropy Bound

» In this talk | will present a proof, in the regime where
gravity is weak (Gh — 0).

» Though this regime is limited, the proof is interesting.
» No need to assume any relation between the entropy and

energy of quantum states, beyond what quantum field
theory already supplies.

» This suggests that quantum gravity determines not only
classical gravity, but also nongravitational physics, as a
unified theory should.



Covariant Entropy Bound



Surface-orthogonal light-rays

3

» Any 2D spatial surface B bounds four (2+1D) null
hypersurfaces

» Each is generated by a congruence of null geodesics
(“light-rays”™) L B



Light-sheets

time
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Out of the 4 orthogonal directions, usually at least 2 will
initially be nonexpanding.

The corresponding null hypersurfaces are called
light-sheets.



The Nonexpansion Condition
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Demand
0 <0 <« nonexpansion
everywhere on the light-sheet.




Covariant Entropy Bound

In an arbitrary spacetime, choose an arbitrary
two-dimensional surface B of area A. Pick any
light-sheet of B.

Then S < A/4Gh, where S is the entropy on
the light-sheet.

RB 1999



Example: Closed Universe

S3
S.p. N.p.
(a)

» S(volume of most of S3) > A(S?)

» The light-sheets are directed towards the “small”
interior, avoiding an obvious contradiction.



Generalized Covariant Entropy Bound

increasing decreasing A
area

area

If the light-sheet is terminated at finite cross-sectional
area A’, then the covariant bound can be strengthened:

A—A
<
S< 4Gh




Generalized Covarlant Entropy Bound

For a given matter system, the tightest bound is obtained
by choosing a nearby surface with initially vanishing
expansion.

Bending of light implies
A-A=AAxGh.

Hence, the bound remains nontrivial in the weak-gravity
regime (Gh — 0). RB 2003



Entropy AS



How is the entropy defined?

» In cosmology, and for well-isolated systems: usual,
“intuitive” entropy. But more generally?
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How is the entropy defined?

» In cosmology, and for well-isolated systems: usual,
“intuitive” entropy. But more generally?

» Quantum systems are not sharply localized. Under what
conditions can we consider a matter system to “fit" on L?

» The vacuum, restricted to L, contributes a divergent
entropy. What is the justification for ignoring this piece?

In the Gh — 0 limit, a sharp definition of S is possible.



Vacuum-subtracted Entropy

Consider an arbitrary state pgonal- In the absence of gravity,
G = 0, the geometry is independent of the state. We can
restrict both pgiona and the vacuum |0) to a subregion V:

P ter Pglobal
po = tr_v|0)(0]

The von Neumann entropy of each reduced state diverges like
A/e?, where A is the boundary area of V, and ¢ is a cutoff.
However, the difference is finite as ¢ — 0:

AS = 8(p) — S(ro) -



Modular Energy AK



Relative Entropy

Given any two states, the (asymmetric!) relative entropy

S(plpo) = —trplog po — S(p)

satisfies positivity and monotonicity: under restriction of p and
po to a subalgebra (e.g., a subset of V), the relative entropy
cannot increase.



Modular Hamiltonian

Definition: Let pg be the vacuum state, restricted to some
region V. Then the modular Hamiltonian, K, is defined up to a
constant by

oK
tre=K -~

The modular energy is defined as

po =

AK =trKp —trKpg



A Central Result

Positivity of the relative entropy implies immediately that
AS < AK.

To complete the proof, we must compute AK and show that

AA
< —=.
AK_4Gh



Light-sheet Modular Hamiltonian

In finite spatial volumes, the modular Hamiltonian K is nonlocal.
But we consider a portion of a null plane in Minkowski:

= t—-x=0;
t+x:0<xT<1.

In this case, K simplifies dramatically.



Free Case

» The vacuum on the null plane factorizes over its null
generators.

» The vacuum on each generator is invariant under a special
conformal symmetry.

Thus, we may obtain the modular Hamiltonian by application of
an inversion, x™ — 1/x™, to the (known) Rindler Hamiltonian
on x* € (1,00). We find

K= 2;;/0/2L/ dxT g(x) Ty

with
g(x*) =x*(1 - x7).



Interacting Case

In this case, it is not possible to define AS and K directly on the
light-sheet. Instead, consider the null limit of a spatial slab:

(a) (b) ©)



Interacting Case

We cannot compute AK on the spatial slab.

However, it is possible to constrain the form of AS by
analytically continuing the Rényi entropies,

Sp=(1—-n)""logtrp",

ton=1.



Interacting Case

The Renyi entropies can be computed using the replica trick,

as the expectation value of a pair of defect operators inserted at
the boundaries of the slab. In the null limit, this becomes a null
OPE to which only operators of twist d-2 contribute. The only
such operator in the interacting case is the stress tensor, and it
can contribute only in one copy of the field theory.

This implies

2 N L
AS:? dX 0 dX g(X )T++.



Interacting Case

Because AS is the expectation value of a linear operator, it

follows that
AS = AK

for all states.
This is possible because the operator algebra is

infinite-dimensional; yet any given operator is eliminated from
the algebra in the null limit.



Interacting Case

We thus have

2
AK = ;LT d2x L/ dxt g(xT) Toy .

Known properties of the modular Hamiltonian of a region and
its complement further constrain the form of g(x™):

9(0)=0,g'(0) =1, g(x") =g(1 - x¥),and |g'| < 1.
| will now show that these properties imply

AK < AA/AGH,

which completes the proof.



Area Loss AA



Area Loss in the Weak Gravity Limit

Integrating the Raychaudhuri equation twice, one finds
1 1
AA= —/ axTO(xT) = —0p + 87rG/ axt (1 —x) Ty .
0 0

at leading order in G.
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Area Loss in the Weak Gravity Limit

Integrating the Raychaudhuri equation twice, one finds
AA = —/01 axTO(xT) = —0p + 87rG/O1 axt (1 —x) Ty .
at leading order in G. Compare to AK:
AK = 2;/01 axtg(x") Ty .

Since 6y <0 and g(x*) < (1 + x;), we have AK < AA/4Gh
if we assume the Null Energy Condition, T, > 0.



Violations of the Null Energy Condition

v

It is easy to find quantum states for which T, < 0.

Explicit examples can be found for which AS > AA/4Gh, if
6o = 0.

Perhaps the Covariant Entropy Bound must be modified if
the NEC is violated?

E.g., evaporating black holes

v

v

v

Lowe 1999
Strominger and Thompson 2003
Surprisingly, we can prove S < (A — A’)/4 without
assuming the NEC.

v



Negative Energy Constrains 6,

>

If the null energy condition holds, 6y = 0 is the “toughest
choice for testing the Entropy Bound.

However, if the NEC is violated, then 6y = 0 does not
guarantee that the nonexpansion condition holds
everywhere.

To have a valid light-sheet, we must require that
1
0> 0(x") = o + 87TG/ dx* Tou(X7) |
x+t

holds for all x* € [0, 1].
This can be accomplished in any state.
But the light-sheet may have to contract initially:

0o ~ O(Gh) < 0 .



Proof of AK < AA/4Gh

Let F(xT) = xT + g(x*). The properties of g imply F' > 0,
F(0) =0, F(1) = 1.

By nonexpansion, we have 0 > f01 F' 6 dx*, and thus
B < 87rG/dX+[1 — F(xM)| oy . (1)
For the area loss, we found
—/01 axTo(xT) = —0p + 87TG/01 dxt(1—x")Ty . (2)

Combining both equations, we obtain

AA

+ 4yt
4Gﬁ_ h/dx (x) T4 = AK. (3)



Monotonicity

v

In all cases where we can compute g explicitly, we find that
it is concave:
g// S 0

v

This property implies the stronger result of monotonicity:

As the size of the null interval is increased, AS — AA/4Gh
is nondecreasing.

No general proof yet.

v

v



Covariant Bound vs. Generalized Second Law

» The Covariant Entropy Bound applies to any null
hypersurface with < 0 everywhere.

» |t constrains the vacuum subtracted entropy on a finite null
slab.

» The GSL applies only to causal horizons, but does not
require 6 < 0.

» It constrains the entropy difference between two nested
semi-infinite null regions.

» Limited proofs exist for both, but is there a more direct
relation?
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