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Planck

BICEP2

• scale-invariant
• Gaussian
• adiabatic

• superhorizon

Primordial density perturbations are:

Have primordial gravitational 
waves been detected?

?

Data-Driven Cosmology



What does this teach us about 
the UV-completion of inflation?
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In effective field theory, we parameterize the effects of the 
UV-completion by higher-dimension operators.

In this talk, I will consider the leading higher-derivative corrections 
to the slow-roll action:
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In effective field theory, we parameterize the effects of the 
UV-completion by higher-dimension operators.

In this talk, I will consider the leading higher-derivative corrections 
to the slow-roll action:
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This induces a non-trivial speed of sound for the inflaton fluctuations:
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I will discuss what the data from Planck and BICEP teaches us about 
this important class of deformations of slow-roll inflation.
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perturbative non-perturbative

can’t be described by small 
corrections to slow-roll inflation

?or

Higgs vs. Technicolor 



Cheung et al.

Goldstone boson �(t, x)
of broken time translations

gravitonhij(t, x)

H(t)

The Goldstone and the graviton are massless, so their 
quantum fluctuations are amplified during inflation.

Effective Theory of Inflation 



gij = a2(t)
�
(1 + 2�(t, x))�ij + 2hij(t, x)

�
hij(t, x)�(t, x)

�(t, x)
Goldstone boson

temperature anisotropies B-mode polarization

graviton

Cheung et al.
Effective Theory of Inflation 



Slow-Roll Inflation 

Slow-roll inflation corresponds to nearly free 
Goldstone bosons with relativistic dispersion relation:

L� = M2
pl|Ḣ|
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Slow-roll inflation corresponds to nearly free 
Goldstone bosons with relativistic dispersion relation:
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quantum gravity scale 

symmetry breaking scale 
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Beyond Slow-Roll

Deviations from slow-roll inflation are parameterized by higher-
order self-interactions and/or a non-trivial dispersion relation.
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Beyond Slow-Roll

Deviations from slow-roll inflation are parameterized by higher-
order self-interactions and/or a non-trivial dispersion relation.

A well-motivated possibility is a non-trivial sound speed:

non-linearly realized symmetry
allows power spectrum measurements 

to constrain the interacting theory.



Writing

gives

strong coupling scale 

symmetry breaking scale 

Beyond Slow-Roll



Unitarity Bound

2-to-2 Goldstone scattering violates unitarity when

DB and Green
DB, Green and Porto
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Beyond Slow-Roll

non-Gaussianity fNL � 1
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A Theoretical Threshold

perturbativenon-perturbative superluminal

�u = f�



superluminalruled out by Planck perturbativenon-perturbative

A Theoretical Threshold



A New Bound on the Sound Speed
DB, Daniel Green and Rafael Porto

see also: Creminelli et al. [arXiv:0404.1065]
D’Amico and Kleban [arXiv:0404.6478]



A small sound speed enhances the scalar power 
spectrum and suppresses the tensor-to-scalar ratio:



A small sound speed enhances the scalar power 
spectrum and suppresses the tensor-to-scalar ratio:

BICEP2 then implies a lower bound on the sound speed:
Creminelli et al.

cs =
r

16�
>

0.01

�
D’Amico and Kleban



Naively, the bound weakens for large . 
But, for new effects kick in:

2. tensors and scalars freeze at different times

1. scale-invariance of the scalars is in danger

scalars

tensors



scalars

tensors

This leads to an extra suppression in the tensor-to-scalar ratio: 

r = 16�cs

�
Ht

Hs

�2



Summing Large Logs

At next-to-leading order in slow-roll, one finds:

This is large in the regime of interest.



Summing Large Logs

For we can solve the evolution exactly:

DB, Green and Porto

At next-to-leading order in slow-roll, one finds:

This is large in the regime of interest.



DB, Green and Porto

A New Bound on the Sound Speed 
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A New Bound on the Sound Speed 
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and

scalars

tensors

Summing Large Logs

Extending to , we find:

DB, Green and Porto



Expected Degeneracies

�Our bound would weaken if large is possible.

ns � 1 = �2� � � � sBut this has to be consistent 
with the scalar spectrum: �s = �2��



Expected Degeneracies

�Our bound would weaken if large is possible.

ns � 1 = �2� � � � sBut this has to be consistent 
with the scalar spectrum: �s = �2��

I.

II.
strengthens the bound

Taking this into account strengthens the bound:



Data Analysis 

A joint likelihood analysis of Planck and BICEP2    gives:

CosmoMC
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cs > 0.25*

* warning: no foreground subtraction



A New Bound on the Sound Speed 

ruled out by Planck + BICEP2 perturbative

0.25

non- 
perturbative

|f �̇(�i�)2

NL | < 4



Planck

BICEP2

threshold

4

Conclusions 

•  If the BICEP2 result survives, then cs > 0.25

almost reaching the unitarity threshold (cs)� = 0.47 .

•  This corresponds to |f �̇(�i�)2

NL | < 3.3

magnitude stronger than the Planck-only bound. 
, two orders of

•  This does not rule out large equilateral non-Gaussianity 
from other operators in the EFT of inflation:

e.g. L(3)
� = � �̇c(�̃i�c)2

�2
cs

� �̇3
c

�2

with � � �cs

 is radiatively stable!
,

•  Order-one equilateral non-Gaussianity remains a
well-motivated experimental target.



“If you build it they will come.”

Thank you for your attention!



Robustness of the Bound

0.02 0.05 0.1 0.2 0.5 1.0
cs

0.1

0.5

1.0

P

�1 = 0

�1 6= 0

�1 6= 0, ⇤CDM

�1 6= 0, {"3, �2}


