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Introduction
Internal D-brane or O-plane sources 
important in string theory compactifications

• in AdS/CFT they realize flavor symmetries

• O-planes seem necessary for de Sitter and for Minkowski beyond CY

[Acharya, Benini, Valandro ’05,
Graña, Minasian, Petrini, AT ’06,

Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08,
Andriot, Goi, Minasian, Petrini ’10…]

• it has been hard to find examples; often people have resorted to ‘smearing’

However, O-planes should sit at fixed loci of involutions

localized smeared

they shouldn’t be smeared by definition.

[Gibbons ’84, de Wit, Smit, Hari Dass ’87,
Maldacena, Nuñez ’00…]



Plan:

I. Progress in finding solutions

II. How we introduce localized sources

III. de Sitter?



[Strominger ’86, Gauntlett, Pakis ’02…]
[Graña, Minasian, Petrini, AT ’05…]

I. Geometry of solutions

• Conceptual origin: calibrations. Type II, for example:

[AT ’11]

collective D-brane calibration

NS5-brane calibration

[Legramandi, Martucci, AT ’18]

• Systematic classification of BPS solutions: 
more successful than ad hoc Ansätze 

d⌦ = �◆K ⇤H + (�, F )6

(d+H^)� = (◆K + K̃^)F

‘calibration conjecture’:
[Martucci, Smyth ’05, 

Lüst, Patalong, Tsimpis ’10…]

• old methods: G-structures; gen. complex geometry, pure spinors

pairing



[Passias, Solard, AT ’17; 
Passias, Prins, AT ’18; 

+ Macpherson, in progress]

• practically, the D-brane equation is enough for d � 4 ⇥M10�d

AdSd
Minkd

• In general more calibration equations [eg KK-monopole] 
needed for sufficiency

[Legramandi, Martucci, AT ’18]

pure spinor equations

matrix pure spinor equations for extended susy
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+ Macpherson, in progress]

• practically, the D-brane equation is enough for d � 4 ⇥M10�d

AdSd
Minkd

• In general more calibration equations [eg KK-monopole] 
needed for sufficiency

[Legramandi, Martucci, AT ’18]

pure spinor equations

matrix pure spinor equations for extended susy

[Graña, Minasian, Petrini, AT ’05]

• For Minkowski: sometimes possible to break susy by adding one term 
to pure spinor equations [Legramandi, AT, in progress]

• Via consistent truncations

• Supersymmetry breaking?

[Passias, Rota, AT, ’15…]

• Direct solution of EoM, with some lessons from the susy case [Cordova, De Luca, AT, ’18]
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N = (0, 8), (0, 7) : F4 and G3 superalg.
• AdS4 in IIA
[Rota, AT’15; Passias, Prins, AT ’18; 

Bah, Passias, Weck ’18] (top. S2) ! KE4, ⌃g ⇥ ⌃g0

(top.S3) ! H3, S
3

formally similar to 
[Gauntlett, Martelli, Sparks, Waldram ’04] in 11d

generalizes
[Guarino, Jafferis, Varela ’15] (anal.)

[Petrini, Zaffaroni ’09; Lüst, Tsimpis ’09…] (num.)[dual to CS-matter theories]

Almost all analytic.

x0 q(x0) q0(x0) q00(x0) interpretation

0 regular

0 O4

0 0 0 conical CY

0 0 0 O8

Table 1: Various boundary conditions for the polynomial q at an endpoint x0, and their interpre-
tation. Empty entries are meant to be non-zero.

where µ is a constant parameter. Note that in this parameterization the limit ` ! 0 is not

well-defined since the solution becomes trivial. The ` ! 0 limit is well-defined after shifting

µ ! 12⌫2/(F 2
0 `

2) + µ.

5.1.1 Regularity and boundary conditions

We now turn to the analysis of the geometry of the solutions, which we will carry out in terms of

a rescaled coordinate x / y. We will specify the rescaling later on, for the cases (i) F0 6= 0 and

` 6= 0 (generic), (ii) ` = 0, and (iii) F0 = 0, separately.

The metric (4.16) on the internal manifold takes the form:

e�2Ads2M6
= �1

4

q0

xq
dx2 � q

xq0 � 4q
D 2 +

q0

3q0 � xq00
ds2KE4

, (5.8a)

where q = q(x) is a polynomial (of degree 6 if F0 6= 0), and a prime denotes di↵erentiation. The

warp factor is given by

L�2e2A =

s
x2q0 � 4xq

q0
. (5.8b)

The dilaton is given by

g�2
s e2� =

xq0

(3q0 � xq00)2

✓
x2q0 � 4xq

q0

◆3/2

. (5.8c)

L and gs are two integration constants which we will specify in terms of the constants appearing

in p later on.

Positivity of the metric and the dilaton requires

q < 0 , xq0 > 0 , (3xq0 � x2q00) > 0 . (5.9)

These conditions will only be realized on an interval of x. What happens to q at an endpoint x0 of

this interval dictates the physical interpretation of the solution around that point. We summarize

our conclusions in Table 1. For example, we see from there that if q has a simple zero at a point

x0 6= 0, the S1 parameterized by  shrinks in such a way as to make the geometry regular, provided

that the periodicity � is chosen to be 2⇡. If this happens at both endpoints of the interval, the

solution is fully regular.

14

For ex.
q(x) = deg. 6 pol.
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14

For ex.
q(x) = deg. 6 pol.

• relations between different cases often suggest ‘correct’ coordinates

• we will now see that all these admit possible sources…



II. Including sources

D3 dissolve; no source 
after near-horizon

N D3

AdS5 ⇥ S5

• Many AdS solutions have 
near-horizon origin 

[Youm ’99, 
Brandhuber, Oz ’99]

D4 dissolved, but 
O8 remains O8

N D4

AdS6 ⇥ (top.S4)



II. Including sources

D3 dissolve; no source 
after near-horizon

N D3

AdS5 ⇥ S5

• Many AdS solutions have 
near-horizon origin 

[Youm ’99, 
Brandhuber, Oz ’99]

D4 dissolved, but 
O8 remains O8

N D4

AdS6 ⇥ (top.S4)

• Unclear if all AdS are near-horizon limits

• Better strategy: start from analytic classes, explore boundary conditions for sources

• Intersecting brane solutions are rare anyway
N = 17

NS5 stack

D6

D8



• Sources create singularities where supergravity breaks down

ds210 = H�1/2ds2k +H1/2ds2?

e� = gsH
(3�p)/4

0, . . . , p p+ 1, . . . , 9

harmonic function in R9�p
?

ds2? = dr2 + r2ds2S8�p

backreaction 
on flat space:
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ds210 = H�1/2ds2k +H1/2ds2?

e� = gsH
(3�p)/4

0, . . . , p p+ 1, . . . , 9

harmonic function in R9�p
?

ds2? = dr2 + r2ds2S8�p

backreaction 
on flat space:

• supergravity artifacts: they should be resolved in appropriate duality frame

D-branes

H

r0

p < 7 : H = 1 +
�
r0
r

�7�p

r

p = 8 : H = a� |z/z0|

z

H

O-planes

H

r0 r
unphysical

‘hole’!

p < 7 : H = 1�
�
r0
r

�7�p

p = 8 : H = a+ |z/z0|

z

H

{a

[Op�: tension=charge=�2p�5]

z

H
a = 0:
e� ! 1



Let us also show how the metric looks like in the coordinate z we just introduced:9

1

⇡
p
2
ds2 = 8

r
�↵

↵̈
ds2AdS7

+

r
� ↵̈

↵

✓
dz2 +

↵2

↵̇2 � 2↵↵̈
ds2

S

2

◆
, ↵ ⌘

p
� . (2.27)

The dilaton reads

e� = 25/4⇡5/234
(�↵/↵̈)3/4p
↵̇2 � 2↵↵̈

. (2.28)

Notice that (2.25) implies ↵̈ < 0. We also have

B = ⇡

✓
�z +

↵↵̇

↵̇2 � 2↵↵̈

◆
vol

S

2 , F2 =

✓
↵̈

162⇡2
+

⇡F0↵↵̇

↵̇2 � 2↵↵̈

◆
vol

S

2 . (2.29)

The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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• Example: AdS7 in IIA. All solutions:
[Apruzzi, Fazzi, Rosa, AT ’13

Apruzzi, Fazzi, Passias, Rota, AT ‘15; 
Cremonesi, AT ’15; Bah, Passias, AT ‘17]

...
↵ = F0 ↵ piecewise cubic

interval
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[Danielsson, Dibitetto, Vargas ’17; Apruzzi, 

De Luca, Gnecchi, Lo Monaco, AT, in progress]

• Each BPS solution has a non-susy ‘evil twin’: [Passias, Rota, AT ’15; Malek, Samtleben, Vall Camell ‘18]
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back to the massless solution (2.10) and the details of the tail of the quiver associated
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9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
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for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.
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back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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ds210 = H�1/2ds2k +H1/2ds2?

compare locally with

• Supergravity artifacts, but same local
behavior as solutions in flat space

• Not always so easy…

Let us also show how the metric looks like in the coordinate z we just introduced:9

1

⇡
p
2
ds2 = 8

r
�↵

↵̈
ds2AdS7

+

r
� ↵̈

↵

✓
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↵2
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◆
, ↵ ⌘

p
� . (2.27)

The dilaton reads

e� = 25/4⇡5/234
(�↵/↵̈)3/4p
↵̇2 � 2↵↵̈

. (2.28)

Notice that (2.25) implies ↵̈ < 0. We also have
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✓
�z +

↵↵̇
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◆
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✓
↵̈
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◆
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S

2 . (2.29)

The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,
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Indeed one sees from (A.5) that making N very large makes the range of y become
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i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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•Holographic check of S-folds: sort of alternative to sources.
I was skeptical, but:

AdS4 solution: 

S2 ⇥ S2 !

CFT3 dual:[Inverso, Trigiante, Samtleben ’16] [Assel, AT ’18]

markably simple formula (in the convention ↵0 = 4)

SIIB = � 1

(2⇡)3

Z

⌃

dxdy h
1

h
2

@z@z̄(h1

h
2

)

= � 1

(2⇡)3

Z T

0

dx

Z ⇡

2

0

dy h
1

h
2

@z@z̄(h1

h
2

) .

(2.14)

The SL(2,R) transformation M used to define the Jn solution does not change the on-

shell action, therefore we can directly use the above formula with the h
1

, h
2

functions

of the extremal Janus solution (2.5). We obtain

SIIB =
L8T

213⇡2

=
1

2
N2 ln

✓
1

2

⇣
n+

p
n2 � 4

⌘◆
. (2.15)

We would like to know in which regime this result can be compared with the field

theory free energy. The type IIB action does not receive quantum or string corrections

at the two derivative order. For the higher derivative corrections to the IIB action

to be suppressed we require that R
(s) and gµ⌫

(s)rµ�r⌫� be small, where the index (s)

indicates that we use the string frame metric, g
(s)µ⌫ = gµ⌫e�. We have the relation

gµ⌫
(s)rµ�r⌫� = gµ⌫rµe�

�

2r⌫e�
�

2 .

The idea behind these conditions is the following. The string theory action has

various terms Sk,i with k > 2 derivatives. Each of these consists of a combination

of curvature and derivatives of �, with a function of the string coupling fk,i(e�) in

front, which receive both perturbative and non-perturbative contributions. If R
(s) and

gµ⌫
(s)rµ�r⌫� are smaller than ✏, we expect Sk,i < fk,i✏k. Almost all of the fk,i are

unknown, but unless their convergence radius gets smaller and smaller with increasing

k, there will be an ✏ small enough that fk,i✏k will be small for all k. Flux terms work

in the same fashion.

The metric of the Jn solution scales as gµ⌫ ⇠ L2 ⇠
p
N and the inverse dilaton

e�2� = Im(⌧ 0) is independent of N . We find that both higher derivative terms are

bounded gµ⌫
(s)rµ�r⌫�, R

(s) . C
�
sinhT
N

�
1/2

, with C a positive constant. Thus both are

small in the limit of large N and finite T , and the IIB supergravity approximation

should be valid in this regime.

The result (2.15) should be compared with the large N free energy F = � ln |Z|,
with Z the three-sphere partition function of the Jn theory. The sphere partition

function Z can be computed exactly by supersymmetric localization [32, 33] and the

final result is expressed as a matrix model whose integrand is a product of contributions

from di↵erent ingredients of the theory. We briefly review the results of the localization

computation in Appendix B. We also explain there how to account for the coupling to

14

free energy = CS=

see also [Garozzo, Lo Monaco, Mekareeya ’18]



•Sources can be introduced in most classes

• AdS3 in IIA: S6 ! I

• AdS5 in IIA: + “punctures”• AdS7 in IIA: S2 � I

• AdS4 in IIA
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• AdS6 in IIB: (p, q)-fivebranes
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sources: O8

• Let’s see if we can use this progress as inspiration for de Sitter…
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• Simplest model [Córdova, De Luca, AT ’18]
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Minkowski: [Dabholkar, Park ’96, Witten ’97,  
Aharony, Komargodski, Patir ‘07]

see also [Silverstein, Strings 2013 talk]
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• In the O8_ region stringy corrections become dominant

supergravity action is least important term;
ideally in this region we’d switch to another duality frame.
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• Rescaling symmetry:

• Hope that this solution is sensible comes from similarity with flat-space O8_
(which we know to exist in string theory)
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[Córdova, De Luca, AT, work in progress]

surrounds the O6

Here
∑

i τ6
iδ6
i(...) and

∑
i τ8

iδ8
i(...) are sums over the six- and eight- dimensional sources present in

the solutions. As we will see, in many cases the δi are just formal, since the submanifold where
they are supported is not part of the manifold.

Other than these equations, we also need the equations of motion for the fluxes.

Outside of any source, nor points where the two- and three- dimensional Einstein space shrink1,
the most general ansatz compatible with the symmetries of the metric is:

H = h1dz ∧ vol2+h2vol3 (3)
F2 = f2vol2 (4)
F4 = f41vol3∧ dz+ f42vol4 (5)
F0 =/ 0 (6)

where again all the functions depend only on the coordinate z.

We are now going to study the Bianchi equations,

dH = −κ2τ5δ5 (7)
dF2−H ∧F0 = −κ2τ6δ6 (8)
dF4−H ∧F2 = 0 (9)

dF0 = −κ2τ8δ8 (10)

and their Bianchi equations

d(e−2φ⋆H) = F2∧ ⋆F4−
1
2
F4∧F4−F0⋆F2 (11)

d(⋆F2) = −H ∧ ⋆F4 (12)
d(⋆F4) = −H ∧F4 (13)

locally outside of any source identifying 3 possible branches.

1.1 Studying the second branch: F0=/ 0

Summing up, in this branch we take (h1≡h) the local form of the fluxes to be

H = hdz ∧ vol2 (14)
F2 = f2vol2 (15)
F4 = f41vol3∧ dz+ f42vol4 (16)
F0 =/ 0 (17)

with

h1= f2
′/F0, f42= cost, f41=

1
F0
eQ−6W−2λ2+3λ3(F0c1− f42f2). (18)

We also have the equation

f2
′′= e2(Q−5W+φ)(F0c1f42+(e8WF0

2− f42
2 )f2)+ f2

′(Q′− 4W ′+2λ2
′ − 3λ3′ +2φ′) (19)

There are 2 independent constants: c1 and f42, and one unknown function f2, locally determined
by equation (19).

1. Otherwise the volumes are not defined.

2

ds2 = e2W ds2
dS4

+ e�2W (dz2 + e2�3ds2
M3

+ e2�2ds2
S2)

• We also tried: O8+–O6�
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• we already know one such solution for � < 0:

from a non-susy AdS7 solution with O8+ and O6_

O8+

O6_

1�
�
ds2 = 12

�
��

�̈ds2
AdS7 +

�
� �̈

�

�
dz2 + �2

�̇2���̈ds2
S2

�

AdS4 � H3 compact hyperbolic

↵ = 3k(N2 � z2) + n0(z3 �N3)

• We also tried: O8+–O6�



• we slowly modified it numerically, bringing � up

We still obtain 
the O6 boundary.
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the O6 boundary.
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• A perhaps more physical procedure: probe analysis perhaps following 
[Sen ’96, … Saracco, AT, Torroba ’13]
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Conclusions
•A lot of progress in AdS solutions

•Time to look for de Sitter

•often localized O-plane sources are possible

•sometimes non-supersymmetric

•holography works even in their presence

• Using numerics, we find dS solutions with O8-planes
in relatively simple setup

•Also O8-O6 solutions

• There are regions where supergravity breaks down. 

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.



Backup slides



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

0 5 10 15
z

10

20

30

O8+ O8�



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

• Near O8_, supergravity breaks down; 
we shouldn’t take its EoMs seriously.

0 5 10 15
z

10

20

30

O8+ O8�



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

• Near O8_, supergravity breaks down; 
we shouldn’t take its EoMs seriously.

• if we extrapolate from O8+ with a 6= 0: eW��f 0
i |z!z+

0
= 1@2

z

⇣ ⌘
= �

so this works XeW�� ⇠ |z � z0|, fi ⇠ log |z � z0|

0 5 10 15
z

10

20

30

O8+ O8�

Let’s do it anyway…



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

• Near O8_, supergravity breaks down; 
we shouldn’t take its EoMs seriously.

• if we extrapolate from O8+ with a 6= 0: eW��f 0
i |z!z+

0
= 1@2

z

⇣ ⌘
= �

so this works XeW�� ⇠ |z � z0|, fi ⇠ log |z � z0|

• but if we rewrite it f 0
i = e��W

works at leading 1
|z�z0| order, but not with subleading constant.

0 5 10 15
z

10

20

30

O8+ O8�

Let’s do it anyway…



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

• Near O8_, supergravity breaks down; 
we shouldn’t take its EoMs seriously.

• if we extrapolate from O8+ with a 6= 0: eW��f 0
i |z!z+

0
= 1@2

z

⇣ ⌘
= �

so this works XeW�� ⇠ |z � z0|, fi ⇠ log |z � z0|

• but if we rewrite it f 0
i = e��W

works at leading 1
|z�z0| order, but not with subleading constant.

At what order should we then go for full satisfaction? These are boundary conditions.

0 5 10 15
z

10

20

30

O8+ O8�

Let’s do it anyway…



Possible criticism of the O8–O8 model

eW��f 0
i |z!0+ = �1@2

z

⇣ ⌘
= ��• O8+:

• Near O8_, supergravity breaks down; 
we shouldn’t take its EoMs seriously.

• if we extrapolate from O8+ with a 6= 0: eW��f 0
i |z!z+

0
= 1@2

z

⇣ ⌘
= �

so this works XeW�� ⇠ |z � z0|, fi ⇠ log |z � z0|

• but if we rewrite it f 0
i = e��W

works at leading 1
|z�z0| order, but not with subleading constant.

At what order should we then go for full satisfaction? These are boundary conditions.

To me this confirms understanding supergravity EoMs 
in strongly coupled region is not a meaningful enterprise.

Of course, this also confirms that the fate of our solutions depends on quantum corrections.
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