Towards Wholeography

Strings 2017 Israel

Session on the 20th anniversary of AdS/CFT

Black holes

- Are ordinary quantum systems with finite entropy, as seen from the outside.
- We think that this is a definite and general prediction of quantum gravity (or string theory).

- How do we reconcile this with the gravity description ?
- How do we calculate the small corrections, e^{-S}, to simple boundary observables that are required by boundary unitarity. Shenker's talk
- Or the o(1) corrections to very complex observables.

Raju's talk

Leaving the boundary

- Is dangerous...
- ...but with a potentially high payoff!
- Interior? Approximate, e^{-S}
- When does the interior exist/fail to exist?
- Singularity?
- Beyond the singularity ?

- Singularity Horizon
- Lessons for cosmology ? At least big crunch cosmology ?

AdS/CFT as an experiment in need of theory

 We have seen, through somewhat indirect arguments, that certain very strongly interacting quantum systems behave as if they had a local bulk dual.

D-branes Polchinski

- Emergence vs equivalence.
- Should we view it as a new "phase of matter" ? Or theory of everything.
- Analogy: Superconductivity \rightarrow BCS ,
- \rightarrow high T_c superconductivity.
- TFD = Energy superconductor \rightarrow "phase" = time = t_L -t_R.

Challenge: Extract the general lesson.

Eg: Onsager's solution of the Ising model vs. the renormalization group.

• Bulk locality requires very strong interactions

$$\Delta_{S>2} \gg 1$$

Caron Huot's talk

- Obvious from the bulk: $M_s R_{AdS} >> 1$.
- What should we tune in the quantum system to get here? How generic is it?
- Need bulk locality to talk about the interior (proper time to the singularity < R_{AdS}).
- Need bulk locality to explore the interior. (Proper time to the singularity < R_{AdS}

Bulk locality as a critical phenomenon:

Bulk locality implies certain singularities in correlation functions. These singularities only develop as the coupling goes to infinity (and N goes to infinity).

Into the bulk

Renormalization group

HKLL / Rehren

Tensor networks

Quantum error correction

Chaos

Complexity

Modular Hamiltonians

Into the relativistic bulk

- Local special relativity is ``hard wired'' to gravity. Equivalence principle.
- We are not using this enough !
- Tensor networks capture some aspects of the bulk, but not this local special relativity.
- Bootstrap \rightarrow global conformal symmetry, but not enough bulk locality.
- Subalgebras & modular Hamiltonians. Exact boost symmetry.
- Essential for gravity/thermodynamics connection.

What will happen in the future ?

Start with the Bible...

God created the universe ...

Genesis 1,...

God created man in his own image...

Genesis 1, 27.

We should be creative !

We can now create certain universes

Some of our universes are useful

- With a purpose:
- Black holes as sources of information. (For strongly coupled systems).
- We have "Universal" computers.

But our universes have a dark side

• Our universes are not nice to bulk observers \rightarrow singularity

Cosmology

• How do we build a more comfortable universe, with growing space for everybody ?

Wild speculations

Wholeography

Whole bulk theory

Quantum equivalence principle

Universal quantum computer

Wilder speculations

Wholeography

Powerful computer ! \rightarrow replace artificial neural networks

Wholeography

• Find it before the end of time !

My tíme ís up ! Thank you !