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Black Hole microstates from String Theory

String theory is a theory of quantum gravity

One of the great successes of String Theory:

Bekenstein-Hawking entropy of asymptotically-flat BPS black holes
from counting of microstates in field theory [Strominger, Vafa 96]



Black Hole microstates from String Theory

Black hole = System of D-branes with a field theory description
on their world-volume

Black-hole microstates = States in the field theory

S = log
(
dmicro

)

Leading Bekenstein-Hawking entropy typically from some 2D CFT

and Cardy’s formula:

SBH =
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Black Hole microstates from String Theory

The matching can be made much more precise!

E.g.: 4D N = 8 string theory:

In field theory, exact quantum degeneracies from elliptic genus:
[Maldacena, Moore, Strominger 99; Shih, Strominger, Yin 05; Sen 08]

∑
n=−1, 0 (mod 4)

dmicro(n) qn/4 =

∑
`∈Z,Z+ 1

2
q`

2

η(q)6

Radamacher expansion: [Hardy, Ramanujan; Radamacher]

dmicro(n) =

∞∑
c=1

c−9/2Kc(n) Ĩ7/2

(π√n
c

)

In gravity, combine

Sen’s entropy function + localization in SUGRA (+ some assumptions)

Reproduce exactly the same expansion.
[Sen; Dabholkar, Gomes, Murthy; Sen, Banerjee, Gupta, Mandal]

orbi

↑
folds of AdS2 all per

↑
turbative orders with localization
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Black Hole microstates in AdS

Until recently, no similar result in AdS4+

AdS/CFT gives a non-perturbative definition of quantum gravity in AdS

Non-perturbative computations ⇒ quantum corrections
in strongly-coupled CFT to weakly-curved gravity

→ Development of localization techniques in SUSY QFTs

Ensemble of states in strongly-coupled CFT = Large BH
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Black holes in 4D gauged supergravity

Maximally SUSY example: 1
16 -BPS black holes in

M-theory on AdS4 × S7 (holography well
under control)

↓

4D maximal N = 8 SO(8) gauged supergravity

↓

4D N = 2 U(1)4 gauged supergravity (STU model)

STU model: graviton, 4 vectors and 3 complex scalars (+ spinors)
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Black holes in 4D gauged supergravity

Static spherically-symmetric magnetically charged (dyonic) BPS black holes:
[Cacciatori, Klemm 09; Gnecchi, Dall’Agata 10; Hristov, Vandoren 10; Halmagyi 13, 14; Katmadas 14]

Metric: ds2 = −f(r) dt2 +
1

f(r)
dr2 + g(r)

(
dθ2 + sin2 θ dϕ2

)
Asymptotically: global AdS4

Near horizon: AdS2 × S2 (BPS, 2 supercharges)

Magnetic charges: FΛ = nΛ dvolS2

∑
Λ nΛ = −2 Λ = 1, . . . , 4

Possibly electric charges, non-trivial profile for scalars



Holography

[Aharony, Bergman, Jafferis, Maldacena 08]

M-theory on AdS4 × S7 ↔ 3D ABJM gauge theory
with group U(N)1 × U(N)−1

N
1

N
−1

Ai

Bj

Asymptotic of BH determines
a relevant deformation of the CFT:

3D theory on S2 × R

FΛ ⇒ topologically twisted on S2 (n1, n2, n3 family of twists)

L = LABJM +AΛ (R)
µ Jµ,Λ (R) + . . .

possibly with real masses
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Holography

Relevant deformation triggers an RG flow:

3D ABJM

↓

1D system

×

R × S2

AdS2 × S2

AdS4

Near horizon AdS2 ⇒ su(1, 1|1)-invariant ensemble [Maldacena, Michelson

Strominger 98]of ground states

l
BH microstates



Counting the states

Construct a “topologically twisted index” [FB, Zaffaroni 15]

for 3D N = 2 theories with U(1)R, topologically twisted on S2:

Z = Tr (−1)F e−βH eiA
flav
3 Jflav

H: Hamiltonian of the twisted theory on S2

Aflav
3 : fugacities for flavor symmetry charges Jflav

It counts ground states of the CFT twisted on S2 : 0 = H −mflavJflav

(or “chiral” states of the massive theory if mflav 6= 0)

Can be represented by a SUSY path-integral:

ZS2×S1(y, n) =

∫
Dϕe−S[ϕ;y,n] y = eiA

flav
3 −βm

flav
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A localization formula

For gauge theories, the TT index [Nekrasov, Shatashvili 14]

can be computed exactly with localization: [FB, Zaffaroni 15]

ZS2×S1 (y, n) =
∑

m∈Γmag

∮
C

1

|Weyl|
∏

Cartan

(
dx

2πix
x
km

) ∏
α∈G

(1− xα)
∏
ρI∈R

(
xρI/2y

1/2
I

1− xρI yI

)ρI (m)+nI−qI+1

︸ ︷︷ ︸
Zclass Z1-loop

Sum over lattice of magnetic charges

Contour integral inside complexified maximal torus

prescribed by Jeffrey-Kirwan residue [Jeffrey, Kirwan 95]

already appeared in 2D elliptic genus [FB, Eager, Hori, Tachikawa 13]

and 1D Witten index [Hori, Kim, Yi 14; Cordova, Shao 14; Hwang, Kim, Kim, Park 14]

Picks specific residues and boundary terms according to ρI and k



Index at large N

We are interested in the large N limit of the TT index of ABJM

Reduce to a sum of residues at zeros of BAEs: [Gukov, Pei 15]

1 = xk
j

N∏
l=1

(
1− y3

x̃l
xj

)(
1− y4

x̃l
xj

)(
1− y−1

1
x̃l
xj

)(
1− y−1

2
x̃l
xj

) , similar for x↔ x̃

Zeros are generalized critical points of the [Nekrasov, Shatashvili 14]

2D effective twisted superpotential W̃(x, x̃)

At large N , use continuous distribution (here
∑4

Λ=1 uΛ = 2π)

iuΛ = log yΛ

logZS2×S1 ' N3/2

3

√
2u1u2u3u4

4∑
Λ=1

nΛ

uΛ

Further structure observed at large N [Hosseini, Zaffaroni 16; Hosseini, Mekareeya 16]
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Black hole entropy from the index

Combine fermion number and flavor charges into

a “trial R-symmetry” of the SUSY QM:

ZS2×S1 = TrHnh=0 (−1)Rtrial(A
flav
3 ) e−βm

flavJflav

Near-horizon Hamiltonian (electric flux on AdS2): Hnh = H −mflavJflav

• su(1, 1|1)-invariance of ground states ⇒ Rsc(ground states) = 0

Extremization principle:

∂ logZ

∂u

∣∣∣
usc

= i 〈Jflav〉 black hole flavor charges

Re
[

logZ − iu〈Jflav〉
]
usc

= SBH entropy

By evaluation, the ABJM TT-index reproduces the black hole entropies!
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Index and attractor equations

Near horizon BH solutions are determined by attractor equations [Ferrara, Kallosh 96]

[Dall’Agata, Gnecchi 10]

Gauged N = 2 supergravity attractor equations (static BHs):

∂j

(
− i 〈Q,V〉
〈G,V〉

)
= 0 − i 〈Q,V〉

〈G,V〉
= R2

S2 ∝ SBH

Special geometry: Q = (pΛ, qλ) magnetic and electric charges

V ∝ (XΛ, ∂F
∂XΛ ) holomorphic sections

G = (0, g) gaugings

In fact

− i 〈Q,V〉
〈G,V〉

∝ logZS2×S1 − iu〈Jflav〉
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Entropy function

Similarities with Sen’s entropy function formalism. [Sen 07]

• Quantum entropy function:

dmicro(qa) =
〈
e−iqa

∮
Aa
〉finite

AdS2

finite part of unnormalized path-integral on Euclidean AdS2 with fixed charges.

• In grand canonical ensemble:

Zfinite
AdS2

(ua) =
∑
qa

dmicro(qa) ei
∑
qbub

Extremization is saddle-point approximation to the Fourier transform.



OSV conjecture

Similarities with the OSV conjecture. [Ooguri, Strominger, Vafa 04]

The TT index can be decomposed into a sum [Beem, Dimofte, Pasquetti 12]

of holomorphic blocks

ZS2×S1 =
∑
α

ZαD2×S1 · Z̃D2×S1

The set of vacua {α} is 1-1 to the generalized vacua

of the 2D effective twisted superpotential W̃eff

e
∂W̃eff
∂ua = 1

Same set is 1-1 to solutions to the BAE [Nekrasov, Shatashvili 14; Gukov, Pei 15]

[Closset, Kim 16]

At large N only one solution dominates



Conclusions

Non-perturbative computations at strong coupling

give information about quantum gravity in AdS

Localization techniques provide interesting sets

Extracted leading Bekenstein-Hawking entropy of BPS BHs in AdS4

from the TT index

Can we compute 1
N and e−N corrections? [cfr Dabholkar, Drukker, Gomes 14]

Can we compute the exact integer degeneracies?


