The $T\bar{T}$ deformation

Márk Mezei

Simons Center for Geometry and Physics, SUNY, Stony Brook

Strings 2019, 07/10/2019

- Different formulations allow to compute different quantities (easily)
- They provide hints for future developments
- Not unfamiliar state of affairs in a string theory conference...

Irrelevant deformation of 2d QFT teaches us how to flow up the RG.

Dressing of the S-matrix makes CDD factors relevant in the nonintegrable context.

Flat space JT gravity coupled to matter description highlights expected nonlocality.

AdS₃ gravity with a finite cutoff resolves old puzzle in holographic RG.

2d LST: prospect of understanding LST from field theory.

Outline

Different formulations

- QFT approach
- JT gravity
- Holography

Generalizations

- Higher dimensions
- Single trace
- Related deformations

Open questions

Outline

Different formulations

- QFT approach
- JT gravity
- Holography

Generalizations

- Higher dimensions
- Single trace
- Related deformations

Open questions

In any 2d QFT, exists the composite operator $T\bar{T}$ with remarkable properties:

Defined by point splitting

"
$$T\bar{T}$$
" $(x) \equiv -\pi^2 \lim_{x' \to x} \left(\epsilon^{aa'} \epsilon^{bb'} T_{a'b'}(x') T_{ab}(x) \right) + (\text{tot. der.})$

[Zamolodchikov]

In any 2d QFT, exists the composite operator $T\bar{T}$ with remarkable properties:

Defined by point splitting

"
$$T\bar{T}$$
" $(x) \equiv -\pi^2 \lim_{x' \to x} \left(\epsilon^{aa'} \epsilon^{bb'} T_{a'b'}(x') T_{ab}(x) \right) + (\text{tot. der.})$

[Zamolodchikov]

Consider the theory on $S^1_L imes \mathbb{R}$. Obeys factorization in eigenstates:

$$\langle n|T\bar{T}(x)|n\rangle = -\pi^2 \epsilon^{aa'} \epsilon^{bb'} \langle n|T_{a'b'}|n\rangle \langle n|T_{ab}|n\rangle$$

In any 2d QFT, exists the composite operator $T\bar{T}$ with remarkable properties:

Defined by point splitting

"
$$T\bar{T}$$
" $(x) \equiv -\pi^2 \lim_{x' \to x} \left(\epsilon^{aa'} \epsilon^{bb'} T_{a'b'}(x') T_{ab}(x) \right) + (\text{tot. der.})$

Consider the theory on $S^1_L imes \mathbb{R}$. Obeys factorization in eigenstates:

$$\langle n|T\bar{T}(x)|n\rangle = -\pi^2 \epsilon^{aa'} \epsilon^{bb'} \langle n|T_{a'b'}|n\rangle \langle n|T_{ab}|n\rangle$$

• Can deform the theory by $Tar{T}$

$$\frac{d}{d\lambda}S(\lambda) = -\frac{1}{\pi^2} \int d^2x \ T\bar{T}_{\lambda}(x)$$

Irrelevant deformation, questions about UV completeness. Preserves almost all symmetries of seed theory. New class of integrable theories. In superspace the deformation is (supercurrent)².

seed theory

 $S(\lambda)$

[Zamolodchikov]

[Smirnov, Zamolodchikov]

[Smirnov, Zamolodchikov; Le Floch, MM]

[Baggio et al.; Chang et al.; Jiang et al.; Coleman et al.]

In any 2d QFT, exists the composite operator $T\bar{T}$ with remarkable properties:

Defined by point splitting

"
$$T\bar{T}$$
" $(x) \equiv -\pi^2 \lim_{x' \to x} \left(\epsilon^{aa'} \epsilon^{bb'} T_{a'b'}(x') T_{ab}(x) \right) + (\text{tot. der.})$

Consider the theory on $S_L^1 \times \mathbb{R}$. Obeys factorization in eigenstates:

$$\langle n|T\bar{T}(x)|n\rangle = -\pi^2 \epsilon^{aa'} \epsilon^{bb'} \langle n|T_{a'b'}|n\rangle \langle n|T_{ab}|n\rangle$$

Can deform the theory by TT

$$\frac{d}{d\lambda}S(\lambda) = -\frac{1}{\pi^2} \int d^2x \ T\bar{T}_{\lambda}(x)$$

seed theory $S(\lambda)$

 $\partial_t u + u \, \partial_x u = f(x)$

Irrelevant deformation, questions about UV completeness. Preserves almost all symmetries of seed theory. New class of integrable theories. In superspace the deformation is (supercurrent)².

Burgers equation for the spectrum – **QFT question turned into PDE problem**

$$\frac{\partial}{\partial \lambda} E_n = E_n \partial_L E_n + \frac{P_n^2}{L}$$

$$\lambda = -t, E_n = u, L = x$$

[Smirnov, Zamolodchikov; Cavaglia, Negro, Szecsenyi, Tateo

[Zamolodchikov]

[Smirnov, Zamolodchikov]

[Smirnov, Zamolodchikov: Le Floch, MM]

[Baggio et al.; Chang et al.; Jiang et al.; Coleman et al.]

In any 2d QFT, exists the composite operator TT with remarkable properties:

Burgers equation for the spectrum

$$\frac{\partial}{\partial \lambda} E = E \partial_L E + \frac{P^2}{L}$$

$$\lambda = -t, E_n = u, L = x$$

$$\partial_t u + u \, \partial_x u = -\frac{p^2}{r^3}$$

$$\lambda = -t, E_n = u, L = x$$

$$\partial_t u + u \, \partial_x u = -\frac{p^2}{x^3}$$

If seed theory had higher spin charges, they ride the Burgers flow (passive scalar)

$$\frac{\partial}{\partial \lambda} P_s = E \,\partial_L P_s + \frac{s \, P \, P_s}{L} \qquad \longleftrightarrow \qquad \partial_t P_s + u \,\partial_x P_s = -\frac{s \, p}{x^2} P_s$$

$$\partial_t P_s + u \,\partial_x P_s = -\frac{s \, p}{r^2} P_s$$

[Conti, Negro, Tateo; Le Floch, MM1

In any 2d QFT, exists the composite operator TT with remarkable properties:

Burgers equation for the spectrum

$$\frac{\partial}{\partial \lambda} E = E \partial_L E + \frac{P^2}{L} \qquad \qquad \lambda = -t, E_n = u, L = x \\ \longleftrightarrow \qquad \partial_t u + u \, \partial_x u = -\frac{p^2}{r^3}$$

$$\lambda = -t, E_n = u, L = x$$

$$\partial_t u + u \,\partial_x u = -\frac{p^2}{x^2}$$

If seed theory had higher spin charges, they ride the Burgers flow (passive scalar)

$$\frac{\partial}{\partial \lambda} P_s = E \,\partial_L P_s + \frac{s \, P \, P_s}{L} \qquad \longleftrightarrow \qquad \partial_t P_s + u \,\partial_x P_s = -\frac{s \, p}{x^2} P_s$$

$$\partial_t P_s + u \,\partial_x P_s = -\frac{s \, p}{x^2} P_s$$

[Conti, Negro, Tateo; Le Floch, MM1

Initial conditions

$$E(\lambda = 0, L) \stackrel{\text{CFT}}{=} \frac{e}{L}$$

$$P_s(\lambda = 0, L) \stackrel{\text{CFT}}{=} \frac{p_s}{L^s}$$

$$u(t=$$

$$\qquad \qquad u(t=0,x)\,, \quad P_s(t=0,x)$$

In any 2d QFT, exists the composite operator TT with remarkable properties:

Burgers equation for the spectrum

$$\frac{\partial}{\partial \lambda} E = E \partial_L E + \frac{P^2}{L} \qquad \qquad \lambda = -t, E_n = u, L = x \\ \longleftrightarrow \qquad \partial_t u + u \, \partial_x u = -\frac{p^2}{x^3}$$

If seed theory had higher spin charges, they ride the Burgers flow (passive scalar)

$$\frac{\partial}{\partial Y}P_s = E \,\partial_L P_s + \frac{s \, P \, P_s}{I} \qquad \longleftrightarrow \qquad \partial_t P_s + u \,\partial_x P_s = -\frac{s \, p}{r^2} P_s$$

Initial conditions

$$E(\lambda = 0, L) \stackrel{\text{CFT}}{=} \frac{e}{L}$$

$$P_s(\lambda = 0, L) \stackrel{\text{CFT}}{=} \frac{p_s}{L^s}$$

$$u(t = 0, x), \quad P_s(t = 0, x)$$

• Solution for CFT seed:

$$E(\lambda, L) = \frac{\sqrt{1 + 2e\tilde{\lambda} + p^2\tilde{\lambda}^2} - 1}{\tilde{\lambda}L}, \quad P_s(\lambda, L) \propto (E + P)^s, \quad \tilde{\lambda} \equiv \frac{2\lambda}{L^2}$$

Singularity corresponds to shock formation. Problematic to interpret from QFT pov.

[Conti, Negro, Tateo; Le Floch, MM]

In any 2d QFT, exists the composite operator $\,Tar{T}\,$ with remarkable properties:

Solution for CFT seed:

$$E(\lambda, L) = \frac{\sqrt{1 + 2e\tilde{\lambda} + p^2\tilde{\lambda}^2} - 1}{\tilde{\lambda}L}, \quad P_s(\lambda, L) \propto (E + P)^s, \quad \tilde{\lambda} \equiv \frac{2\lambda}{L^2}$$

Singularity corresponds to shock formation. Problematic to interpret from QFT pov.

• Sketch of spectrum for P = 0

In any 2d QFT, exists the composite operator TT with remarkable properties:

 Z_{T^2} function can be obtained from this data by summing over states. Instead Hubbard-[Cardy] Stratonovich transformation and summing over random metrics:

$$\exp\left[-\delta\lambda\int d^2x\ \epsilon^{aa'}\epsilon^{bb'}T_{a'b'}T_{ab}\right]$$

$$= \int Dh \exp \left[\int d^2x \left(\frac{1}{2} h_{ab} T^{ab} + \frac{1}{16\delta\lambda} \epsilon^{aa'} \epsilon^{bb'} h_{a'b'} h_{ab} \right) \right]$$

Gives diffusion equation:

$$\partial_{\lambda}\left(Z_{T^{2}}/A\right) = -\partial_{L} \wedge \partial_{L'}\left(Z_{T^{2}}/A\right)$$

Modularity of Z_{T^2} is guaranteed.

In any 2d QFT, exists the composite operator $\ TT$ with remarkable properties:

• Z_{T^2} function can be obtained from this data by summing over states. Instead Hubbard-Stratonovich transformation and summing over random metrics:

[Cardy]

$$\exp\left[-\delta\lambda\int d^2x\ \epsilon^{aa'}\epsilon^{bb'}T_{a'b'}T_{ab}\right]$$

$$= \int Dh \exp \left[\int d^2x \left(\frac{1}{2} h_{ab} T^{ab} + \frac{1}{16\delta\lambda} \epsilon^{aa'} \epsilon^{bb'} h_{a'b'} h_{ab} \right) \right]$$

Gives diffusion equation:

$$\partial_{\lambda} \left(Z_{T^2} / A \right) = -\partial_{L} \wedge \partial_{L'} \left(Z_{T^2} / A \right)$$

Modularity of Z_{T^2} is guaranteed.

• Energy eigenvalues evolve independently. Z_{T^2} (with CFT seed) is the unique modular covariant partition function with this property.

[Aharony, Datta, Giveon, Jiang, Kutasov]

In any 2d QFT, exists the composite operator TT with remarkable properties:

• Z_{T^2} function can be obtained from this data by summing over states. Instead Hubbard-Stratonovich transformation and summing over random metrics:

$$\exp\left[-\delta\lambda\int d^2x\ \epsilon^{aa'}\epsilon^{bb'}T_{a'b'}T_{ab}\right]$$

$$= \int Dh \exp \left[\int d^2x \left(\frac{1}{2} h_{ab} T^{ab} + \frac{1}{16\delta\lambda} \epsilon^{aa'} \epsilon^{bb'} h_{a'b'} h_{ab} \right) \right]$$

Gives diffusion equation:

$$\partial_{\lambda} \left(Z_{T^2} / A \right) = -\partial_L \wedge \partial_{L'} \left(Z_{T^2} / A \right)$$

Modularity of Z_{T^2} is guaranteed.

- Energy eigenvalues evolve independently. Z_{T^2} (with CFT seed) is the unique modular covariant partition function with this property.
- The classical Lagrangian starting from a seed of D_{\perp} free massless bosons is Nambu-Goto in static gauge:

$$\mathcal{L} = \frac{1}{\ell_s^2} \left(\sqrt{\det(\delta_{ab} + \ell_s^2 \, \partial_a \vec{X} \partial_b \vec{X})} - 1 \right)$$

[Aharony, Datta, Giveon, Jiang, Kutasov]

Tateol

[Cavaglia, Negro, Szecsenyi,

[Cardy]

S-matrix approach

Dressing phase for the S-matrix:

Scattering on the worldsheet of the NG string is an integrable theory:

$$\hat{S}_{2\to 2}(s) = \exp\left(i\frac{\ell_s^2}{4}s\right), \qquad \Delta t = \frac{\ell_s^2}{2}E = \lambda E$$

Gravitational phase shift. For $\lambda>0$ healthy theory, likely no local observables. Superluminarity for $\lambda<0$, but S-matrix is well-defined (though not polynomially bounded).

[Dubovsky, Flauger, Gorbenko]

[Cooper, Dubovsky, Mohsen]

S-matrix approach

Dressing phase for the S-matrix:

Scattering on the worldsheet of the NG string is an integrable theory:

$$\hat{S}_{2\to 2}(s) = \exp\left(i\frac{\ell_s^2}{4}s\right), \qquad \Delta t = \frac{\ell_s^2}{2}E = \lambda E$$

Gravitational phase shift. For $\lambda>0$ healthy theory, likely no local observables. Superluminarity for $\lambda<0$, but S-matrix is well-defined (though not polynomially bounded).

S-matrix dressing in generic 2d theory:

$$\hat{S}_n(\{p_\alpha\}) = \exp\left(i\frac{\ell_s^2}{4} \sum_{\alpha < \beta} \epsilon_{ab} \, p_\alpha^a p_\beta^b\right) S_n(\{p_\alpha\})$$

Unitary, crossing symmetric, analytic S-matrix.

[Dubovsky, Flauger, Gorbenko]

[Cooper, Dubovsky, Mohsen]

[Dubovsky, Gorbenko, Mirbabayi]

S-matrix approach

Dressing phase for the S-matrix:

• Scattering on the worldsheet of the NG string is an integrable theory:

$$\hat{S}_{2\to 2}(s) = \exp\left(i\frac{\ell_s^2}{4}s\right), \qquad \Delta t = \frac{\ell_s^2}{2}E = \lambda E$$

Gravitational phase shift. For $\lambda>0$ healthy theory, likely no local observables. Superluminarity for $\lambda<0$, but S-matrix is well-defined (though not polynomially bounded).

S-matrix dressing in generic 2d theory:

$$\hat{S}_n(\{p_\alpha\}) = \exp\left(i\frac{\ell_s^2}{4} \sum_{\alpha < \beta} \epsilon_{ab} \, p_\alpha^a p_\beta^b\right) S_n(\{p_\alpha\})$$

Unitary, crossing symmetric, analytic S-matrix.

• In the integrable case can go between spectrum and S-matrix using TBA.

$$E(\lambda, L) = \frac{L}{\ell_s^2} \left(\sqrt{1 + \frac{2\ell_s^2}{L^2} e + \frac{\ell_s^4}{L^4} p^2} - 1 \right)$$

[Dubovsky, Flauger, Gorbenko]

[Cooper, Dubovsky, Mohsen]

[Dubovsky, Gorbenko, Mirbabayi]

[Dubovsky, Flauger, Gorbenko; Cavaglia, Negro, Szecsenyi, Tateo]

Coupling matter to flat space JT gravity: $\mathcal{L}_{JT} = \mathcal{L}_{\mathrm{seed}}(g,\phi_m) + \frac{1}{\lambda} + \varphi R$

• Vacuum of the theory:

$$g_{ab} = \eta_{ab}$$
, $\varphi = -\frac{1}{4\lambda} x^+ x^-$

[Dubovsky, Gorbenko, Mirbabayi]

Coupling matter to flat space JT gravity: $\mathcal{L}_{JT} = \mathcal{L}_{\mathrm{seed}}(g,\phi_m) + \frac{1}{\lambda} + \varphi R$

$$\mathcal{L}_{JT} = \mathcal{L}_{\text{seed}}(g, \phi_m) + \frac{1}{\lambda} + \varphi I$$

Vacuum of the theory:

$$g_{ab} = \eta_{ab}$$
, $\varphi = -\frac{1}{4\lambda} x^+ x^-$

Introduce dynamical coordinates:

$$X^{\pm} \equiv -4\lambda \, \partial_{\mp} \varphi \equiv x^{\pm} + Y^{\pm}$$
$$\partial_{a} Y^{b} = \frac{\lambda}{2} \, \epsilon_{a}{}^{c} \epsilon^{bd} \, T_{cd}$$

[Dubovsky, Gorbenko, Mirbabayi]

Coupling matter to flat space JT gravity: $\mathcal{L}_{JT} = \mathcal{L}_{ ext{seed}}(g,\phi_m) + rac{1}{\lambda} + arphi R$

• Vacuum of the theory:

$$g_{ab} = \eta_{ab}$$
, $\varphi = -\frac{1}{4\lambda} x^+ x^-$

Introduce dynamical coordinates:

$$X^{\pm} \equiv -4\lambda \, \partial_{\mp} \varphi \equiv x^{\pm} + Y^{\pm}$$
$$\partial_{a} Y^{b} = \frac{\lambda}{2} \, \epsilon_{a}{}^{c} \epsilon^{bd} \, T_{cd}$$

Dressing of creation operators

$$A_{\rm in}^{\dagger}(p) = a_{\rm in}^{\dagger}(p) \exp\left(i \, p_a Y^a(\{p_\alpha\})\right)$$

leads to dressed S-matrix.

[Dubovsky, Gorbenko, Mirbabayi]

Coupling matter to flat space JT gravity: $\mathcal{L}_{JT} = \mathcal{L}_{\text{seed}}(g, \phi_m) + \frac{1}{\lambda} + \varphi R$

[Dubovsky, Gorbenko, **Mirbabavil**

Vacuum of the theory:

$$g_{ab} = \eta_{ab}$$
, $\varphi = -\frac{1}{4\lambda} x^+ x^-$

Introduce dynamical coordinates:

$$X^{\pm} \equiv -4\lambda \, \partial_{\mp} \varphi \equiv x^{\pm} + Y^{\pm}$$
$$\partial_{a} Y^{b} = \frac{\lambda}{2} \, \epsilon_{a}{}^{c} \epsilon^{bd} \, T_{cd}$$

Dressing of creation operators

$$A_{\rm in}^{\dagger}(p) = a_{\rm in}^{\dagger}(p) \exp\left(i \, p_a Y^a(\{p_\alpha\})\right)$$

leads to dressed S-matrix.

- The S-matrix can be understood as the flat space limit of AdS JT gravity boundary correlators. The X^a are analogs of the reparametrization mode of SYK.
- Z_{T^2} can be reproduced, but to get measure right, need to use first order formalism. X^a needs to have torus topology.

[Dubovsky, Gorbenko, Hernandez-Chifflet1

Coupling matter to flat space JT gravity: $\mathcal{L}_{JT} = \mathcal{L}_{\mathrm{seed}}(g,\phi_m) + \frac{1}{\lambda} + \varphi R$

Constructing Lagrangians and conserved charges using dynamical coordinates

$$\partial_a X^b(x) = \delta_a^b + \frac{\lambda}{2} \epsilon_a{}^c \epsilon^{bd} T_{cd}(x)$$

Conserved charges

$$P_{s} = \int_{C} \mathcal{P}_{s}$$

$$\mathcal{P}_{s} = \tau_{s+1}(x) dz + \theta_{s-1}(x) d\bar{z}$$

$$= \tau_{s+1}^{(\lambda)}(X) dZ + \theta_{s-1}^{(\lambda)}(X) d\bar{Z}$$

Provides explicit expressions with little effort, provides hints at generalizations.

• Mapping of solutions, Lax pair for $T\bar{T}$ - deformed sine-Gordon model.

[Conti, Iannella, Negro, Tateo]

[Conti, Negro, Tateo]

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

[McGough, MM, Verlinde]

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

[McGough, MM, Verlinde]

BTZ black holes geometry

$$ds^{2} = -r^{2} f(r) dt^{2} + \frac{dr^{2}}{r^{2} f(r)} + r^{2} (d\theta - \omega(r) dt)^{2}$$

$$f(r) = 1 - \frac{4G}{\pi r^2} e + \frac{4G^2}{\pi^2 r^4} p^2,$$
 $\omega(r) = \frac{2G}{\pi r^2} p$

Quasilocal energy

$$E(r_c) = \frac{r_c}{4G} \left(1 - \sqrt{f(r_c)} \right) \implies \lambda = -\frac{4\pi G}{r_c^2} \quad (L = 2\pi)$$

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

[McGough, MM, Verlinde]

BTZ black holes geometry

$$ds^{2} = -r^{2} f(r) dt^{2} + \frac{dr^{2}}{r^{2} f(r)} + r^{2} (d\theta - \omega(r) dt)^{2}$$

$$f(r) = 1 - \frac{4G}{\pi r^2} e + \frac{4G^2}{\pi^2 r^4} p^2,$$
 $\omega(r) = \frac{2G}{\pi r^2} p$

Quasilocal energy

$$E(r_c) = \frac{r_c}{4G} \left(1 - \sqrt{f(r_c)} \right) \implies \lambda = -\frac{4\pi G}{r_c^2} \quad (L = 2\pi)$$

Superluminality – boundary gravitons propagate along

$$\frac{d\theta}{dt} = \pm 1 \implies \frac{d\theta_c}{dt_c} = \frac{1 \pm \omega(r_c)}{\sqrt{f(r_c)}}$$

[Marolf, Rangamani; Cooper, Dubovsky, Mohsen; Cardy; McGough, MM, Verlinde]

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

Finite number of states – the largest black hole that fits inside the cutoff has finite entropy.

$$E(r_c) = \frac{r_c}{4G} \left(1 - \sqrt{f(r_c)} \right) \implies \lambda = -\frac{4\pi G}{r_c^2} \quad (L = 2\pi)$$

[McGough, MM, Verlinde]

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

Holographic RG can be rewritten in the form

$$ds^2 = \frac{dr^2}{r^2} + r^2 g_{ab}(x, r) dx^a dx^b, \qquad \lambda = -\frac{4\pi G}{r_c^2}$$

Flow equation:

$$\frac{dS[g, J; \lambda]}{d\lambda} = -\frac{1}{2} \int d^2x \sqrt{g} X$$
$$X = T^{ab}T_{ab} - (T_a^a)^2 - \frac{c}{24\pi\lambda} R$$

Follows from large-N factorization for the $T\bar{T}$ theory.

[McGough, MM, Verlinde]

[Shyam; Taylor; Hartman, Kruthoff, Shaghoulian, Tajdini]

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

Holographic RG can be rewritten in the form

$$ds^2 = \frac{dr^2}{r^2} + r^2 g_{ab}(x, r) dx^a dx^b, \qquad \lambda = -\frac{4\pi G}{r_c^2}$$

Flow equation:

$$\frac{dS[g, J; \lambda]}{d\lambda} = -\frac{1}{2} \int d^2x \sqrt{g} X$$
$$X = T^{ab}T_{ab} - (T_a^a)^2 - \frac{c}{24\pi\lambda} R$$

Follows from large-N factorization for the $T\bar{T}$ theory.

 Match between perturbative computations of correlation functions and EE between bulk and boundary. dS₂ EE matched to Ryu-Takayanagi. [McGough, MM, Verlinde]

[Shyam; Taylor; Hartman, Kruthoff, Shaghoulian, Tajdini]

Aharony, Vaknin; Chakraborty et al.; Chen et al.; Sun, Sun] [Donnelly, Shyam]

[Kraus, Liu, Marolf;

The analogy with SYK makes it natural to expect a relation with AdS₃ with a finite cutoff.

• Holographic RG can be rewritten in the form

$$ds^2 = \frac{dr^2}{r^2} + r^2 g_{ab}(x, r) dx^a dx^b, \qquad \lambda = -\frac{4\pi G}{r_c^2}$$

Flow equation:

$$\frac{dS[g, J; \lambda]}{d\lambda} = -\frac{1}{2} \int d^2x \sqrt{g} X$$
$$X = T^{ab}T_{ab} - (T_a^a)^2 - \frac{c}{24\pi\lambda} R$$

Follows from large-N factorization for the TT theory.

- Match between perturbative computations of correlation functions and EE between bulk and boundary. dS₂ EE matched to Ryu-Takayanagi.
- Deviations from $T\bar{T}$ upon including matter fields. [Guica's talk] Pure gravity story provides compelling interpretations of some features of $T\bar{T}$ deformed theories.

$$\frac{dS[g,J;\lambda]}{d\lambda} = -\frac{1}{2} \int d^d x \, \sqrt{g} \left(X_d + \# \lambda^{-2(d-\Delta)/d} \, \mathcal{O}^2 + \# \lambda^{2(d-\Delta+1)/d} \, (\partial_a J)^2 \right)$$

[McGough, MM, Verlinde]

[Shyam; Taylor; Hartman, Kruthoff, Shaghoulian, Tajdini]

Aharony, Vaknin; Chakraborty et al.; Chen et al.; Sun, Sun] [Donnelly, Shyam]

[Kraus, Liu, Marolf;

[Kraus, Liu, Marolf; Hartman, Kruthoff, Shaghoulian, Tajdini; Guica, Monten]

Outline

Different formulations

- QFT approach
- JT gravity
- Holography

Generalizations

- Higher dimensions
- Single trace
- Related deformations

Open questions

Holographic generalizations:

 Rewrite holographic RG in terms of field theory. Using large-N factorization match between field theory and gravity.

$$\lambda = -\frac{8\pi G}{d\,r_c^d}$$

$$X_4 = T^{ab}T_{ab} - \frac{1}{3}(T_a^a)^2 + \sqrt{\frac{-C_T}{4\pi\lambda}} \left(G^{ab}T_{ab} - \frac{1}{3}G_a^a T_b^b \right) - \frac{C_T}{16\pi\lambda} \left(G^{ab}G_{ab} - \frac{1}{3}(G_a^a)^2 \right)$$

[Taylor; Hartman, Kruthoff, Shaghoulian, Tajdini; Shyam; Caputa, Datta, Shyam]

Holographic generalizations:

• Rewrite holographic RG in terms of field theory. Using large-N factorization match between field theory and gravity.

$$\lambda = -\frac{8\pi G}{d\,r_c^d}$$

$$X_4 = T^{ab}T_{ab} - \frac{1}{3}(T_a^a)^2 + \sqrt{\frac{-C_T}{4\pi\lambda}} \left(G^{ab}T_{ab} - \frac{1}{3}G_a^a T_b^b \right) - \frac{C_T}{16\pi\lambda} \left(G^{ab}G_{ab} - \frac{1}{3}(G_a^a)^2 \right)$$

[Taylor; Hartman, Kruthoff, Shaghoulian, Tajdini; Shyam; Caputa, Datta, Shyam]

For $\lambda > 0$ Hagedorn growth from Cardy growth of the density of states:

$$E(\lambda, L) \approx \sqrt{\frac{e}{\lambda}}$$

$$S_{\text{Cardy}} \approx \sqrt{\frac{2\pi c}{3}} e \approx \sqrt{\frac{2\pi c\lambda}{3}} E$$

Can be anticipated from Nambu-Goto.

[Dubovsky, Flauger, Gorbenko; Giveon, Itzhaki, Kutasov]

Holographic generalizations:

• Black holes in linear dilaton backgrounds produce this density of states, $T\bar{T}$ deformed theories share features of 2d Little String Theories.

[Giveon, Itzhaki, Kutasov]

AdS

linear dilaton

Holographic generalizations:

- Black holes in linear dilaton backgrounds produce this density of states, TT deformed theories share features of 2d Little String Theories.
- Explicit construction: $AdS_3 \times S^3 \times T^4$ worldsheet theory contains an $SL(2,\mathbb{R})$ WZW model, can deform by the marginal $\lambda J^- \bar{J}^-$, corresponds to a dimension 4 irrelevant single trace operator in the dual CFT.

$$ds^{2} = k \left(d\rho^{2} + \frac{dzd\bar{z}}{e^{-2\rho} + \lambda/\pi} \right)$$
$$e^{2\varphi} = g_{s}^{2} \frac{1}{1 + \lambda e^{2\rho}/\pi}$$
$$B_{z\bar{z}} = \frac{k/2}{e^{-2\rho} + \lambda/\pi}$$

 $\lambda > 0$ linear dilaton background asymptotically. $\lambda < 0$ CTC's at finite ρ .

[Giveon, Itzhaki, Kutasov]

[Giveon, Itzhaki, Kutasov; Asrat, Giveon, Itzhaki, Kutasov; Giribet; Chakraborty, Giveon, Kutasov; Apolo, Song; Araujo, Colgain, Sakatani, Sheikh-Jabbari, Yavartanoo

AdS

linear dilaton

Holographic generalizations:

- Black holes in linear dilaton backgrounds produce this density of states, TT deformed theories share features of 2d Little String Theories.
- Explicit construction: $AdS_3 \times S^3 \times T^4$ worldsheet theory contains an $SL(2,\mathbb{R})$ WZW model, can deform by the marginal $\lambda J^- \bar{J}^-$, corresponds to a dimension 4 irrelevant single trace operator in the dual CFT.

$$ds^{2} = k \left(d\rho^{2} + \frac{dzd\bar{z}}{e^{-2\rho} + \lambda/\pi} \right)$$
$$e^{2\varphi} = g_{s}^{2} \frac{1}{1 + \lambda e^{2\rho}/\pi}$$
$$B_{z\bar{z}} = \frac{k/2}{e^{-2\rho} + \lambda/\pi}$$

 $\lambda>0$ linear dilaton background asymptotically. $\lambda<0$ CTC's at finite ρ .

• The dual CFT is of the form \mathcal{M}^N/S_N [Eberhardt's talk], deformed long string spectrum reproduced by the **single trace** deformation:

$$\lambda \sum_{i=1}^{p} T_i \, \bar{T}_i$$

[Giveon, Itzhaki, Kutasov]

[Giveon, Itzhaki, Kutasov; Asrat, Giveon, Itzhaki, Kutasov; Giribet; Chakraborty, Giveon, Kutasov; Apolo, Song; Araujo, Colgain, Sakatani, Sheikh-Jabbari, Yavartanoo

[Eberhardt, Gaberdiel]

[Giveon, Itzhaki, Kutasov]

There exist many factorizing quadratic operators, can deform by them, the deformed theory preserves many symmetries.

Factorizing operators

$$\mathcal{O} = \epsilon^{ab} J_a^{(1)} J_b^{(2)}$$

• To derive equation for spectrum, need to know matrix elements $\langle n|J_a^{(I)}|n\rangle$.

[Smirnov, Zamolodchikov]

There exist many factorizing quadratic operators, can deform by them, the deformed theory preserves many symmetries.

Factorizing operators

$$\mathcal{O} = \epsilon^{ab} J_a^{(1)} J_b^{(2)}$$

- To derive equation for spectrum, need to know matrix elements $\langle n|J_a^{(I)}|n\rangle$.
- For the Lorentz breaking $J\bar{T}$ deformation the current remains holomorphic, can be used to fix $\langle n|J_a^{(I)}|n\rangle$. Holographic dual: [Guica's talk]

[Smirnov, Zamolodchikov]

[Guica; Chakraborty, Giveon, Kutasov]

There exist many factorizing quadratic operators, can deform by them, the deformed theory preserves many symmetries.

Factorizing operators

$$\mathcal{O} = \epsilon^{ab} J_a^{(1)} J_b^{(2)}$$

- To derive equation for spectrum, need to know matrix elements $\langle n|J_a^{(I)}|n
 angle$.
- For the Lorentz breaking $J\bar{T}$ deformation the current remains holomorphic, can be used to fix $\langle n|J_a^{(I)}|n\rangle$. Holographic dual: [Guica's talk]
- By turning on background gauge fields, can also solve any composite built from $J_a, \ \bar{J}_a, \ T_{ab}$ starting from a CFT seed. String dual of single trace version has been constructed.

[Smirnov, Zamolodchikov]

[Guica; Chakraborty, Giveon, Kutasov]

[Le Floch, MM]

[Chakraborty, Giveon, Kutasov]

There exist many factorizing quadratic operators, can deform by them, the deformed theory preserves many symmetries.

Factorizing operators

$$\mathcal{O} = \epsilon^{ab} J_a^{(1)} J_b^{(2)}$$

- To derive equation for spectrum, need to know matrix elements $\langle n|J_a^{(I)}|n\rangle$.
- For the Lorentz breaking $J\bar{T}$ deformation the current remains holomorphic, can be used to fix $\langle n|J_a^{(I)}|n\rangle$. Holographic dual: [Guica's talk]
- By turning on background gauge fields, can also solve any composite built from $J_a, \ \bar{J}_a, \ T_{ab}$ starting from a CFT seed. String dual of single trace version has been constructed.
- It would be very interesting to solve the $T_{s+1}T_{s+1}$ deformations. Super-Hagedorn behavior is found in $T_{s+1}\bar{T}$ deformed theory:

$$\rho(E) \approx \exp\left(\sqrt{\# c \lambda} E^{(s+1)/2}\right)$$

[Smirnov, Zamolodchikov]

[Guica; Chakraborty, Giveon, Kutasov]

[Le Floch, MM]

[Chakraborty, Giveon, Kutasov]

[Le Floch, MM]

There exist many factorizing quadratic operators, can deform by them, the deformed theory preserves many symmetries.

Factorizing operators

$$\mathcal{O} = \epsilon^{ab} J_a^{(1)} J_b^{(2)}$$

- To derive equation for spectrum, need to know matrix elements $\langle n|J_a^{(I)}|n\rangle$.
- For the Lorentz breaking $J\bar{T}$ deformation the current remains holomorphic, can be used to fix $\langle n|J_a^{(I)}|n\rangle$. Holographic dual: [Guica's talk]
- By turning on background gauge fields, can also solve any composite built from $J_a, \ \bar{J}_a, \ T_{ab}$ starting from a CFT seed. String dual of single trace version has been constructed.
- It would be very interesting to solve the $T_{s+1}\bar{T}_{s+1}$ deformations. Super-Hagedorn behavior is found in $T_{s+1}\bar{T}$ deformed theory: $\rho(E)\approx \exp\left(\sqrt{\#\,c\,\lambda}\,E^{(s+1)/2}\right)$
- In dS/dS correspondence another variant is important: $\frac{d}{d\lambda}S(\lambda)=-\frac{1}{\pi^2}\int d^2x\ \left(T\bar{T}_\lambda(x)-\frac{\#}{\lambda^2}\right)$

[Smirnov, Zamolodchikov]

[Guica; Chakraborty, Giveon, Kutasov]

[Le Floch, MM]

[Chakraborty, Giveon, Kutasov]

[Le Floch, MM]

[Gorbenko, Silverstein, Torroba]

Open questions

- Applications to phase transitions and QCD? [Cardy; Zamolodchikov; Dubovsky et al.]
- Putting the theory in curved space? [Jiang]
- What generalizations of TT are solvable?
 New possible UV behaviors?
- How is the $\lambda < 0$ theory best defined? Does string theory in cutoff AdS₃ make sense?
- How non-local is the theory? Observables?

Reference material: TT and Other Solvable Deformations of Quantum Field Theories (SCGP video library), Jerusalem Lectures by Giveon, Kutasov, and Zamolodchikov (youtube), [Jiang]