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String theory predicts existence of a remarkable

quantum field theory in six dimensions,

the (2,0) superconformal field theory.



The theory is labeled by a simply-laced  Lie algebra,      .



It is remarkable, in part, because it is expected                   

to play an important role in pure mathematics:

Geometric Langlands 

Program

Knot Categorification

Program



The fact that the theory has no classical limit,

makes it hard to extract its predictions.



AGT correspondence,

after Alday, Gaiotto and Tachikawa,

serves well to illustrate 

both the mathematical appeal of the theory

and the difficulty of working with it.



is a conformal block on the Riemann surface                               

of a vertex operator algebra which is also labeled by       : 

The AGT correspondence states 

that the partition function of the     -type  (2,0) SCFT,

on a six manifold of the form      

        -algebra 



The correspondence further
 relates defects of the 6d theory  to

 vertex operators of the          -algebra,

inserted at points on     .

x

x
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If one is to take the conjecture at its face value,

it is hard to make progress on it. 

Since we do not know how to describe the (2,0) SCFT,

we cannot formulate or evaluate its partition function in any generality.

(Exceptions are  g=A_1 , or  special choices of defects.)



I will argue in this talk that one can make progress 

by replacing

the 6-dimensional conformal field theory,

which is a point particle theory,

by the 6-dimensional string theory which contains it,

the (2,0) little string theory.



It turns out that there is 

a little string version of the AGT correspondence

which one can make 

precise in a very general setting.

The correspondence can be proven explicitly.



On the W-algebra side, one replaces the ordinary W-algebra

by its “q-deformation”.

The deformed W-algebra is the one defined by

Frenkel and Reshetikhin

in the 90’s.



The correspondence is between 

the partition function of the 

-type 6d little string theory on 

             ,

and

q-conformal block of the deformed          -algebra on      .  



We will take       to be a cylinder, since the torus case

follows by additional identifications.

x x
x

x

The Riemann surface      ,             

can be taken to be either a cylinder, or a torus.



On each side of the correspondence, one replaces a theory with 

 conformal symmetry,

with its mass deformation. 

The conformal symmetry is broken in either case,

but in a canonical way.



The partition function of the 

  g-type little string on             ,   

with arbitrary collections of defects

at points on         and filling the        ,

turns out to be the same as the partition function of 

 g-type quiver gauge theory with 8 supercharges, 

on              ,                
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The quiver gauge is the theory 

on the co-dimension two defects of

the little string theory on     .

The mechanism for this is akin to localization.

The 6d little string partition function we compute 

is trivial in the absence of defects.



In the point particle limit, 

the localization is not as useful:

The theory on the defects of the (2,0) CFT

has no known direct description.

In particular, it is not a gauge theory.



This will lead to a correspondence between:

q-deformed conformal block

of  the          -algebra with collection of vertex operators

at points on       ,

and

partition function

of a corresponding    g-type quiver gauge theory on      .

which we will be able to prove.



In the rest of the talk, I will describe the 

correspondence and its proof

 in more detail.

Then, I will describe another application of little string theory,

 to the geometric Langlands program.



To define the g  -type little string theory on 

 

                        

one starts with the 10-dimensional IIB string theory on 

                                     

where       is the ADE surface singularity of type g.



The resolution of the singularity at the origin of

 gives a collection of vanishing 2-cycles intersecting according to

the Dynkin diagram of g.



The 6d little string theory,

is a six dimensional string theory

obtained by taking the limit of IIB string theory on 

where one keeps only the degrees of freedom

supported at the singularity.



The little string limit involves sending the string coupling constant to zero,

but keeping the string scale           finite.



The defects of little string theory originate as

 D-branes of the ten dimensional IIB string,

which survive the limit.



are D5 branes wrapping (non-compact) 2-cycles of  Y,

at points on      , 

In string theory on 

the defects we need

x x
x

x

and filing the       .



The theory on the defect D5 branes

is a 

 quiver gauge theory,

with quiver diagram based on the Dynkin diagram of g:

V1

W1

V2

W2



The fact that one gets 

a quiver gauge theory 

on               ,

rather than the more obvious one,

on        ,

is due to a stringy effect.

             



x

These turn the theory on the defects supported on       ,     

to a five dimensional quiver gauge theory on

where the      is the T-dual of the circle in      .

In a string theory,

one has to include the winding modes of strings around C.

x
xx



The dimension vectors

 are determined by the classes of 2-cycles in Y 

which support the D5 branes,

    

dim(Wa) = ma

dim(Va) = da

Wa

Va



The gauge group of the theory

 originates from the D5 branes

supported on compact two-cycles in Y;

The matter fields come from strings at the intersections of the branes.

The flavor symmetry group 

comes from the gauge symmetry group of the non-compact D5 branes.



We need not an arbitrary quiver gauge theory, 

but rather that which describes defects in the 6d little string on        

which preserve 4d conformal invariance 

in the low energy limit.



To get a single puncture on C   in the conformal limit,

one has to start with a collection of               non-compact D5 branes                     

                                                                                 

and add compact D5 branes so that the net D5 brane charge is zero.

whose relative separations on           vanish in the conformal limit

. *
* **



                      , containing classes of non-compact D5 branes, 

is the same as weight lattice of g .

the surface        and representation theory of     .                    

   

 

The possible choices can be classified,

making use of  the relation of geometry of  

To get a single puncture defect, it turns out one should choose

           elements of the weight lattice of       ,     ,         ,

which sum up to zero,

and each of which lies in the Weyl orbit of a fundamental weight.

,



For example, quiver gauge theories on D5 branes

corresponding to “full punctures” are:



If we consider several defects  on         instead of one, the ranks of

the gauge and flavor symmetry group simply add. 



The quiver gauge theory partition function on             ,

can be computed using localization,

as Nekrasov and also Pestun explained.

Mathematically, 

this leads to K-theoretic version of instanton counting.



labeled by tuples of  2d Young diagrams,

Localization

 lets one express the partition function as a

sum over the fixed points in instanton moduli space,



The contribution of each fixed point 

can be read off from the quiver,

as a product of contributions of the nodes and the arrows.

In the end we sum over all the fixed points.

V1

W1

V2

W2



The parameters which enter the gauge theory partition function

have a geometric interpretation in string theory.



The partition function

depends on:

 

for rotations of two complex planes in M=C^2,

   for positions of non-compact D5 branes

for positions of compact D5 branes



The gauge coupling parameters 

are associated to the moduli of little string theory,

coming from sizes of vanishing 2-cycles  in     .



The partition function of little string theory  on       ,      

with the corresponding collection of defects  on        

As soon as we resolve the singularities of     ,,

by giving the two-cycles non-zero area,

the bulk of the 6d theory is abelianized.

All the relevant dynamics of the little string theory

is localized on the D5-branes.

is the quiver gauge theory partition function. 



Now, let me describe the deformed              -algebra.

corresponding to a simple Lie algebra      .

 It is defined by Frenkel and Reshetikhin

in the “free-field formalism”.



One starts with a free field algebra, with generators

             

     labeled by the nodes of the Dynkin diagram,     

                a deformed Cartan matrix

 with commutation relations in terms of



The                algebra itself is defined 

as the set of vertex operators of the free field algebra which

commute with the screening charges         

where

are the screening vertex operators. 



with central charge depending on     .

Taking  the limit

the deformed             algebra becomes the ordinary one

containing the Virasoro algebra as a subalgebra, 



General q-conformal blocks of the W-algebra   

are correlators of vertex operators,

where                are built out of the free fields 

and depend on continuous momenta

  



…. and the state         ,

for

generates the Verma module representation

of the algebra.

labeled by the weight                   , 

It is defined by



There is as of now, neither a math nor physics definition 

of what it means to be a general q-deformed chiral vertex operator algebra.

Correspondingly, Frenkel and Reshetikhin did not 

define q-deformations of general vertex operators 

of the W-algebra.

My student Nathan Haouzi and I showed the following….



For each defect of little string, 

corresponding to the collection of           non-compact D5 branes,

there exist deformed vertex operators 

with        and        fixed 

which become the primary vertex operators of                ,       

in the  conformal limit,

defined in terms of collections of               weights            we had before,



The corresponding q-correlators

are in fact contour integrals, since

To specify the q-conformal block, we need to specify the contour.



We show that there exist choices of contours

such that the q-conformal block

 equals the little string theory partition function,



The weight  of the  Verma module         is

the modulus         of the 6d theory,

related to coupling constant of the D5 brane theory, 

by                .

The conformal limit is the strong coupling limit of the D5 brane gauge theory,

with              fixed.



 The little string version of the correspondence is simple to prove:

The sum over the poles

in the contour prescription to evaluate the conformal block 

is the sum over instantons, term by term.



Another application of little string theory is to the

 geometric Langlands correspondence.



Geometric Langlands correspondence 

was formulated in the early ’90s by

Beilinson and Drinfeld.

In the same work,  they explained that 

one can phrase the correspondence 

in the language of 2d conformal field theory.

 



Geometric Langlands

can be interpreted as the correspondence

between conformal blocks on a Riemann surface     ,       

associated to a Langlands dual pair of Lie algebras

and



The electric side are the conformal blocks of the affine current algebra  

  at the critical level                (infinite coupling) . 

        

On the magnetic side, are the conformal blocks of the

      

algebra in the classical,                , limit.



The proof of the 

geometric Langlands correspondence 

was given in this context,
 

by Belinson and Drinfeld, 

and 

by Frenkel with Gaitsgory and Vilonen.

 



There are two ways in which one may try to generalize this.

First, it is natural to deform away from 

the critical level      or equivalently,  to finite     .

Second, it is natural to replace the conformal chiral algebras by their 

q-deformed counterparts.



The first deformation

is the “quantum Langlands correspondence.”

 In the abelian case, it was proven by Polishchuk and Rothstein.

For             , some partial results were obtained by 

Feigin, Frenkel and Stoyanovsky,  and also Teschner, and others.

The rest is open.



It turns out that one can 

implement both generalizations,

and it is easiest to do it 

at the same time.



In a joint work with Edward Frenkel and Andrei Okounkov,

we formulate the 

quantum q-Langlands correspondence.



 It relates the deformed conformal blocks of 

the quantum affine current algebra       

corresponding to          at level        ,

and the q-conformal blocks of the deformed W-algebra

where:

electric

magnetic



We prove  the    

quantum q-Langlands correspondence

for any simply laced Lie algebra,

i.e. when



The q-conformal blocks of 

chiral algebras

arize as partition functions of little string theory,

with co-dimension four defects.

electric magnetic



Take the little string theory associated 

to the simply laced Lie algebra g, 

on 

just as before.



The defects we need are self-dual strings supported at points on

 

and on one of the two complex planes in 

In the present notation, this is the plane rotated by     .

x x
x

x



From perspective of IIB string on 

the defect strings come from D3 branes,

supported on 2-cycles in       , and the chosen 2-plane in       .



The partition function of the 6d little string theory, 

as before, localizes to the partition function

of the gauge theory on the defects.

 

 

The gauge theory is 

a tree dimensional       -type quiver gauge theory, 

with N=4 supersymmetry

on               .



Depending on the type of boundary conditions at infinity,

the partition function of the quiver gauge theory on

generates the

q-conformal blocks

or

electric magnetic



More precisely,  each electric q-conformal block of             ,          

is vector valued. From 

we can  generates all the components of the vector,

by differentiating it with respect to         ’s, 

or placing insertions at              .



The proof of the quantum q-Langlands correspondence is 

in terms of an explicit linear map between 

the electric and the magnetic conformal blocks.

The linear map we need to establish the correspondence

was constructed in a joint paper with Andrei Okounkov

for any simply laced Lie algebra.



computes the partition function 

of the quiver gauge theory on               ,             

with the two sets of boundary conditions at the ends of the interval.

The matrix



It also has a geometric meaning, as the

elliptic stable envelope

 of X, the Higgs branch of the 3d gauge theory.

It generalizes the stable envelopes in cohomology and K-theory of X

due to Maulik and Okounkov.



To study non-simply laced Lie algebras.

one adds a twist that ends up permuting the nodes of the Dynkin diagram

as we go once  around the origin of the complex       plane in

which supports the defects.



An important  generalization 

of the geometric Langlands program 

is to include ramifications.

This simply corresponds to including 

 D5 brane defects from the first half of the talk.



As Kapustin and Witten explained,

the geometric Langlands correspondence

is related to 

S-duality of 

N=4 super-Yang-Mills theory.



While many aspects of S-duality

can be understood within N=4 SYM theory,

or using the (2,0) CFT

compactified on a two-torus..…



….to derive S-duality of N=4 SYM theory 

one needs 

little string theory,

as was shown by Vafa showed in ’97. 



The role of little string theory in understanding S-duality 

explains 

why one is able to make progress 

on the geometric Langlands problem,

in the context of the 

quantum q-Langlands correspondence.


