Unitary Semiclassical Black Hole Evaporation

Ahmed Almheiri IAS

AA '18
AA, Engelhardt, Marolf, Maxfield '19
Penington '19
WIP w/ Mahajan, Maldacena, Zhao

Information Paradox

Fine-Grained Entropy of Hawking Radiation: The von Neumann entropy of the state of the Hawking radiation. Page

Coarse-Grained Entropy of Black hole - Bekenstein-Hawking Entropy: The area of the event horizon/4G - a measure of the dimensionality of the black hole Hilbert space.

Fine-Grained Entropy of Hawking Radiation: The von Neumann entropy of the state of the Hawking radiation. Page

Coarse-Grained Entropy of Black hole - Bekenstein-Hawking Entropy: The area of the event horizon/4G - a measure of the dimensionality of the black hole Hilbert space.

Unitary Evolution - Page Curve: Generic behavior of the fine-grained entropy in a unitary system governed by random Hamiltonian. Fine-grained entropy of either system. **Page**

Fine-Grained Entropy of Hawking Radiation: The von Neumann entropy of the state of the Hawking radiation. Page

Coarse-Grained Entropy of Black hole - Bekenstein-Hawking Entropy: The area of the event horizon/4G - a measure of the dimensionality of the black hole Hilbert space.

Unitary Evolution - Page Curve: Generic behavior of the fine-grained entropy in a unitary system governed by random Hamiltonian. Fine-grained entropy of either system. **Page**

Reproducing the Page curve **FOR BOTH SYSTEMS** is tantamount to resolving the information paradox!

Plan for this Talk

We will consider the case of evaporating one side of the eternal black hole in JT gravity coupled to an external system.

Plan: To track the evolution of the von Neumann entropy of the evaporating side, and of the extracted Hawking radiation in the external system.

$$S_R(t) = \mathrm{Min}\left[\; \mathrm{Ext}\left[rac{\phi(X)}{4G_N} + S_{\mathrm{Bulk}}(\Sigma_X^R)
ight] \;
ight]$$
 Engelhardt, Wall

Search for quantum extremal surfaces as a function of boundary time.

Goal: To reproduce the Page curve for ${\cal R}$ and for the extracted Hawking radiation.

JT Gravity + Conformal Matter

We study black hole evaporation in the setting of JT gravity coupled to conformal matter.

$$I = \frac{\phi_0}{G_N} \int (R+2) + \frac{1}{G_N} \int \phi(R+2) + \phi_b \int K + I_{CFT}[g]$$

Integral over ϕ fixes the spacetime metric to be AdS₂

$$ds^2 = \frac{-dt^2 + dz^2}{z^2} = \frac{-4dx^+ dx^-}{(x^+ - x^-)^2} \qquad x^{\pm} = t \pm z$$

The gravitational dynamics of this theory is given entirely by that of the reparamaterization t(u) where u is the physical boundary time.

Matter sector $I_{\rm CFT}[g]$ is given by a BCFT - conformal field theory with boundary @ $x^+-x^-=0$, with background metric being Poincare AdS₂

The eternal black hole is a vacuum solution: $\langle T_{x^+x^+}\rangle_{AdS_2}=\langle T_{x^-x^-}\rangle_{AdS_2}=0$

The eternal black hole is a vacuum solution: $\langle T_{x^+x^+} \rangle_{AdS_2} = \langle T_{x^-x^-} \rangle_{AdS_2} = 0$

Introduce a 'Bath' BCFT in the vacuum

The eternal black hole is a vacuum solution: $\langle T_{x^+x^+} \rangle_{AdS_2} = \langle T_{x^-x^-} \rangle_{AdS_2} = 0$

The eternal black hole is a vacuum solution: $\langle T_{x^+x^+} \rangle_{AdS_2} = \langle T_{x^-x^-} \rangle_{AdS_2} = 0$

We model this as a quantum quench of two BCFTs:

Cardy, Calabrese Asplund, Bernamonti

The Bath CFT is glued to the AdS₂ bulk along the physical boundary, identifying the physical time on the boundary with that of the bath.

Englesoy, Mertens, Verlinde

Bulk

$$ds^{2} = \frac{-4dx^{+}dx^{-}}{(x^{+}-x^{-})^{2}}$$
$$x^{\pm} = t \pm z$$

<u>Bath</u>

$$ds^{2} = -dy^{+}dy^{-}$$
$$y^{\pm} = u \pm \sigma$$
$$x^{\pm} = f(y^{\pm})$$

The Bath CFT is glued to the AdS₂ bulk along the physical boundary, identifying the physical time on the boundary with that of the bath.

Englesoy, Mertens, Verlinde

The Bath CFT is glued to the AdS₂ bulk along the physical boundary, identifying the physical time on the boundary with that of the bath.

Englesoy, Mertens, Verlinde

The Bath CFT is glued to the AdS₂ bulk along the physical boundary, identifying the physical time on the boundary with that of the bath.

Englesoy, Mertens, Verlinde

Semiclassical Limit: We source the JT equations with $\langle T_{ab} \rangle_{AdS_2}$ to determine ϕ and f(u)

Bulk Entanglement Entropy

- 1. Transformation to a coordinate system where stress tensor is trivial
- 2. Compute Entropy in that coordinate system
- 3. Transform back to physical coordinates and cutoffs

Generalized Entanglement Entropy $S_{gen} = \frac{\phi_0}{4G_N} + \frac{\phi(\chi)}{4G_N} + S_{\text{Bulk}}(\Sigma_{\chi}^{\text{out}})$

Extremize: $\partial_{\pm}S_{gen} = \frac{1}{4G_N}\partial_{\pm}\phi(\chi) + \partial_{\pm}S_{\text{Bulk}}(\Sigma_{\chi}^{\text{out}}) = 0$

Generalized Entanglement Entropy $S_{gen}=\frac{\phi_0}{4G_N}+\frac{\phi(\chi)}{4G_N}+S_{\rm Bulk}(\Sigma_\chi^{\rm out})$

Extremize:
$$\partial_{\pm}S_{gen} = \frac{1}{4G_N}\partial_{\pm}\phi(\chi) + \partial_{\pm}S_{\text{Bulk}}(\Sigma_{\chi}^{\text{out}}) = 0$$

Early Time Branch

Bifurcation surface is *classically* extremal but not *quantum* extremal

$$\delta \frac{\phi}{4G_N} \sim \frac{l^2}{G_N}$$

$$\delta S_{\rm Bulk} \sim c l$$

There is QES near the horizon at a distance

$$l \sim cG_N$$

Generalized Entanglement Entropy $S_{gen}=\frac{\phi_0}{4G_N}+\frac{\phi(\chi)}{4G_N}+S_{\rm Bulk}(\Sigma_\chi^{\rm out})$

Extremize:
$$\partial_{\pm}S_{gen} = \frac{1}{4G_N}\partial_{\pm}\phi(\chi) + \partial_{\pm}S_{\text{Bulk}}(\Sigma_{\chi}^{\text{out}}) = 0$$

Early Time Branch

Bifurcation surface is *classically* extremal but not *quantum* extremal

$$\delta \frac{\phi}{4G_N} \sim \frac{l^2}{G_N}$$

$$\delta S_{\rm Bulk} \sim cl$$

There is QES near the horizon at a distance

$$l \sim cG_N$$

Generalized Entanglement Entropy $S_{gen}=\frac{\phi_0}{4G_N}+\frac{\phi(\chi)}{4G_N}+S_{\rm Bulk}(\Sigma_\chi^{\rm out})$

Extremize:
$$\partial_{\pm}S_{gen} = \frac{1}{4G_N}\partial_{\pm}\phi(\chi) + \partial_{\pm}S_{\text{Bulk}}(\Sigma_{\chi}^{\text{out}}) = 0$$

Early Time Branch

Bifurcation surface is *classically* extremal but not *quantum* extremal

$$\delta \frac{\phi}{4G_N} \sim \frac{l^2}{G_N}$$

$$\delta S_{\rm Bulk} \sim c l$$

There is QES near the horizon at a distance

$$l \sim cG_N$$

Late Time Branch

Outgoing:

$$\partial_{-}S_{Gen} = \frac{1}{4G_N}\partial_{-}\phi + \partial_{-}S_{Bulk} = 0$$

Search near the apparent horizon

Late Time Branch

Outgoing:

$$\partial_{-}S_{Gen} = \frac{1}{4G_N}\partial_{-}\phi + \partial_{-}S_{Bulk} = 0$$

Search near the apparent horizon

Ingoing:

$$\partial_{+}S_{Gen} = \frac{1}{4G_{N}}\partial_{+}\phi + \partial_{+}S_{\mathrm{Bulk}} = 0$$
 (1) < 0 Must be compensated by large

Late Time Branch

Outgoing:

$$\partial_{-}S_{Gen} = \frac{1}{4G_N}\partial_{-}\phi + \partial_{-}S_{Bulk} = 0$$

Search near the apparent horizon

Ingoing:

$$\partial_+ S_{Gen} = \frac{1}{4G_N} \partial_+ \phi + \partial_+ S_{\text{Bulk}} = 0$$

$$0 = 0$$
 Must be compensated by large

Entropy (roughly): $S_{\text{Bulk}} \sim c \log \left[\text{Length} \right]$

Achieved in the null interval limit: $\partial_+ S_{\rm Bulk} \sim \frac{c}{{
m Length}} \implies {
m Length} \sim c G_N$

Early time branch: QES near original bifurcate horizon

$$S_{Gen}^R \approx \frac{\phi_0}{4G_N} + \frac{\phi(H)}{4G_N} + S_{Bulk}(u)$$

where $S_{\text{Bulk}} \xrightarrow{\text{Late}} 2\Delta S_{BH}[E_0 + E_S] \times (1 - e^{-cG_N u/2})$

Leichenauer

Early time branch: QES near original bifurcate horizon

$$S_{Gen}^R \approx \frac{\phi_0}{4G_N} + \frac{\phi(H)}{4G_N} + S_{Bulk}(u)$$

where $S_{\text{Bulk}} \xrightarrow{\text{Late}} 2\Delta S_{BH}[E_0 + E_S] \times (1 - e^{-cG_N u/2})$

Leichenauer

Early time branch: QES near original bifurcate horizon

$$S_{Gen}^R \approx \frac{\phi_0}{4G_N} + \frac{\phi(H)}{4G_N} + S_{Bulk}(u)$$

where
$$S_{\text{Bulk}} \xrightarrow{\text{Late}} 2\Delta S_{BH}[E_0 + E_S] \times (1 - e^{-cG_N u/2})$$

Late time branch: QES near the apparent horizon

$$S_{Gen}^{R} \approx S_{BH}[E_{ADM}(u)] - c \ln c G_{N}$$
$$\approx S_{BH}[E_{0} + E_{S}]e^{-cG_{N}u/2} - c \ln c G_{N}$$

Leichenauer

Early time branch: QES near original bifurcate horizon

$$S_{Gen}^R \approx \frac{\phi_0}{4G_N} + \frac{\phi(H)}{4G_N} + S_{Bulk}(u)$$

where $S_{\text{Bulk}} \xrightarrow{\text{Late}} 2\Delta S_{BH}[E_0 + E_S] \times (1 - e^{-cG_N u/2})$

Late time branch: QES near the apparent horizon

$$S_{Gen}^{R} \approx S_{BH}[E_{ADM}(u)] - c \ln c G_{N}$$

$$\approx S_{BH}[E_{0} + E_{S}]e^{-cG_{N}u/2} - c \ln c G_{N}$$

What about the entropy of the bath?

The Araki-Lieb inequality provides an upper bound on the bath entropy:

$$S_L = S_{RB} \ge |S_R - S_B| \implies S_B \le S_L + S_R$$

What about the entropy of the bath?

Not a problem when S_0 is large!

The Araki-Lieb inequality provides an upper bound on the bath entropy:

$$S_L = S_{RB} \ge |S_R - S_B| \implies S_B \le S_L + S_R$$

What about the entropy of the bath?

The Araki-Lieb inequality provides an upper bound on the bath entropy:

$$S_L = S_{RB} \ge |S_R - S_B| \implies S_B \le S_L + S_R$$

We didn't find a Page curve for the bath! This is the standard Hawking result... This does not resolve the information paradox!

What about the entropy of the bath?

The Araki-Lieb inequality provides an upper bound on the bath entropy:

$$S_L = S_{RB} \ge |S_R - S_B| \implies S_B \le S_L + S_R$$

We didn't find a Page curve for the bath! This is the standard Hawking result... This does not resolve the information paradox!

Ok, now let me tell you how to resolve it...

The 1+1d system will be dual to a 2+1d bulk!

The 1+1d system will be dual to a 2+1d bulk!

The 1+1d system will be dual to a 2+1d bulk!

Fujita, Takayanagi, Tonni

The 1+1d system will be dual to a 2+1d bulk!

The 1+1d system will be dual to a 2+1d bulk!

Entropy is given by the RT surface in 2+1d bulk

The black hole interior is dual to the bath! This realizes ER = EPR!!

Entropy is given by the RT surface in 2+1d bulk

The black hole interior is dual to the bath! This realizes ER = EPR!!

But instead of the 'octopus' spacetime we have a nice "single filet of salmon" - S. Shenker

Punch Line

We obtained the **Page curve** for both the radiation and black hole in the context of evaporating a black hole in 1+1 dimensions coupled to holographic matter.

Punch Line

We obtained the **Page curve** for both the radiation and black hole in the context of evaporating a black hole in 1+1 dimensions coupled to holographic matter.

Hawking's 'mistake': He didn't know about the Minimality condition of RT formula!

Punch Line

We obtained the **Page curve** for both the radiation and black hole in the context of evaporating a black hole in 1+1 dimensions coupled to holographic matter.

Hawking's 'mistake': He didn't know about the Minimality condition of RT formula!

Somebody should ask me about what happens to pure states...

