Space-Time Action for G_2 Compactifications in Superspace

Katrin Becker, Texas A&M University

Strings 2016, YMSC,Tsinghua University

I. Given a supersymmetric string theory or M-theory compactification in the supergravity approximation, can it be corrected order by order in α' (or the inverse radius) to give a solution of the corrected equations of motion and supersymmetry transformations? \longrightarrow Type II string theory

II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory compactification? \longrightarrow M-theory on G_2 manifolds

I. Type II String Theory on G2 Manifolds

Calabi-Yau*, Spin*(7) manifold

Tools

Given a 7d spin manifold M there is a unit spinor η

 $\varphi_{abc} = \eta^T \Gamma_{abc} \eta$

and a 4-form...

$$
\boldsymbol{\psi}_{abcd} = \boldsymbol{\eta}^T \boldsymbol{\Gamma}_{abcd} \boldsymbol{\eta}
$$

...related by

$$
\psi = \ast \varphi
$$

$$
g_{ab} = g_{ab} [\varphi] = (\det s)^{-1/9} s_{ab}
$$

1
1
1
1
2
1
2
2
2
3
3
3
2
3
2
3
2
3
3
3
4
4
2
2
3
3
4
3
4
3
4
4
2
4
4
2
4
2
4
4
2
4
4
4
2
4
4
4
4
4
4
4
4
5
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
4
5
1
5
1
4
5
1
4
5
1
4
5
1
5
1
5
1
5
1
5
1
5
1
6
1
5
1
5
1
6
1
5
1
6
1
5
1
5
1
6
1
5
1
6
1
5
1
6
1
5
1
6
1
5
1
6
1
5
1
5
1
5
1
6
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
6
1
5
1
5
1
5
1
5
1
5
1

If the metric has G_2 holonomy

0 $\overline{0}$ $d\varphi = 0$ $d\psi = 0$ $\varphi = 0$ $\psi = 0$ $= 0$ $= 0$

In general, if the manifold is spin (but the spinor might not be covariantly constant) then the space has a G_2 structure and forms If the metric has G_2 holonomy
 $d\varphi = 0$

In general, if the manifold is spin (but the spinor might not b

covariantly constant) then the space has a G_2 structure and f

can be decomposed into irreducible representa s G_2 holonomy
 $d\varphi = 0$
 $d\psi = 0$

e manifold is spin (but the spinor might not be

tant) then the space has a G_2 structure and forms

sed into irreducible representations of G_2
 $\varphi = \tau_0 \psi + 3\tau_1 \wedge \varphi + * \tau_3$
 is G_2 holonomy
 $d\varphi = 0$
 $d\psi = 0$

e manifold is spin (but the spinor might not be

stant) then the space has a G_2 structure and forms

ssed into irreducible representations of G_2
 $l\varphi = \tau_0 \psi + 3\tau_1 \wedge \varphi + * \tau$ 2 holonomy
 $d\varphi = 0$
 $d\psi = 0$

mifold is spin (but the spinor might not be

t) then the space has a G_2 structure and forms

into irreducible representations of G_2
 $= \tau_0 \psi + 3\tau_1 \wedge \varphi + * \tau_3$
 $= 4\tau_1 \wedge \psi + \tau_2 \$ the probability
 $d\varphi = 0$
 $d\psi = 0$

nifold is spin (but the spinor might not be

therefore the space has a G_2 structure and forms

into irreducible representations of G_2
 $= \tau_0 \psi + 3\tau_1 \wedge \varphi + * \tau_3$
 $= 4\tau_1 \wedge \$ = 0

= 0

(but the spinor might not be

ace has a G_2 structure and forms

ble representations of G_2
 $\tau_1 \wedge \varphi + * \tau_3$
 $\tau_+ \tau_2 \wedge \varphi$
 $\tau_0, \tau_1, \tau_2, \tau_3$ are torsion classes

has
$$
G_2
$$
 holonomy
\n $d\varphi = 0$
\n $d\psi = 0$
\nthe manifold is spin (but the spinor mi
\nonstant) then the space has a G_2 struct
\nposed into irreducible representations
\n $d\varphi = \tau_0 \psi + 3\tau_1 \wedge \varphi + * \tau_3$
\n $d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi$
\n $\tau_0, \tau_1, \tau_2, \tau_3$ are tors

Leading Order Correction

Gravitino supersymmetry transformation

a a a a ^b A iB a a b

 \rightarrow In 7d dimensions spinors have 8 real components. A basis is $\{\eta, \Gamma_a \eta\}, a=1,\dots,7.$

The coefficients are tensors $A_a = A_a [\varphi]$ $B_a^b = B_a^b [\varphi]$

α' corrections

Gravition supersymmetry transformation
\n
$$
\delta \psi_a = \nabla_a \eta + A_a \eta + i B_a^b \Gamma_b \eta
$$
\n
$$
\rightarrow \text{In 7d dimensions spinors have 8 real components.}
$$
\n
$$
\rightarrow \text{This conditions has a basis is } \{\eta, \Gamma_a \eta\}, a=1,...,7.
$$
\n
$$
\rightarrow \text{The coefficients are tensors } A_a = A_a [\varphi] \qquad B_a^b = B_a^b [\varphi]
$$
\n
$$
\overbrace{A \sigma(\alpha^{r_3})}^{A \sigma} A_a = 0
$$
\n
$$
B_a^b = \alpha^{r_3} \varphi_{acd} \nabla^c \left(\frac{1}{32g} \varepsilon^{dc_1...c_6} \varepsilon^{bd_1...d_6} R_{c_1c_2d_1d_2} R_{c_3c_4d_3d_4} R_{c_5c_6d_5d_6} \right)
$$

Supersymmetric Vacuum

To order α'^3

$$
\delta \psi_a = \nabla_a^{\dagger} \eta^{\dagger} + \left[A_a \left[\varphi \right] \eta + i B_a^{\dagger} \left[\varphi \right] \Gamma_b \eta \right] = 0
$$

Primed quantities include corrections: $\eta' = \eta + O(\alpha^{3})$

 φ , η of G_2 holonomy manifold

Set up PDE

$$
d\varphi' = \alpha [\varphi]
$$

$$
d\psi' = \beta [\varphi]
$$

$$
\psi' = *' \varphi'
$$

$$
\alpha_{abcd} = 8A_{[a} \varphi_{bcd]} - 8B_{[a}^{\ e} \psi_{bcd]e}
$$

$$
\beta_{abcde}=10A_{[a}\mathstrut \psi_{bcde]}-40B_{[ab}\mathstrut \varphi_{cde]}
$$

A necessary and sufficient condition for this PDE to be solvable is that α and β should be exact.

To order α' ³ we can check this explicitly.

The PDE for φ' is solvable!

K. B., D. Robbins, E. Witten, 1404.2460 All Orders in a'

Using induction over the order in α' it is possible to show that a solution of the supersymmetry conditions exists to any order in α' provided the corresponding

Exactness of α and β is not only necessary but also sufficient....

There exists a solution of $\delta \psi = 0$ to all orders in α' !

K. B., D. Robbins, E. Witten, 1404.2460

II. The Space-Time Action of M-theory Compactified to 4d in N=1 Superspace

We wish to describe the fluctuations around the background...

compact G_2 manifold

... these include massless states as well as massive KK modes.

Guiding Principles

 $4d$ supersymmetry

Assemble fields into 4d superfields

Locality

Keep locality along space-time and M. $\phi = \phi(x, y)$ $C = \frac{1}{3!}C_{abc}(x, y)dy^a \wedge dy^b \wedge dy^c$

11d fields decompose into many 4d fields

 $C_{MNP}, G_{MN} \rightarrow \begin{cases} C_{abc}, C_{ab\mu}, C_{a\mu\nu}, C_{\mu\nu\rho}, C_{\mu\nu\rho}, C_{MN} \end{cases}$

The coordinates of flat 4d superspace are $(x^m, \theta^{\mu}, \overline{\theta}_a)$ upersymmetry $(x^m, \theta^{\mu}, \overline{\theta}_{\mu})$ ates...
(computed at established at established at established at each of the set of the ersymmetry $\theta^{\mu}, \bar{\theta}_{\mu})$
... Superfields are functions of these coordinates... Manifest Global 4d Supersyn

oordinates of flat 4d superspace are $(x^m, \theta^u, \bar{\theta}_a)$

fields are functions of these coordinates...

<u>Chiral superfields</u>
 $\overline{\partial}^{\partial}_{\theta} = 0$
 $\Phi(x, \theta) = C(x_+) + \sqrt{2}\theta\psi(x_+) + \theta\theta$

(x, y) = \hat **Manifest Global 4d Supersymmetry**
 e coordinates of flat 4d superspace are $(x^m, \theta^a, \overline{\theta}_a)$

perfields are functions of these coordinates...
 $-\frac{\partial}{\partial \theta^a} - i\theta^a \overline{\theta^a} \overline{\theta^a}$ $\overline{D}_a \Phi = 0$
 $\Phi(x, \theta) = C(x_+) + \sqrt{2} \$ Lanifiest Global 4d Supersymmetry

dinates of flat 4d superspace are $(x^m, \theta^u, \overline{\theta}_s)$

ds are functions of these coordinates...

<u>Chiral superfields</u>
 $\overline{D}_{\dot{\alpha}}\Phi = 0$
 $\Phi(x, \theta) = C(x_+) + \sqrt{2}\theta\psi(x_+) + \theta\theta F(x_+)$
 $y) = \hat{\phi}_{abc$ **parametry**
 parameters
 m
 *m
 <i>x*
 x
 x **Manifest Global**

The coordinates of flat 4d superspack

Superfields are functions of these of
 $\bar{D}_a = -\frac{\partial}{\partial \bar{\theta}^a} - i \theta^a \sigma_{aa}^m \partial_m$ \bar{D}_a
 $\Phi(x, \theta) = C(x_+) + \Phi(x_+)$ Manifest Global 4d Supersymmetry

ne coordinates of flat 4d superspace are $(x^m, \theta^u, \bar{\theta}_a)$

perfields are functions of these coordinates...

<u>Chiral superfields</u>
 $\overline{\overline{D}}_{\dot{\alpha}} \Phi = 0$ mifest Global 4d Supersymmetry

ates of flat 4d superspace are $(x^m, \theta^{\mu}, \overline{\theta}_\rho)$

are functions of these coordinates...

Chiral superfields
 $\overline{D}_{\dot{\alpha}}\Phi = 0$
 $(x, \theta) = C(x_+) + \sqrt{2}\theta\psi(x_+) + \theta\theta F(x_+)$ Manifest Global 4d Supersymmetry

coordinates of flat 4d superspace are $(x^m, \theta^m, \bar{\theta}_n)$

erfields are functions of these coordinates...
 $=\frac{\partial}{\partial \bar{\theta}^n} - i\theta^n \sigma_m^n \partial_m$
 $\overline{D}_\alpha \Phi = 0$
 $\Phi(x, \theta) = C(x_+) + \sqrt{2}\theta \psi(x_+) + \theta \theta F(x_$

Chiral superfields

 $\partial \overline{\theta}^{\dot{\alpha}}$ and $\alpha \circ m$

$$
\mathcal{C}_{abc}(x, y) = \hat{\varphi}_{abc}(x, y) + iC_{abc}(x, y)
$$

 α m \sim

 $\hat{\rho}=\varphi$

Action For Chiral Superfields

$$
I = \frac{1}{2} \int d^4x \left[K(\Phi, \Phi^+) \right] \Big|_{D} + \int d^4x \left[f(\Phi) \right] \Big|_{F} + c.c.
$$

Lagrangian density for bosonic fields

$$
L = -\int_{M \times M} d^7 y d^7 y' \frac{\delta^2 K}{\delta C(y) \delta C(y')} \left(\partial_{\mu} C(y) \partial^{\mu} C(y') - F(y) F(y') \right)
$$

+2 Re
$$
\int_M d^7 y \frac{\partial J(\nu)}{\partial C(y)} F(y)
$$

Superpotential
\nA good candidate is
$$
f(\Phi) = \beta \int_{\text{constant}} \Phi \wedge d\Phi
$$

\n $\int_{\text{constant}}^{\text{constant}}$
\nIn a supersymmetric ground state
\n $\frac{\delta f}{\delta \Phi} = 0 \Rightarrow d\Phi = 0 \Rightarrow d\hat{\varphi} = 0, G_4 = 0$
\nComparing with the previous results $d\varphi = \alpha = d\chi$
\n $\hat{\varphi} = \varphi' - \chi$
\nThere is a closed 3-form!

In a supersymmetric ground state

$$
\frac{\delta f}{\delta \Phi} = 0 \Longrightarrow d\Phi = 0 \Longrightarrow d\hat{\varphi} = 0, G_4 = 0
$$

Comparing with the previous results $d\varphi = \alpha = d\chi$

$$
\hat{\varphi}=\varphi^\prime\!-\chi
$$

There is a closed 3-form!

Example 18 Example 18 Example 19 Example 2011
 abc = $\varphi_{abc} + iC_{abc}$ are coordinates of an infinite dimensional

aehler manifold. Eleven-dimensional gauge transformations
 $\delta C = d\Lambda$
 \longleftrightarrow $\Lambda \in V$ the space

of 2-forms **EXECUTE:**

FRIM Transform a string the space of 2-forms models of the metric.
 $\delta C = d \Lambda$
 $\begin{array}{c}\n\lambda \longleftarrow \lambda \in V \text{ the space of } 2\text{-forms mod} \\
\text{closed } 2\text{-form} \\
\text{of the metric.}\n\end{array}$ $\mathcal{C}_{abc} = \varphi_{abc} + i \mathcal{C}_{abc}$ are coordinates of an infinite dimensional Kaehler manifold. Eleven-dimensional gauge transformations

of 2-forms mod $\delta C = d\Lambda$ \longrightarrow $\Lambda \in V$ the space

closed 2-form

…gives rise to isometries of the metric.

The Kähler form is invariant and as a result there is a moment map (a concept we borrow from symplectic geometry). As we show in more detail in our paper the vanishing of the moment map implies **Kähler Form**
 $\phi_{abc} + iC_{abc}$ are coordinates of an infinite

manifold. Eleven-dimensional gauge trans
 $\delta C = d\Lambda \longleftrightarrow_{\text{of the
left}} \Delta E$

is rise to isometries of the metric.

hler form is invariant and as a result there

ept we b **Example 18**
 \mathcal{E}_{abc} are coordinates of an infinite dimensional

d. Eleven-dimensional gauge transformations
 $\delta C = d\Lambda \longleftrightarrow_{\begin{array}{c} \Lambda \in V \text{ the space} \\ 0 \text{ of } 2\text{-forms mod} \\ \text{closed } 2\text{-form} \end{array}}$

isometries of the metric.

m is invariant **EVALUATE EXECUTE:**

EVALUATE FORM

For manifold. Eleven-dimensional gauge transformations
 $\delta C = d\Lambda$
 \longleftrightarrow $\Lambda \in V$ the space

of 2-forms mod

ves rise to isometries of the metric.

Closed 2-form

Closed 2-form

 Example 18
 \mathcal{E}_{abc} are coordinates of an infinite dimensional

d. Eleven-dimensional gauge transformations
 $\delta C = d\Lambda \longleftrightarrow_{\begin{array}{c} \Lambda \in V \text{ the space} \\ 0 \text{ of } 2\text{-forms mod} \\ \text{closed } 2\text{-form} \end{array}}$

isometries of the metric.

m is invariant

$$
\mu = 0 \Longrightarrow \nabla_a \left(\frac{\delta K}{\delta C_{abc} (y)} \right) = 0
$$
 Closed 4-form!

Needles to say it would be interesting to derive these conditions from a Kaluza-Klein reduction of M-theory. We envision this as a two step process:

1) we rewrite the action of 11d supergravity in a form that displays manifest N=1 supersymmetry in 4d.

2) non-renormalization theorems should then give us information about which results hold to all orders in perturbation theory.

Kaluza-Klein Reduction of M-Theory

Fields are decomposed into a 4+7 split:

BSosonic Fields
\n³ields are decomposed into a 4+7 split:
\n
$$
C_{MNP} \rightarrow C_{abc}, C_{ab\mu}, C_{a\mu\nu}, C_{\mu\nu\rho}
$$
\n
$$
G_{MN} = \begin{pmatrix} h_{\mu\nu} + g_{cd} A^c_{\mu} A^d_{\nu} & g_{bc} A^c_{\mu} \\ g_{ac} A^c_{\nu} & g_{ab} \end{pmatrix}
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 3} \qquad A
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 3} \qquad A
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 4} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 5} \qquad A
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 6} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 7} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 8} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 8} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 9} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 8} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 8} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 9} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 8} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 3} \qquad B
$$
\n
$$
M, N = 0, ..., 10 \qquad \text{p.v=0, ..., 3} \qquad B
$$
\n
$$
M
$$

Symmetries:

$$
\begin{cases} C \to C + d\Lambda \\ x^M \to x^M - \xi^M \end{cases}
$$

4d system is very complicated but known in detail...

Summary $\overline{\mathbf{4}}$

4 Summary
\nAs a summary we present a concrete example. The space-time effective action for
\neleven-dimensional supergravity compactified to four dimensions is
\n
$$
S = -\frac{1}{8\kappa^2} \int dv h^{\alpha} \left(\frac{1}{2} g^{ab} g^{cd} + g^{ac} g^{bd} \right) \mathcal{D}_{\alpha} g_{ab} \mathcal{D}_{\beta} g_{cd} \qquad \alpha, \beta, ...
$$
\nare space-time indices
\n
$$
+ \frac{1}{2\kappa^2} \int dv \left(h^{\beta \mu} h^{\gamma[\rho} h^{\alpha]\nu} - \frac{1}{2} h^{\alpha \mu} h^{\beta[\nu} h^{\gamma]\rho} \right) \mathcal{D}_{\alpha} h_{\beta} \gamma \mathcal{D}_{\mu} h_{\nu \rho} \qquad \phi
$$
\n
$$
+ \frac{1}{4\kappa^2} \int dv f \left[g^{ab} h^{\alpha[\beta} h^{\mu]\nu} \hat{\nabla}_{a} h_{\alpha \beta} \hat{\nabla}_{b} h_{\mu \nu} - h^{\alpha \beta} \left(\frac{1}{2} g^{ab} g^{cd} + g^{ac} g^{bd} \right) \hat{\nabla}_{a} h_{\alpha \beta} \hat{\nabla}_{b} g_{cd} \right.
$$
\n
$$
+ \left(g^{\mu t} g^{\alpha u} g^{rs} - \frac{1}{2} g^{\rho s} g^{at} g^{ru} + g^{\nu r} g^{\alpha u} g^{st} \right) \hat{\nabla}_{r} g_{pq} \hat{\nabla}_{u} g_{st} \right] + \frac{1}{8\kappa^2} \int dv f^{-1} \left(\mathcal{F}_{\mu \nu}^a \right)^2
$$
\n
$$
- \frac{1}{24\kappa^2} \int dv \left[\left(\mathcal{D}_{\mu} \mathcal{C}_{abc} - 3 \partial_{[\alpha} \mathcal{C}_{bc] \mu} \right)^2 + 4 f \left[\left(\mathcal{F}_{[\alpha} \mathcal{C}_{bcd]} \right)^2 \right]
$$
\n
$$
- \frac{1}{16\kappa^2} \int dv f^{-1} \left(\mathcal{F}_{\mu \nu ab} + \mathcal{F}_{\mu \nu}^c \mathcal{C}_{abc} \right)^2 - \frac{1}{24\kappa^2} \int dv \left[f^{-2} \left(\mathcal{F}_{\mu \nu \
$$

K. B, M. Becker, D. Robbins, 1412.8198

Goal: Write this Action in Superspace

Kinetic Terms

Use the Kaehler potential

M

$$
K=-\frac{3}{\kappa^2}\int_M d^7y\sqrt{g(F)}
$$

$$
g_{ab} = g_{ab} [\varphi] = (\det s)^{-1/9} s_{ab}
$$

etric

$$
s_{ab} = -\frac{1}{144} \varphi_{amn} \varphi_{bpq} \varphi_{rst} \varepsilon^{mnpqrst}
$$

F is a real superfield whose bottom components is φ

$$
F_{abc} = \frac{1}{2i} \left(\Phi_{abc} - \overline{\Phi}_{abc} \right) - 3 \partial_{[a} V_{bc]}
$$

Real superfield for $C_{ab\mu}$

The kinetic terms obtained from M-theory compactification are

The kinetic terms obtained from M-theory compactification are
\n
$$
S_{kin} = \frac{1}{24\kappa^2} \int \sqrt{g} \left[\frac{4}{3} (\pi_i \partial_\mu \varphi)^2 + (\pi_{2i} \partial_\mu \varphi)^2 \right] +
$$
\n
$$
\frac{1}{24\kappa^2} \int \sqrt{g} \left\{ \left[\left[\pi_i (\partial_\mu C - 3\partial C_\mu) \right]^2 - \left[\pi_i (\partial_\mu C - 3\partial C_\mu) \right]^2 \right] - \left[\pi_{2i} (\partial_\mu C - 3\partial C_\mu) \right]^2 \right\}
$$
\nExpanding in components the kinetic terms obtained from
\nsuperspace are
\n
$$
S_{kin} = \frac{1}{24\kappa^2} \int \sqrt{g} \left[\frac{4}{3} (\pi_i \partial_\mu \varphi)^2 + (\pi_i \partial_\mu \varphi)^2 \right] - (\pi_{2i} \partial_\mu \varphi)^2 \right] +
$$
\n
$$
\frac{1}{24\kappa^2} \int \sqrt{g} \left[-\left[\pi_i (\partial_\mu C - 3\partial C_\mu) \right]^2 + \left[\pi_i (\partial_\mu C - 3\partial C_\mu) \right]^2 \right] - \left[\pi_{2i} (\partial_\mu C - 3\partial C_\mu) \right]^2
$$
\nThis coefficient only agrees after integrating
\nout auxiliary fields in the gravity multiple.

Expanding in components the kinetic terms obtained from superspace are

The kinetic terms obtained from M-theory compactification are
\n
$$
S_{kin} = \frac{1}{24\kappa^2} \int \sqrt{g} \left[\frac{4}{3} (\pi_0 \partial_\mu \varphi)^2 + (\pi_{22} \partial_\mu \varphi)^2 + \frac{1}{24\kappa^2} \int \sqrt{g} \left\{ \frac{[(\pi_1 (\partial_\mu C - 3\partial C_\mu)]^2 - [\pi_2 (\partial_\mu C - 3\partial C_\mu)]^2 - [\pi_{22} (\partial_\mu C - 3\partial C_\mu)]^2]}{24\kappa^2} \right\}
$$
\nExpanding in components the kinetic terms obtained from
\nsuperspace are
\n
$$
S_{kin} = \frac{1}{24\kappa^2} \int \sqrt{g} \left[\frac{4}{3} (\pi_1 \partial_\mu \varphi)^2 + (\pi_2 \partial_\mu \varphi)^2 - (\pi_{22} \partial_\mu \varphi)^2 \right] + \frac{1}{24\kappa^2} \int \sqrt{g} \left[-[\pi_1 (\partial_\mu C - 3\partial C_\mu)]^2 + [\pi_2 (\partial_\mu C - 3\partial C_\mu)]^2 \right]
$$
\nThis coefficient only agrees after integrating
\nout auxiliary fields in the gravity multiplet.

This coefficient only agrees after integrating out auxiliary fields in the gravity multiplet.

Potential

The potential for the scalar from the metric can be nicely expressed in terms of torsion classes

Scalar curvature of a G_2 structure manifold (Bryant)

Potential	Potential
ne potential for the scalar from the metric can be	
key expressed in terms of torsion classes	Scalar curvature of a G_2 structure manifold (Bryant)
$S_{pot} = \frac{1}{2\kappa^2} \int d^7 y \sqrt{g} \left(\frac{21}{8} \tau_0 ^2 + 30 \tau_1 ^2 - \frac{1}{2} \tau_3 ^2 - \frac{1}{2} \tau_2 ^2 \right)$ \n	
Get contributions from the superpotential	Get contributions from the superpotential and from integrating out D_{ab} which is the auxiliary field in the real superfield for $C_{ab\mu}$
his result agrees precisely with the superspace result!	

Get contributions from the superpotential

$$
W=\pm\frac{1}{8\kappa^2}\int\varphi d\varphi
$$

Get contributions from the superpotential and from integrating out D_{ab} which is the auxiliary field in the real superfield for $C_{ab\mu}$

This result agrees precisely with the superspace result!

Tensor Hierarchy and Chern-Simons Actions in Superspace Iierarchy and Chern-Simons
in Superspace
ser, W. D. Linch and D. Robbins, 1601.03066,
paper we embedded the tensor hierarchy consisting
scending from the M-theory three-form
 $C_{MNP} \rightarrow C_{abc}$, $C_{ab\mu}$, $C_{a\mu\nu}$, $C_{\mu\nu\rho}$ **EXECUTE:** EXECUTE: The Superspace
 CERNATION SET SUPER SU

References: K. B., M. Becker, W. D. Linch and D. Robbins, 1601.03066, 1603.07362

1) In the first paper we embedded the tensor hierarchy consisting of all fields descending from the M-theory three-form

$$
C_{\text{MNP}} \rightarrow C_{\text{abc}}, C_{\text{ab}\mu}, C_{\text{a}\mu\nu}, C_{\mu\nu\rho}
$$

…and the corresponding abelian gauge transformations

$$
\mathcal \delta C = d\Lambda
$$

We explicitly constructed the supersymmetrized Chern-Simons action…

We explicitly constructed the supersymmetrized Chern-Simons
action...

$$
S = -\frac{1}{12\kappa^2} \text{Re}[i\int d^4x d^2\theta \left[2\Phi EG + \Phi W^\alpha W_\alpha\right] + 2\Sigma^\alpha EW_\alpha) -
$$

$$
\frac{1}{12\kappa^2} \int d^4x d^4\theta [-2\hat{\Phi}UH + V\hat{E}H + (VD^\alpha U - D^\alpha VU)W_\alpha +
$$

$$
(V\overline{D}_a U - \overline{D}_a VU)\overline{W}^\alpha - \Sigma^\alpha U D_\alpha U - \overline{\Sigma}_a U \overline{D}^\alpha U - X\hat{E}U]
$$

2) In the second paper we coupled this system to the non-abelian
gauge field arising from the metric.

 $\overline{(VD_{\alpha}U - D_{\alpha}VU)W^{\alpha}} - \Sigma^{\alpha}UD_{\alpha}U - \Sigma_{\alpha}UD^{\alpha}U - XEU$

2) In the second paper we coupled this system to the non-abelian gauge field arising from the metric.

Stay Tuned! More To Come...