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This talk is based on work with

e Shing-Tung Yau (Harvard) and Jie Zhou (Perimeter)
e Earlier work with: D. Lange, P. Mayr, H. Movasati, E. Scheidegger



Motivation and Introduction

Physical moduli spaces can be geometrized

4d.N =2.5U(2)
/

4d, N =2,
U(1) + monopole

If
—

Seiberg and Witten '94



Motivation and Introduction

Physical moduli spaces can be geometrized

4d, N =2, SU(Q)/ e —
/ /

4d, N =2,
U(1) 4+ monopole

If
—

Seiberg and Witten '94

e Can be obtained from type IIB string theory on CY Y
Klemm, Lerche, Mayr, Vafa, Warner '96



Motivation and Introduction

Physical moduli spaces can be geometrized

z2

4d.N =2.5U(2) Y.

4d, N =2,
U(1) 4+ monopole

If
—

Seiberg and Witten '94

e Can be obtained from type IIB string theory on CY Y
Klemm, Lerche, Mayr, Vafa, Warner '96



Motivation and Introduction

Physical moduli spaces can be geometrized

14N =2,50(2) X,

4d, N =2,
U(1) + monopole
\

Il
—

Seiberg and Witten '94
e Can be obtained from type lIB string theory on CY Y
Klemm, Lerche, Mayr, Vafa, Warner '96

e Can be obtained from type IlA string theory on CY X
Katz, Klemm & Vafa '96, Katz, Mayr & Vafa '97



Motivation and Introduction

Mirror symmetry puts forward surprising insights into math
and physics
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e Mirror symmetry maps variations of the symplectic structure of X to
variations of the complex structure of Y



Motivation and Introduction

Gauge theory data is encoded in 3-point function

Cijk @

Cijk is the 3-pt correlator on a sphere of an N = (2,2) SCFT.
Cijk = nk/Cij- is related chiral ring structure constants ¢j¢; = CU’-¢/

The SCFT can be realized as a non-linear sigma model into X(Y)
and a topological theory can be defined Witten '88

Cjjk is part of the data of a flat connection on M.



Motivation and Introduction

Topological string theory probes higher genus mirror
symmetry

e Topological string amplitudes are global objects on the moduli spaces with
interesting limits Bershadsky, Cecotti, Ooguri & Vafa (1993)

21 i i
Z = exp (Z)\2g 2ﬁ£§.nin(2; t*,t*)xl...x"> ,
gn ’

e A limit of 7€ encodes generating functions of higher genus Gromov-Witten
invariants of X

e The perturbative expansion is asymptotic as it is for physical string theory Gross &
Periwal (1988), Shenker (1990), lecture notes of Marino (2012)



Motivation and Introduction

A non-perturbative formulation of topological strings is
needed

o ZpT = ZGw Maulik, Nekrasov, Okounkov & Pandharipande '03
ZBH = |Ztop’2 Ooguri, Strominger & Vafa '04

e Non-perturbative completion from ABJM /spectral theory Marino et al.
'10-'16, Grassi, Hatsuda, Marino '14

e Techniques of transseries and resurgence Couso-Santamaria, Edelstein,
Schiappa, Vonk '13,'14



Motivation and Introduction

A universal, intrinsic differential equation in A can be
obtained

e The special geometry of M leads to a polynomiality of F&
e Some universal monomials can be obtained to all genera

e These monomials are governed by a differential equation in A
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el
The geometry of M is special

Special geometry data
e M is the moduli space of complex (Kahler) structures of CY Y(X)
e 7z i=1,...,n=dim(M), local coordinates
e £ — M a hermitian line bundle, with metric e™¥ = ||Q[|?,Q € (L)
e Gj; = 0;0;K . a Kahler metric

Cik € T(£2® Sym3T*M), Yukawa coupling or three-point function




Polynomial structure of Topological Strings Special Geometry

Flatness of tt* connections gives special geometry

D; denotes the covariant derivative with the connections
k kk :
Mj=G6"0iG Ki:=0iK
The action of the chiral and anti-chiral ring give the flat tt* connection:

[Vi,Vi]=0, Vi=Di—-C

Curvature has a special form

5 5 —kl
—Rii'; = 16:. D)) = &y = 6/ G + 6]Gir — Cipe G,




Polynomial structure of Topological Strings BCOV Anomaly

Anomaly equation provides recursive information on higher
genus amplitudes

1 _ .
Z = exp <Z )‘2g_2ﬁ}—fu.in(2; te, B )X .. .x’")
g.n

o FE . #0for2g—2+n>0 FO:=Cy
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Polynomial structure of Topological Strings BCOV Anomaly

Anomaly equation provides recursive information on higher
genus amplitudes

Anomaly comes from contributions at the boundary of Riemann surface
moduli spaces

5. F€ = %szk ( Z D;F&)p, Fle) 1 DJ.Dk]:(g—l)> ’
81+82=¢

genus = g genus = gp genus = go genus = g — 1

Bershadsky, Cecotti, Ooguri & Vafa (1993)




Polynomial structure of Topological Strings BCOV Anomaly

Recursion leads to Feynman diagrams

_ ok _
C 7k = e D;DJ—(?;S s

&s'=C, 5 =6GiSt, &5 =GpS',

One can recursively integrate the anomaly equation:

5. F8 = C%k ( Z Dj]:(gl)Dk]:(gz) + DjDk]:(gl)> ’

g1+g2=g
Iterative use of [J;, D,-]’j leads to Feynman diagrams with S/, S’ S
propagators and Fl& - Dj ... D,-n]-'(g) vertices.

Il.ul'n
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Polynomial structure of Topological Strings BCOV Anomaly

Recursion leads to Feynman diagrams

— oK —_
Cij} = € D;D]—(();S,

ST =01, %9 =GpSt, &S =GpS.

One can recursively integrate the anomaly equation:

5(F® _%Sjk( S DFE) D Fe) 4 DD, FED))

81t+8=g
1 . -
= _Esjkai( Z Dj]:(gl)Dk]:(gz) + DJ.Dk]:(g—l))7
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Iterative use of [J;, D;]’j leads to Feynman diagrams with S/, S’ S

propagators and ]-"-(‘Lf) =D ... D,-n]-"(g) vertices.
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Polynomial structure of Topological Strings BCOV Anomaly

Recursion leads to Feynman diagrams
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Polynomial structure of Topological Strings BCOV Anomaly

Yamaguchi & Yau discover polynomial structure of
amplitudes

Yamaguchi & Yau (2004)

O F8 = %(__‘Zzz ( Z D,F&)p, Fle) 4 DZDZ]:(g—l)) ’
81+8=g

All nonholomorphic dependence of the amplitudes for the quintic is
captured by the connections and multiderivatives thereof

Ap = G**(z0,)PG,; and B, = eK(zaz)pe’K, p=12,3,...

finitely many of these generate a differential ring, 75 are polynomials in
these generators.

Related work: Hosono, Saito & Takahashi (99), Hosono (02), Huang & Klemm
(06), Aganagic, Bouchard & Klemm (06)



Polynomial structure of Topological Strings BCOV Anomaly

Polynomial structure can be generalized

The polynomial structure was generalized to all Calabi-Yau threefolds MA
& Lange (2007)

Polynomiality

.7-",-(1?.).,-" are degree 3g — 3 + n inhomogeneous polynomials in the
non-holomorphic generators (S”. S, S, K;) where degrees (1,2,3,1) are
assigned to the generators respectively. With coefficients and ambiguities

which are rational functions in the algebraic moduli

Show by induction

e Show that D;[generator]| is again expressible in terms of generators
and increases the grading by 1.

e Show that the initial correlation functions have that property and
proceed using the anomaly equations.




EE
The differential ring of generators closes

Differential ring closes on non-holomorphic generators
DS = §S55 4655 — CipnS™S™ + HE,
DS’ = 2815 — CinnS"'S"” + WFK + M,
DS = —%C,-m,,S”’S” + %hf"”KmKn + HK; + hy,
DiK; = —KiKj— CS" + CuS" K + hij,

MA & Lange (2007)

Initial correlation function

o 7O = 1Cust 4+ (1- )k + Y

]




Polynomial structure of Topological Strings BCOV Anomaly

The anomaly becomes a polynomial recursion

The equation splits into two sets of equations

oF(&) 1 | 1 (e1)
9S7 = 5 Z Dif(gl)Djf(g2 + EDiDjF g ,
g1+82=g
oF(8) . 0F (&) - OF(&)
= ! ij .
0 AR T T

MA & Linge (2007)



Polynomial structure of Topological Strings BCOV Anomaly

Polynomial structure allows computations

Boundary conditions are the name of the game

e BCOV recursion is the only method to solve higher genus topological
strings on compact Calabi-Yau manifolds. For example the quintic
(BCOV (93), g=2, Katz, Klemm & Vafa (99) g=4)

e Application of leading physically expected singular behavior Huang &
Klemm

1
Fg(tcon) ~ m + O(].)
te
e YY Polynomial structure + boundary conditions + A-model provide
enough information to solve the quintic to high genus. Huang,
Klemm & Quackenbush (06), g=51

One can also tackle more difficult compact geometries

K3 fibrations Haghighat & Klemm, Elliptic fibrations MA, Scheidegger;
Huang, Katz & Klemm




Polynomial structure of Topological Strings BCOV Anomaly

Polynomial ring recovers and generalizes quasi modular
forms

e MA, Scheidegger, Yau, Zhou (2013) For non-compact geometries
with known duality groups, M is identified with a modular curve,
polynomial ring becomes the ring of quasi modular forms of Kaneko
& Zagier, analogous construction of compact CY should give the
generalization

e MA, Movasati, Scheidegger & Yau (2014) The polynomial generators can
be thought of as coordinates on a larger moduli space, giving
topological string theory an algebraic description.
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Differential equation in the string coupling

Some characteristic monomials appear at every genus

e Take a one-dimensional slice of M, z local coordinate
Consider the highest degree term of F& in S%:

f(2)(5%)% 2

2g-2
f(z) = ag Cz& " a5 € Q.
What can we say about these?



Differential equation in the string coupling

Vertices of Feynman diagrams are further decomposed

1 .
1 2 . 1 1,7 2)(.
1 (G E) R += ( (g ;) Vo .- ) [+ f9(2)
E .° ’ ’ +2"



Differential equation in the string coupling

Vertices of Feynman diagrams are further decomposed

Dzszz - 3C2 SZZ + a szz - 3 : szz - 4'}<zszz .

zzz

DO~

Ty = 1szzSZZ+ (1— 7) K, + fi(z)

(=) @~



Differential equation in the string coupling

Anomaly equation for these monomials can be studied

e Define -
Fe=) X823, C2672(5%)%3
g=2
o Use:

-1
2g—2 22 O & A28—2 Szz 5 (h) (g—h) (g—1)
Z NS Z > b,7%p,F + D;D; F -
= =2 h=1

SZZ _ 252 zzz (SZZ) h;Z



Differential equation in the string coupling

Equation in the coupling is an Airy equation

Define A2 := \2C2,,(5%#)3

00
2g—2
Ztop,s = exp E /\sg dg
g§=2

: 2 1 L1
Make the change of variables: z = (2A2) 73, v = 27333 )3 Ztop,s-
From the summation of the anomaly equation the following can be
obtained

(8§ —z)v(z) =0.
This is an Airy differential equation!

Related work for ABJM Matrix model: Fuji, Hirano, Moriyama '11



Differential equation in the string coupling

Strong coupling expansion can be obtained

e The full solution is:

11 756 e
Fom—o5—2InA+67 53— 2073 4 O
33 3 ¢



Conclusions

Conclusion

Summary

e The chiral ring leads to a differential ring of functions on M

Topological string theory is polynomial in the generators of this ring

The coefficients of some monomials can be determined to all genus

A universal Airy differential equation can be obtained for the
topological string partition function in a limit

A second non-perturbative solution appears

Outlook
e Geometric meaning of \?

e Relation to non-perturbative definition of top. strings by Hatsuda,
Grassi and Marino (2014)

e Physical and enumerative meaning of the strong coupling expansion
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e collaborators D. Lange, P. Mayr, H. Movasati, E. Scheidegger, S. T.
Yau and J. Zhou

e You for your attention
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