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There is a new theory out there!
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* Different formulations allow to compute different quantities (easily)
*  They provide hints for future developments
*  Not unfamiliar state of affairs in a string theory conference...



There is a new theory out there!

I Irrelevant deformation of 2d QFT teaches us how to flow up the RG. I

I Dressing of the S-matrix makes CDD factors relevant in the nonintegrable context. I

Flat space JT gravity coupled to matter description highlights expected nonlocality.

I AdS, gravity with a finite cutoff resolves old puzzle in holographic RG. I

I 2d LST: prospect of understanding LST from field theory. I




Different formulations
* QFT approach

* JT gravity

* Holography

Generalizations

* Higher dimensions

* Single trace

* Related deformations

Open questions
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QFT approach

In any 2d QFT, exists the composite operator T'T with remarkable properties:
*  Defined by point splitting
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symmetries of seed theory. New class of integrable theories. In superspace the
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e Candeform the theory by 7'T

seed theor TT
d 1 v Q/ A
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Irrelevant deformation, questions about UV completeness. Preserves almost all
symmetries of seed theory. New class of integrable theories. In superspace the
deformation is (supercurrent)?.

*  Burgers equation for the spectrum - QFT question turned into PDE problem
o 2 A=—-t,E,=u, L=z

P
E, =E,0LE, + -2 Ou + udu = f(x)

o\ L
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QFT approach
In any 2d QFT, exists the composite operator 77T with remarkable properties:
*  Burgers equation for the spectrum

0 P2 A=-t,E,=u,L=x 2
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* If seed theory had higher spin charges, they ride the Burgers flow (passive scalar)

0 sPP, sp
2 p, —E§.P, s 8,P, + ud, P, = — 2 P,
O\ b+ —7 ¢ 72

. Initial conditions
E(\=0,0)E" Z ut=0,z), Pi(t=0,z)
P,(\=0,L)°E" 22“;

. Solution for CFT seed:
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Singularity corresponds to shock formation. Problematic to interpret from QFT pov.
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QFT approach

In any 2d QFT, exists the composite operator TT with remarkable properties:
*  Solution for CFT seed:

\/1+265\—|—p25\2—1 -2\
E()\’L): X ) PS()‘aL)OC(E+P)Sv =75
\L

Singularity corresponds to shock formation. Problematic to interpret from QFT pov.

*  Sketch of spectrum for P =0




QFT approach

In any 2d QFT, exists the composite operator 7T with remarkable properties:

. Z72 function can be obtained from this data by summing over states. Instead Hubbard-
Stratonovich transformation and summing over random metrics:
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QFT approach

In any 2d QFT, exists the composite operator 7T with remarkable properties:

Z72 function can be obtained from this data by summing over states. Instead Hubbard-
Stratonovich transformation and summing over random metrics:

exp {—5A/d2x eaalebb/Ta/b/ Tab]
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_ /Dh exp [/ d’z <§hab T% 4+ T65N &G Py hab>]

—

Gives diffusion equation: L

O (Zy2/A) = =8y, A Op (Zp2 | A) A

gl

Modularity of Z7= is guaranteed.

Energy eigenvalues evolve independently. Z7= (with CFT seed) is the unique modular
covariant partition function with this property.

The classical Lagrangian starting from a seed of D, free massless bosons is
Nambu-Goto in static gauge:

1 S
L= (\/det(5ab +29,X8,X) — 1)




S-matrix approach

Dressing phase for the S-matrix:
*  Scattering on the worldsheet of the NG string is an integrable theory:

A 2 /2
So_yo(s) = exp (ZZS 5) , At = ESE:)\E

Gravitational phase shift. For A > 0 healthy theory, likely no local observables.

Superluminarity for A < 0, but S-matrix is well-defined (though not polynomially
bounded).
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S-matrix approach

Dressing phase for the S-matrix:

Scattering on the worldsheet of the NG string is an integrable theory:

A 2 /2
So_yo(s) = exp (ZZS 5) , At = ESE:)\E

Gravitational phase shift. For A > 0 healthy theory, likely no local observables.

Superluminarity for A < 0, but S-matrix is well-defined (though not polynomially
bounded).

S-matrix dressing in generic 2d theory:

Sulfpa)) = exp (12 3 cwrpinhy | Sulipa))

a<f

Unitary, crossing symmetric, analytic S-matrix.
In the integrable case can go between spectrum and S-matrix using TBA.

L 22 4
B\ L) =5 <\/1+ = e—i-ﬁpZ—l)
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1
Coupling matter to flat space JT gravity: L1 = Lsced (9, Pm) + 5 + R

e Vacuum of the theory:

_ 1,
Gab = Tab , Y = 4)\(13.’)3

* Introduce dynamical coordinates:
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Coupling matter to flat space JT gravity:
*  Vacuum of the theory:

I L, _
= =——za'x
Gab Mab 2 AN
* Introduce dynamical coordinates:
X+ = —4X0rp = N
A
0, Y = 5 €,°¢" Tpy

*  Dressing of creation operators

JT gravity approach

1
LJT — Eseed(ga¢m) + X + ‘PR

Al (p) = af () exp (i paY*({Pa}))

leads to dressed S-matrix.



JT gravity approach

1
Coupling matter to flat space JT gravity: Ljr = Lsced(9, dm) + — + ¢R

A
Vacuum of the theory:

I L, _
= =——za'x
Gab Mab 2 AN
Introduce dynamical coordinates:
X+ = —4X0rp = N
A
0, Y = 5 €,°¢" Tpy

Dressing of creation operators

Al (p) = af () exp (i paY*({Pa}))

leads to dressed S-matrix.

The S-matrix can be understood as the flat space limit of AdS JT gravity boundary
correlators. The X“ are analogs of the reparametrization mode of SYK.

Z72 can be reproduced, but to get measure right, need to use first order formalism.
X“ needs to have torus topology.



JT gravity approach

1
Coupling matter to flat space JT gravity: L7 = Lsced(9, Pm) + s ©R

*  Constructing Lagrangians and conserved charges using dynamical coordinates

0, X% (x) = 6% + A €€’ T,q(x)

a

*  Conserved charges

=l
c

Ps = Tsr1(x)dz + 05_1(x) dz
= Ts(i)l(X) dZ + Hg);)l(X) dZ

Provides explicit expressions with little effort, provides hints at generalizations.

«  Mapping of solutions, Lax pair for TT - deformed sine-Gordon model.



The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff. [McGough, MM, Verlinde]
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The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff.

BTZ black holes geometry

AdS/CFT approach

.

dr?
2 _ .2 2 2000 2
ds® = —r2f(r)dt* + 250 + r° (df — w(r) dt)
AG 4G, 2G
f(r)zl—me‘Fﬂ%Ap, W(T):mp
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[McGough, MM, Verlinde]
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The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff.

*  BTZblack holes geometry

AdS/CFT approach

[McGough, MM, Verlinde]

N

dr?
2 _ .2 2 2000 2
ds® = —r2f(r)dt* + 250 + r° (df — w(r) dt)
AG 4G, 2G
f(r)zl—me'i'ﬂﬂp, W(T):mp
Quasilocal energy
Te _ dnG _

Br) = 15 (1-VFr)) = A=-—% (L=2m)

m—h|ack hole

e cUtoff surface

& AdS boundary

R

*  Superluminality - boundary gravitons propagate along

db
= =1

df. 1xw(re)

dat @

f(re)

[Marolf, Rangamani;
Cooper, Dubovsky,
Mohsen; Cardy;
McGough, MM, Verlinde]



AdS/CFT approach

The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff. [McGough, MM, Verlinde]

*  Finite number of states - the largest black hole that fits inside /\

the cutoff has finite entropy.

(1-VFr)) = A=

Te

4G

B 4G

2
re

E(re) = (L =2m) — hlack hole

e cUtoff surface

& AdS boundary




AdS/CFT approach

The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff.
*  Holographic RG can be rewritten in the form

dr? 4G
ds® = LQ + 12945 (z, 1) dz®da® A= — WZ

r s
Flow equation:
dS[g, J; | L[
———=——[d X

) 2 / T Vg
X = TabTa . TCL 2 __ C
v~ (Ta) 241\ ki

Follows from large-N factorization for the T'T theory.
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The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff.

*  Holographic RG can be rewritten in the form
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Follows from large-N factorization for the T'T theory.

*  Match between perturbative computations of correlation functions and EE between bulk
and boundary. dS, EE matched to Ryu-Takayanagi.



AdS/CFT approach

The analogy with SYK makes it natural to expect a relation with AdS; with a finite cutoff.

Holographic RG can be rewritten in the form

dr? 4G
ds? = LQ + 12gap(x, ) dztda® A= —7—2

r T
Flow equation:

dSlg, JiAl _ 1 [
X =T%T,, — (T)?

a

c
247\ I

Follows from large-N factorization for the T'T theory.

Match between perturbative computations of correlation functions and EE between bulk

and boundary. dS, EE matched to Ryu-Takayanagi.

Deviations from T'T upon including matter fields. Pure gravity story provides

compelling interpretations of some features of TT deformed theories.

dS[iZ’)\J; Al _ _%/dda: \@(XdJr#/\_z(d_A)/d O 4 4 )\2d=A+1)/d (an)Z)
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Holographic generalizations

Holographic generalizations:

*  Rewrite holographic RG in terms of field theory. Using large-N factorization match
between field theory and gravity.

8rG
= —
drd
1 —Cr Cr
X :TabTa — (T 2 abTa aTb ab u a\2
! b= 5da)"+ 47T>\<G b Gab 167T)\GGb (G“)



Holographic generalizations

Holographic generalizations:

*  Rewrite holographic RG in terms of field theory. Using large-N factorization match [Taylor; Hartman,
between field theory and gravity. Kruthoff, Shaghoulian,
Tajdini; Shyam; Caputa,
A= — I Datta, Shyam]

drd
1 —Cr Cr
X :TabTa - Ta 2 abTa . aTb ab ab — — a
; o= S (T2 + 4 = (G . Gab - = (67 (G)

* For )\ > 0 Hagedorn growth from Cardy growth
of the density of states:

B\ L) ~ f
/ 27Tc 2me
SCardy 3

Can be ant|C|pated from Nambu-Goto. -

[Dubovsky, Flauger,
Gorbenko; Giveon, Itzhaki,
Kutasov]
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«  Black holes in linear dilaton backgrounds produce this density of states, 7T deformed
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Holographic generalizations

Holographic generalizations:

Black holes in linear dilaton backgrounds produce this density of states, 7T deformed
theories share features of 2d Little String Theories.

Explicit construction: AdSs x S* x T* worldsheet theory contains an SL(2,R) wzw
model, can deform by the marginal AJ~J ™, corresponds to a dimension 4 irrelevant
single trace operator in the dual CFT.

dzdz
ds? = k (dp2 4 L)

e 20 + \/m
2% — g2 1 AdS linear dilaton
14+ Ae?r/w
k/2
B.—_ "%
e )\ 7

A > 0 linear dilaton background asymptotically. A <0 CTC’s at finite p.



Holographic generalizations

Holographic generalizations:

Black holes in linear dilaton backgrounds produce this density of states, 7T deformed
theories share features of 2d Little String Theories.

Explicit construction: AdSs x S* x T* worldsheet theory contains an SL(2,R) wzw
model, can deform by the marginal AJ~J ™, corresponds to a dimension 4 irrelevant
single trace operator in the dual CFT.

dzdz
ds? = k (dp2 4 L)

e~2P + \/m

26 _ 92 1 AdS linear dilaton

14+ Ae?r/w

2

o k2

e 2P + \/m
A > 0 linear dilaton background asymptotically. A <0 CTC’s at finite p.
The dual CFT is of the form MN/SN , deformed long string spectrum

reproduced by the single trace deformation:

A zp:Ti T,
1=1
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preserves many symmetries.

. Factorizing operators
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To derive equation for spectrum, need to know matrix elements (n|J{|n) .
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Related deformations

There exist many factorizing quadratic operators, can deform by them, the deformed theory
preserves many symmetries.

Factorizing operators
0 =g j&

To derive equation for spectrum, need to know matrix elements (n|J"|n) .
For the Lorentz breaking JT deformation the current remains holomorphic, can be used
to fix (n|JD|n). Holographic dual:

By turning on background gauge fields, can also solve any composite built from
Ja, Ju, Ty starting from a CFT seed. String dual of single trace version has been
constructed.

It would be very interesting to solve the Ts+1TS+1 deformations. Super-Hagedorn
behavior is found in 7517 deformed theory:

p(F) =~ exp (\/#—CE(S+1 /2)

In dS/dS correspondence another variant is important:

d%s ):_%/d% <TTA($)_%>

Nontrivial change in the spectrum.



Open questions

*  Applications to phase transitions and QCD?
[Cardy; Zamolodchikov; Dubovsky et al.]

*  Putting the theory in curved space? [Jiang] I Dressing of the S-matrix I

Irrelevant deformation

of 2d QFT
»  What generalizations of T'T are solvable? Flat space JT gravity
New possible UV behaviors? coupled to matter
* Howis the A < 0 theory best defined? AdS, gravity with a finite
Does string theory in cutoff AdS; make 2d LST cutoff
sense? P

*  How non-local is the theory? Observables? '\ g U

Reference material: 7T and Other Solvable Deformations of Quantum Field Theories (SCGP video library),
Jerusalem Lectures by Giveon, Kutasov, and Zamolodchikov (youtube), [Jiang]



