

Data-Driven Cosmology

Primordial density perturbations are:

- superhorizon
- scale-invariant
- Gaussian
- adiabatic

 $r \sim 0.1$?

Have primordial gravitational waves been detected?

What does this teach us about the UV-completion of inflation?

In **effective field theory**, we parameterize the effects of the UV-completion by higher-dimension operators.

In this talk, I will consider the leading **higher-derivative corrections** to the slow-roll action:

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) - \frac{(\partial\phi)^4}{\Lambda^4} + \cdots$$

In **effective field theory**, we parameterize the effects of the UV-completion by higher-dimension operators.

In this talk, I will consider the leading **higher-derivative corrections** to the slow-roll action:

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) - \frac{(\partial\phi)^4}{\Lambda^4} + \cdots$$

This induces a non-trivial speed of sound for the inflaton fluctuations:

$$\mathcal{L} = -\frac{1}{2} \left[(\partial_t \delta \phi)^2 - c_s^2 (\partial_i \delta \phi) \right] + \cdots$$

I will discuss what the data from Planck and BICEP teaches us about this important class of deformations of slow-roll inflation.

Higgs vs. Technicolor

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) - \frac{(\partial\phi)^4}{\Lambda^4} + \cdots$$

or

non-perturbative

can't be described by small corrections to slow-roll inflation

Effective Theory of Inflation

Cheung et al.

The Goldstone and the graviton are massless, so their quantum fluctuations are amplified during inflation.

Effective Theory of Inflation

Cheung et al.

temperature anisotropies

B-mode polarization

Slow-roll inflation corresponds to nearly free Goldstone bosons with relativistic dispersion relation:

$$\mathcal{L}_{\pi} = M_{\rm pl}^2 |\dot{H}| \left[\dot{\pi}^2 - (\partial_i \pi)^2 \right]$$

$$\mathcal{L}_h = \frac{1}{8} M_{\rm pl}^2 \left[(\dot{h}_{ij})^2 - (\partial_k h_{ij})^2 \right]$$

Slow-roll inflation corresponds to nearly free Goldstone bosons with relativistic dispersion relation:

Deviations from slow-roll inflation are parameterized by higherorder self-interactions and/or a non-trivial dispersion relation.

Deviations from slow-roll inflation are parameterized by higherorder self-interactions and/or a non-trivial dispersion relation.

A well-motivated possibility is a non-trivial sound speed:

$$\mathcal{L}_{\pi} = \frac{M_{\rm pl}^2 |\dot{H}|}{c_s^2} \left[\left(\dot{\pi}^2 - c_s^2 (\partial_i \pi)^2 \right) - (1 - c_s^2) \dot{\pi} (\partial_i \pi)^2 + \cdots \right]$$

Deviations from slow-roll inflation are parameterized by higherorder self-interactions and/or a non-trivial dispersion relation.

A well-motivated possibility is a non-trivial sound speed:

$$\mathcal{L}_{\pi} = \frac{M_{\rm pl}^{2} |\dot{H}|}{c_{s}^{2}} \left[\left(\dot{\pi}^{2} - c_{s}^{2} (\partial_{i}\pi)^{2} \right) - (1 - c_{s}^{2}) \dot{\pi} (\partial_{i}\pi)^{2} + \cdots \right]$$

non-linearly realized symmetry

allows power spectrum measurements to constrain the interacting theory.

$$x\mapsto \tilde x\equiv c_s x$$
 ____ symmetry breaking scale
$$\pi_c\equiv (2M_{\rm pl}^2|\dot H|c_s)^{1/2}\pi\,\equiv\,f_\pi^2\pi$$

gives
$$\mathcal{L}_{\pi} = -\frac{1}{2}(\tilde{\partial}_{\mu}\pi_c)^2 - \frac{\dot{\pi}_c(\tilde{\partial}_i\pi_c)^2}{\Lambda^2} + \cdots$$

strong coupling scale

$$\Lambda^2 = f_\pi^2 \frac{c_s^2}{1 - c_s^2}$$

Unitarity Bound

2-to-2 Goldstone scattering violates unitarity when

$$E^4 > \frac{24\pi}{5} \Lambda^4 \equiv \Lambda_u^4$$

A Theoretical Threshold

A Theoretical Threshold

 $|f_{\text{NL}}^{\dot{\pi}(\partial_i \pi)^2}| = 0.93$

A New Bound on the Sound Speed

DB, Daniel Green and Rafael Porto

see also: Creminelli et al. [arXiv:0404.1065]

D'Amico and Kleban [arXiv:0404.6478]

A small sound speed enhances the scalar power spectrum and suppresses the tensor-to-scalar ratio:

$$\Delta_{\zeta}^{2} = \frac{1}{8\pi^{2}} \frac{H^{4}}{M_{\rm pl}^{2} |\dot{H}| c_{s}}$$

$$\Delta_{h}^{2} = \frac{2}{\pi^{2}} \frac{H^{2}}{M_{\rm pl}^{2}}$$

$$r \equiv \frac{\Delta_{h}^{2}}{\Delta_{\zeta}^{2}} = 16\varepsilon c_{s}$$

$$\varepsilon \equiv \frac{|\dot{H}|}{H^{2}}$$

A small sound speed enhances the scalar power spectrum and suppresses the tensor-to-scalar ratio:

$$\Delta_{\zeta}^{2} = \frac{1}{8\pi^{2}} \frac{H^{4}}{M_{\rm pl}^{2} |\dot{H}| c_{s}}$$

$$\Delta_{h}^{2} = \frac{2}{\pi^{2}} \frac{H^{2}}{M_{\rm pl}^{2}}$$

$$r \equiv \frac{\Delta_{h}^{2}}{\Delta_{\zeta}^{2}} = 16\varepsilon c_{s}$$

$$\varepsilon \equiv \frac{|\dot{H}|}{H^{2}}$$

BICEP2 then implies a lower bound on the sound speed:

$$c_s = \frac{r}{16\varepsilon} > \frac{0.01}{\varepsilon}$$

Creminelli et al. D'Amico and Kleban Naively, the bound weakens for large ε .

But, for $\varepsilon > 0.1$ new effects kick in:

- 1. scale-invariance of the scalars is in danger
- 2. tensors and scalars freeze at different times

This leads to an extra suppression in the tensor-to-scalar ratio:

$$r = 16\varepsilon c_s \left(\frac{H_t}{H_s}\right)^2$$

Summing Large Logs

At next-to-leading order in slow-roll, one finds:

$$r = 16\varepsilon c_s \left(\frac{H_t}{H_s}\right)^2 = 16\varepsilon c_s \left[1 + 2\varepsilon \ln c_s + \cdots\right]$$

This is large in the regime of interest.

Summing Large Logs

At next-to-leading order in slow-roll, one finds:

$$r = 16\varepsilon c_s \left(\frac{H_t}{H_s}\right)^2 = 16\varepsilon c_s \left[1 + 2\varepsilon \ln c_s + \cdots\right]$$

This is large in the regime of interest.

For $\varepsilon \approx const.$ we can solve the evolution exactly:

$$r = 16\varepsilon c_s^{\frac{1+\varepsilon}{1-\varepsilon}}$$

A New Bound on the Sound Speed

A New Bound on the Sound Speed

Summing Large Logs

Extending to
$$\eta\equiv\frac{\dot{\varepsilon}}{H\varepsilon}\neq0$$
 and $s\equiv\frac{\dot{c}_s}{Hc_s}\neq0$, we find:

tensors
$$r = 16\varepsilon c_s^{1+2\varepsilon\cdot(1-c_s^{-\eta})/(\eta\ln c_s)} \Big[1-\mathcal{C}\eta + 2(1-\mathcal{C})s\Big]$$

scalars
$$\Delta_\zeta^2(k) \propto \left(\frac{k}{k_\star}\right)^{\frac{n_s-1}{-2\varepsilon-\eta-s}+\frac{\alpha_s}{(-2\varepsilon\eta)}\ln(k/k_\star)}$$

Expected Degeneracies

Our bound would weaken if large ε is possible.

But this has to be consistent with the scalar spectrum:

$$n_s - 1 = -2\varepsilon - \eta - s$$
$$\alpha_s = -2\varepsilon \eta$$

Expected Degeneracies

Our bound would weaken if large ε is possible.

But this has to be consistent with the scalar spectrum:

$$n_s - 1 = -2\varepsilon - \eta - s$$
$$\alpha_s = -2\varepsilon \eta$$

Taking this into account strengthens the bound:

$$\eta \approx -2\varepsilon \quad \xrightarrow{|\alpha_s| \lesssim 0.01} \quad \varepsilon < 0.05 \quad \xrightarrow{r > 0.13} \quad c_s > 0.17$$

$$s \approx -2\varepsilon \implies r \approx 16\varepsilon c_s^{1+2\varepsilon} \left[1 - 2.5\varepsilon \right] \xrightarrow{r > 0.13} c_s > 0.15$$

strengthens the bound

Data Analysis

A joint likelihood analysis of Planck and BICEP2 * gives:

 $c_s > 0.25$

A New Bound on the Sound Speed

$f_{ m NL}^{ m equil}$ threshold BICEP2 Planck 10^{2} 10^{4} H

Conclusions

- If the BICEP2 result survives, then $c_s>0.25$ almost reaching the unitarity threshold $(c_s)_\star=0.47$.
- This corresponds to $|f_{\rm NL}^{\dot\pi(\partial_i\pi)^2}|<3.3$, two orders of magnitude stronger than the Planck-only bound.
- This does not rule out large equilateral non-Gaussianity from other operators in the EFT of inflation:

$$\text{e.g.} \quad \mathcal{L}_{\pi}^{(3)} = -\frac{\dot{\pi}_c(\tilde{\partial}_i \pi_c)^2}{\Lambda_{c_s}^2} - \frac{\dot{\pi}_c^3}{\Lambda^2} \qquad \text{with } \Lambda \ll \Lambda_{c_s}\text{,}$$
 is radiatively stable!

 Order-one equilateral non-Gaussianity remains a well-motivated experimental target.

Robustness of the Bound

