Unitarity and positivity constraints for CFT at large N

Agnese Bissi

Harvard University

August 4,2016

in collaboration with L.F. Alday

- Basics of CFT in $d > 2$
- \blacktriangleright Four point functions in $\mathcal{N} = 4$ SYM with $SU(N)$ gauge group and crossing symmetry
- \blacktriangleright Large N expansion:
	- construct solutions satisfying crossing
	- consequences for the spectrum of the theory
	- connection with causality constraints for effective field theories
- \triangleright Conclusions

Conformal field theories

 \triangleright Conformal field theories in $d > 2$ dimensions are described by:

 \triangleright dimensions of primary operators ϕ_i Δ_i → $\langle \phi_i(x_1)\phi_i(x_2)\rangle$

 \triangleright OPE coefficients $c_{ijk} \rightarrow \langle \phi_i(x_1)\phi_i(x_2)\phi_k(x_3)\rangle$

 \blacktriangleright Four point functions of identical scalar primary operators is fixed by conformal symmetry to be:

$$
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \frac{\mathcal{G}(u,v)}{x_{12}^{2\Delta_{\phi}}x_{34}^{2\Delta_{\phi}}}
$$

where the cross ratios μ and ν are

$$
u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}
$$

Conformal block decomposition

 \triangleright OPE: $\phi \times \phi = 1 + \mathcal{O} +$ descendants

 \triangleright conformal block decomposition:

Crossing symmetry

 \triangleright Crossing symmetry or associativity of the OPE:

 $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$

$\mathcal{N}=4$ SYM

- In this talk I will consider 4 dimensional $\mathcal{N} = 4$ SYM with gauge group $SU(N)$
- The four point function of $\frac{1}{2}$ -BPS operators $\mathcal{O}_{20'}$ of protected dimension 2, transforming under the 20' of $SU(4)_R$ can be written as

$$
\langle \mathcal{O}_{\bm{20}'}(x_1) \mathcal{O}_{\bm{20}'}(x_2) \mathcal{O}_{\bm{20}'}(x_3) \mathcal{O}_{\bm{20}'}(x_4) \rangle = \sum_{\mathcal{R}} \frac{\mathcal{G}^{\mathcal{R}}(u,v)}{x_{12}^4 x_{34}^4}
$$

- \triangleright R denotes the representations appearing in the tensor product $20' \times 20'$
- \blacktriangleright Superconformal Ward identities imply relations among $\mathcal{G^R}$ allowing the entire 4 point function to be expressed only in terms of one non trivial function $G(u, v)$. Dolan, Osborn- Beem, Rastelli, van Rees

Intermediate operators: $\mathcal{O} = \{ \mathcal{O}_1, \mathcal{O}_S \}$

LONG MULTIPLET: SHORT MULTIPLET:

 \blacktriangleright acquire anomal. corrections identity, $\frac{1}{2}$ -BPS and $\frac{1}{4}$ -BPS

$$
\Delta_L = \Delta(g_{YM}, N) \qquad \Delta_S = \Delta(N)
$$

$$
c_{\mathcal{O}_{20'}\mathcal{O}_{20'}L}^2 = a(g_{YM}, N) \qquad c_{\mathcal{O}_{20'}\mathcal{O}_{20'}S}^2 = c_s^2(N)
$$

 \triangleright The contribution to the four point function can be split as $\mathcal{G}(u, v) = \mathcal{G}_1(u, v) + \mathcal{G}_5(u, v)$

 \rightarrow $G_S(u, v)$ depends only on N (what was 1 in the conformal case)

$$
\mathcal{G}_L(u, v) = \sum_{\substack{\Delta, \ell \\ \text{sum over} \\ \text{supeven. prime}}}\mathsf{a}_{\Delta, \ell} u^{\frac{\Delta - \ell}{2}} \underbrace{\mathsf{g}_{\Delta + 4, \ell}(u, v)}_{\text{superconformal}}
$$

Crossing equation

Crossing symmetry requires

$$
v^{2} \mathcal{G}_{L}(u,v)-u^{2} \mathcal{G}_{L}(v,u)=u^{2} \mathcal{G}_{S}(v,u)-v^{2} \mathcal{G}_{S}(u,v)-4(u^{2}-v^{2})-\frac{16}{N^{2}-1}(u-v)
$$

 \triangleright Solutions to this equation can be written as

$$
\mathcal{G}_L(u,v)=\mathcal{G}_L^P(u,v)+\frac{\mathcal{A}(u,v)}{v^2}
$$

 \blacktriangleright $\mathcal{G}_{L}^{P}(u, v)$ satisfies the crossing equation above by itself \blacktriangleright $\mathcal{A}(u, v)$ is crossing symmetric

$$
\mathcal{A}(u,v) \underset{x_1 \leftrightarrow x_3}{=} \mathcal{A}(v,u) \underset{x_1 \leftrightarrow x_4}{=} v^2 \mathcal{A}(\frac{u}{v},\frac{1}{v})
$$

Solution for $N = \infty$

 \triangleright The contribution coming from the particular solution admits an expansion of the form

$$
\mathcal{G}_L^P(u,v) = \mathcal{G}_L^{P,(0)}(u,v) + \frac{1}{N^2} \mathcal{G}_L^{P,(1)}(u,v)
$$

- \blacktriangleright The solution $\mathcal{A}(u, v)$ starts at order $\frac{1}{N^2}$
- \blacktriangleright Intermediate operators:
	- \triangleright double trace operators

$$
\mathcal{O}_{n,\ell}=\mathcal{O}\Box^{n}\partial_{\mu_{1}}\cdots\partial_{\mu_{\ell}}\mathcal{O}
$$

 \triangleright dimension $\Delta_{n,\ell} = 4 + 2n + \ell$ and spin ℓ \triangleright $a_{n,\ell}^{(0)}$ are fixed by $\mathcal{G}_{L}^{P,(0)}$ $L^{P,(0)}(u, v)$

Solutions at order $\frac{1}{N^2}$

 \blacktriangleright Intermediate operators: double trace

 \triangleright dimension $\Delta_{n,\ell} = 4 + 2n + \ell + \frac{1}{N^2} \gamma_{n,\ell}$

$$
\triangleright \; a_{n,\ell}^{(0)} + \tfrac{1}{N^2} a_{n,\ell}^{(1)}
$$

Heemskerk, Penedones, Polchinski, Sully- Alday, AB, Lukowski

 $\circ~$ For $\lambda=g_{\textit{YM}}^2N$ large, the absence of twist two operators requires the presence of the supergravity solution

$$
\frac{1}{\mathsf{N}^2}\left(\mathcal{G}_L^{\mathsf{P},(1)}(u,v)+\mathcal{A}^{\mathsf{sugra}}(u,v)\right)\;\to\gamma_{n,\ell}^{\mathsf{sugra}}\text{ and } \mathsf{a}_{n,\ell}^{\mathsf{sugra}}
$$

Intermediate operators (at finite λ): single trace $\rightarrow \mathcal{A}^{ex}(u, v)$ \triangleright dimension δ of order \mathcal{N}^0 and spin ℓ

 \triangleright $\frac{1}{N^2} a_{\delta,\ell}$

 \triangleright these operators appear at order $\frac{1}{N^2}$ hence $a_{\delta,\ell} \geq 0$ for unitarity

At finite λ , there is a correction to the dimension of double trace operators $\gamma_{n,l}^{\text{ex}}$

Main goal

The rest of the talk is devoted to:

- Find solutions $A(u, v)$ of the crossing equation in the regime in which single trace operators appear in the OPE
- \triangleright Understand in which way the presence of such operators affects the anomalous dimension $\gamma_{n,l}^{\text{ex}}$ of double trace, twist 4 operators

Mellin amplitude

Assume that the correlator at order $\frac{1}{N^2}$ admits a Mellin representation of the form

$$
\mathcal{A}(u,v)=\frac{1}{(2\pi i)^2}\int\prod_{\text{poles at }x=-2,\dots:\text{ twist of double trace ops}}M(x,y,z)u^{-x}v^{-y}dxdy
$$

- \triangleright Only two independent variables: $z = -2 x y$
- \triangleright Crossing relations imply that M(x,y,z) is completely symmetric in x, y and z
- \triangleright Single poles of $M(x, y, z)$ at $x = -\tau/2$ correspond to the presence in the OPE of new operators of twist τ

Simple example

- \triangleright Consider the presence of a single scalar operator of dimension δ with OPE coefficient $\frac{1}{N^2} a_{\delta,0}$.
- \triangleright The Mellin amplitude consistent with crossing symmetry and containing a pole at $x=-\frac{\delta}{2}$ $\frac{0}{2}$ is

$$
M_{\delta}(x,y,z)=h^{(0)}_{\delta,0}\left(\frac{1}{x+\delta/2}+\frac{1}{y+\delta/2}+\frac{1}{z+\delta/2}\right)
$$

where $h^{(0)}_{\delta,0}=$ $\mathcal{a}_{\delta,0}f(\delta)\geq 0$

 \triangleright It is possible to compute the contribution to the anomalous dimension $\gamma_{0,\ell}^\textsf{ex}$ as a function of δ

Anomalous dimension

 \circ $\gamma_{0,0}^{\text{ex}}$ is negative for $\delta > 4$ $\circ \ \ \gamma_{0,\ell}^{\mathsf{ex}}$ for $\ell > 0$ is always negative

More general case

F Consider the more general exchange of an operator of twist τ , spin ℓ with all its descendants

$$
M_{\tau}^{(\ell)}(x,y) = a_{\tau,\ell} \sum_{k} \alpha_{k}^{(\ell)} \left(\frac{P_{\ell+\tau}^{(\ell)}(y,z)}{x+\tau/2+k} + \frac{P_{\ell+\tau}^{(\ell)}(x,z)}{y+\tau/2+k} + \frac{P_{\ell+\tau}^{(\ell)}(x,y)}{z+\tau/2+k} \right)
$$

- \circ k is the descendant level
- $\circ\;$ $P_{\ell\pm}^{(\ell)}$ $\binom{f(x)}{f(x)}$ is related to the Mack polynomial (Mellin representation of the superconformal block)
- ighthroof the behaviour of $\gamma_{0,\ell}^{\text{ex}}$ is the same as for the single scalar.
- \triangleright Warning: There is an ambiguity of adding a symmetric polynomial of degree $\ell - 1$ which is set to 0 for the moment. Notice that for $\ell = 0$ there is no ambiguity.

General exchange

For a new single trace primary operator of twist τ and spin ℓ , the correction to the anomalous dimension of double trace operators has the property:

$$
\begin{array}{c} \circ \ \gamma_{0,\ell}^{\text{ex}} > 0 \ \text{if} \ \tau < 4 \\ \circ \ \gamma_{0,\ell}^{\text{ex}} \leq 0 \ \text{if} \ \tau \geq 4 \end{array}
$$

Fig.Example of $\ell = 2$

Positivity constraints

 \triangleright To focus on the anomalous dimension of twist 4 operators we need to consider terms proportional to u^2 (or $x=-2)$ obtaining

$$
\gamma_{0,j}^{\text{ex}} \sim -\int dy \Gamma^2(y+2) \Gamma^2(2-y) \mathcal{F}_j(y) P_{\ell+\tau}^{(\ell)}(y,-y)
$$

where $\mathcal{F}_i(y)$ are the continuos Hahn polynomials.

 \blacktriangleright it is possible to check that

$$
\circ \mathcal{F}_j(y) = P_{j+4}^{(j)}(y, -y)
$$

\n
$$
\circ P_{\ell+\tau}^{(\ell)}(y, -y) = \sum_{j=0}^{\ell} c_j(\tau) \mathcal{F}_j(y) \text{ where } c_j(\tau) \ge 0 \text{ for } \tau \ge 4
$$

Positivity constraints

If all the single trace operators have $\tau \geq 4$, the contribution to the whole Mellin amplitude at $x = -2$ (and hence $z = -y$) satisfies

$$
M(-2, y, -y) = \sum_{n=0,2,\cdots} \underbrace{c_n}_{c_n \geq 0} \mathcal{F}_n(y) \rightarrow \gamma_{0,\ell}^{ex} \leq 0
$$

 \triangleright Notice that due to the symmetries of $M(x, y, z)$, it follows that

$$
M(x,-2,-x)=\sum_{n=0,2,\cdots}c_n\mathcal{F}_n(x)
$$

with $c_n \geq 0$.

Strong positivity constraints

- \triangleright Assume that at fixed spin the minimal twists are ordered in such a way that $\tau_0 < \tau_2 < \cdots <$ 4 $<$ $\tau_{\ell^*} < \tau_{\ell^*+2} \dots$
- ► This implies that $M(x, -2, -x) = \sum_{n=0,2,\cdots} c_n \mathcal{F}_n(x)$ with $c_{\ell^*}, c_{\ell^*+2}, \cdots$ positive
- Moreover: $\gamma_{0,\ell}^{ex} \leq 0$ for $\ell \geq \ell^*$.

◦ The same constraints can be derived by assuming Regge behaviour for the Mellin amplitude.

Comments on the spectrum

How does this reflect on the spectrum?

 \triangleright The dimension of double trace twist 4 operators is given by

$$
\Delta_{0,\ell}=4+\ell-\underbrace{\frac{1}{\mathsf{N}^2}\frac{96}{(\ell+1)(\ell+6)}}_{\text{SUGRA correction}}+\frac{1}{\mathsf{N}^2}\gamma_{0,\ell}^{\text{ex}}
$$

- If the single trace operator with minimal twist τ_{min} has \circ τ_{min} < 4 then τ_{min} is the minimum twist for fixed spin $\circ~~ \tau_{min} \geq 4$ then $4 - \gamma^{sugra}_{0,\ell^*}$ is an upper bound for the twist, since $\gamma_{0,\ell}^{\mathsf{ex}} \leq 0$ in this regime
- \triangleright This upper bound has been observed with the numerical bootstrap.

Beem, Rastelli, van Rees

Causality constraints

- \triangleright Causality constraints on effective field theories have been studied by Adams, Arkani-Hamed, Dubovsky, Nicolis and Rattazzi.
- \triangleright The S-matrix of a low energy effective field theory should satisfy certain positivity constraints if the theory has a consistent UV completion.
- In the forward limit $t \to 0$ the regular part of the S-matrix has an expansion

$$
\mathcal{T}(s,0,-s) = \alpha + \beta s^2 + \gamma s^4 + \cdots
$$

where all the coefficients α, β, \cdots are non-negative

Causality constraints

 \blacktriangleright In our formalism, the connection between the S-matrix and the $\frac{1}{N^2}$ contribution of the Mellin amplitude is through the flat space limit:

$$
\mathcal{T}(s,t,u) = -2 \lim_{\lambda \to \infty} \lambda^{3/2} \oint \frac{d\alpha}{2\pi i} \frac{e^{-\alpha}}{\alpha^6} M\left(\frac{\sqrt{\lambda}s}{\alpha}, \frac{\sqrt{\lambda}t}{\alpha}, \frac{\sqrt{\lambda}u}{\alpha}\right)
$$

 \blacktriangleright In the forward limit the Mellin amplitude have an expansion:

$$
M\left(\frac{\sqrt{\lambda}s}{\alpha},0,-\frac{\sqrt{\lambda}s}{\alpha}\right)=c_0+c_1\frac{\lambda s^2}{\alpha^2}+c_2\frac{\lambda^2 s^4}{\alpha^4}+\cdots
$$

where the coefficients $c_i = c_i(\lambda)$. Only the leading term survives in the flat space limit and is poitive.

 \triangleright Positivity constraints in the flat space limit are equivalent to the ones of causality.

Conclusions

In this talk I discussed

- \blacktriangleright solutions at order $\frac{1}{N^2}$ to crossing symmetry of a four point function of $\frac{1}{2}$ -BPS operators in $\mathcal{N}=4$ SYM with gauge group $SU(N)$
- \triangleright in particular the regime in which the OPE contains single trace operators as well as double trace operators
- \triangleright the anomalous dimensions of double trace operators of twist 4 get corrections with a definite sign which can be tracked back to positivity properties of Mack polynomials
- \triangleright the relation between the positivity constraints and causality of the S-matrix of effective field theories.