
Quantum Complexity of Time Evolution with
Chaotic Hamiltonians

Onkar Parrikar

Department of Physics and Astronomy
University of Pennsylvania.

Strings 2019 – Brussels, Belgium

Onkar Parrikar (UPenn) Strings 2019 1 / 26



Based on

V. Balasubramanian, M. DeCross, A. Kar & OP, arXiv:1905.05765
[hep-th].

Onkar Parrikar (UPenn) Strings 2019 2 / 26



Introduction

An important question in the AdS/CFT correspondence is
understanding which class of quantum systems admit a dual
gravitational description?

For this purpose, identifying universal probes of gravitational
dynamics is of significant interest.

Several criteria, such as spectral properties, chaotic dynamics and
entanglement structure have already shed light on this question.
[Heemskerk, Penedones, Polchinski, Sully ’09..., Maldacena, Shenker, Stanford ’15, Kitaev...,

Faulkner, Guica, Hartman, Myers, Van Raamsdonk ’13, Lewkowycz, OP ’18...]
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Gravity motivation

Quantum Complexity may serve as one such probe of gravitational
dynamics [Susskind].

In gravity, the volume behind the horizons of maximal volume
slices in the eternal black hole increases linearly with time
indefinitely [Maldacena, Susskind ’13, Susskind ’14].

t

dC
dt

= ST, C =
1

`GN
Vol.

This phenomenon was conjectured to be dual to the growth of
complexity of the dual CFT state [Stanford, Susskind ’14]. (See also [Brown,

Roberts, Swingle, Susskind, Zhao ’15...].)
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Complexity

In the context of qubit systems, the circuit complexity of a state ψ
is defined as the minimum number of simple gates required to
build ψ from some initial (unentangled) fiducial state.

|0i
|0i
|0i
|0i
|0i
|0i

 

Complexity is a fine-grained probe of entanglement structure.

In order to make contact with gravity, we need to generalize this
to more general quantum systems, in particular quantum field
theories.

Some progress towards this has been made... [Jefferson, Myers ’17,

Chapman, Heller, Marrochio, Pastawski ’17, Caputa, Magan ’18, Belin, Lewkowycz, Sarosi ’18...]
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Time evolution of Complexity

Gravity plus general quantum considerations suggest that the
complexity in holographic theories should grow linearly in time till
t ∼ eN , and saturate thereafter till t ∼ eeN [Brown, Susskind].

t ⇠ eN t ⇠ eeN
t

C

Cmax

Our aim here is to take steps towards proving this conjecture for
large N , chaotic systems.

We will work with the Sachdev-Ye-Kitaev model as a concrete
example.
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Nielsen’s Geodesic Complexity

To be concrete, we will follow Nielsen’s geodesic approach to
complexity [Nielsen ’05, Dowling Nielsen ’07].

In this approach, the complexity is given in terms of the length of
the minimal geodesic on the space of unitaries.

Let U be the space of unitary operators acting on the Hilbert
space H, and u the corresponding Lie algebra.

We identify some generators Tα in u as being “simple” and the
rest Tα̇ as being “hard”.

In the SYK model, we can take the k-local operators as being
simple:

Ta = ψa, Ta1a2 = iψa1ψa2 , · · · , Ta1...ak ∝ ψa1 · · ·ψak

Note: We will always pick k large enough so that the Hamiltonian
is built from local generators.
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Nielsen’s Geodesic Complexity

Next, we need to pick a metric on U = SU(2N/2) which encodes
the choice of simple and hard directions.

To fix this metric, we first consider the Killing form Kmn on u. In
the SYK case, Kmn = δmn.

To build in the notion of complexity, we modify this by adding
cost factors:

K̃mn = cmδmn

The cost factors are chosen such that

cm =

{
1 · · · local directions

1 + µ · · · non− local directions

We take the metric on U to be the right-invariant metric which
follows from this bilinear form on the Lie-algebra.
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Nielsen’s Geodesic Complexity

Geodesic complexity of an operator U is defined as the
minimal geodesic distance between the identity operator and U .

1

e�iHt

In general, the geodesic complexity lower bounds the circuit
complexity with

{
eiεTα

}
chosen as allowed gates [Dowling, Nielsen ’07].

When µ is taken to be exponentially large, then geodesic
complexity has been argued to be polynomially equivalent to the
circuit complexity [Nielsen, Dowling, Gu, Doherty ’06].
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Euler-Arnold equation

We are interested in the geodesic complexity of the time evolution
operator e−iHt in the SYK model.

Parametrizing the geodesic in terms of the velocity:

U(s) = P exp

(
−i
∫ s

0
ds′
∑
m

Vm(s′)Tm

)
, · · · s ∈ [0, 1]

the geodesic equation becomes

i
dVL

ds
= µ [VL,VNL]L ,

i
dVNL

ds
=

µ

1 + µ
[VL,VNL]NL ,

U(1) = e−iHt.

where VL is the projection of the velocity along the local
directions, and VNL is the projection along the non-local
directions.
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To do list

t ⇠ eN t ⇠ eeN
t

C

Cmax

So in order to prove the conjectured late-time behavior of complexity
in this framework, we need to:

Find a geodesic whose length grows linearly with time.

Show that the geodesic is a local minimum (i.e., not a saddle
point) till t ∼ eαS .

Show that the geodesic is a global minimum till t ∼ eαS , after
which other geodesics take over and lead to saturation of
complexity.
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Linear Geodesic

As long as the Hamiltonian is a linear combination of only easy
generators, it is a simple matter to show that

V (s) = Ht

solves the geodesic equation with the boundary condition.

The length of this geodesic is easily computed:

Clin =

∫ 1

0
ds

√∑
m

cmV 2
m =

√
〈E2〉 t

where √
〈E2〉 =

(
1

D
D∑
i=1

E2
i

)1/2

, D = eS .

Note: Since the linear geodesic only lies along the local directions,
its length is independent of the cost factor µ.
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Local Minimality

To show local minimality, we need to rule out conjugate points.

We say that we have a conjugate point at time t∗ if there exists an
infinitesimally nearby curve between 1 and e−iHt∗ which satisfies
the geodesic equation linearized to first order.

e�iHt

t⇤

1

The original geodesic stops being minimizing past the first
conjugate point (i.e., it is a saddle point thereafter).
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Jacobi equation

The linearized geodesic equation around the linear geodesic is
called the Jacobi equation. In terms of the velocity, it takes the
form

i
dδVL

ds
= µt [H, δVNL]L

i
dδVNL

ds
=

µt

1 + µ
[H, δVNL]NL ,

with the boundary condition

U−1δU(1) =

∫ 1

0
ds eitsHδV(s)e−istH = 0.

(Note: We have dropped the star on t∗ for simplicity.)

We need to show that this equation has no solutions till exponential time.
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Jacobi equation

Our strategy will be to first solve the differential equations

i
dδVL

ds
= µt [H, δVNL]L

i
dδVNL

ds
=

µt

1 + µ
[H, δVNL]NL ,

with the initial velocity δV(0).

Next, we compute the end-point deviation U−1δU(1), which
depends linearly on δV(0).

So, we can think of the operator

Y(µ,t) : δV(0)→ U−1δU(1)

as a linear operator, which depends on µ and t.

We have a conjugate point at time t if Y(µ,t) has a zero mode.
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We have a conjugate point at time t if Y(µ,t) has a zero mode.
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Jacobi equation

So our approach will be to study the spectrum of Y(µ,t).

As a warm-up, let us start with µ = 0. Here the Jacobi equation is
very simple:

i
dδVL

ds
= i

dδVNL

ds
= 0.

So we get

Y(0,t)(δV(0)) =

∫ 1

0
ds eitsHδV(0)e−istH .

We can obtain the spectrum:

Y(0,t)(|m〉〈n|) = λmn|m〉〈n|, λmn =
ei(Em−En)t − 1

(Em − En)t
,

where |m〉, |n〉 etc. are energy eigenstates.
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Conjugate points at µ = 0

10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

Abs λ

For Em 6= En, the eigenvalue becomes zero at t = 2πZ
Em−En .

So we will encounter our first conjugate point at tc = 2π
(Emax−Emin)

,

which in the SYK model, happens at a time of O(1/N).

Of course, this is the µ = 0 case where we have no distinction
between simple and hard operators...

We wish to track these conjugate points/zero modes as µ becomes
large, and show that they move off to large times.
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Conjugate points at large µ

In general, tracking these conjugate points at large µ seems hard.

In particular, the projections on the RHS of the Jacobi equations
complicates life:

i
dδVL

ds
= µt [H, δVNL]L

i
dδVNL

ds
=

µt

1 + µ
[H, δVNL]NL ,

However, the problem simplifies greatly in large N chaotic systems.
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Eigenstate complexity

The primary reason for this simplification is the property that

|| |m〉〈n|L|| = O(poly(S) e−S).

In words, outer products |m〉〈n| of energy eigenstates are
essentially “non-local”.

We can test this in the SYK model. We can numerically compute

Rmn = || |m〉〈n|L||2 := poly(S) e−2Srmn.
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Conjugate points at finite µ

With this observation in hand, the Jacobi equations simplify
greatly and we can show that at finite µ, with µt << eS :

Y(µ,t)(|m〉〈n|) ' λmn|m〉〈n|, λmn =
e
i(Em−En)t

1+µ − 1
(Em−En)t

1+µ

.

Therefore, at finite µ, the zero modes move to

t ' 2π(1 + µ)Z
Em − En

.

If we take µ = eεS , then the conjugate points move to t ∼ eεS .

10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

Abs λ
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Global minimality

Thus the linear geodesic is a local minimum for exponential time.

We do not have a proof of global minimality, but we can make
some comments.

Firstly, at µ = 0 it’s a simple exercise to work out all the geodesics
and compute the complexity:

10 20 30 40
2t

2

4

6

8

C

This shows linear growth initially followed by a plateau. But the
plateau starts at t ∼ 2π

(Emax−Emin)
.

At finite µ, we expect all but the linear geodesic to move into the
non-local directions.
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Global minimality at large µ

However, it is easy to find integrable Hamiltonians where one can
explicitly demonstrate the existence of non-trivial geodesics which
entirely lie within the local directions. These compete with the
linear geodesic and lead to linear growth terminating at small
times.

C

t

For chaotic Hamiltonians such geodesics do not exist – it is
possible to argue that any non-trivial geodesic other than the
linear one must necessarily move into the hard directions.
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Summary

We studied the time evolution of quantum complexity in large N
chaotic systems, using Nielsen’s geodesic formalism.

We argued that there is always a geodesic whose length grows
linearly in time.

We showed that in large N chaotic systems, this geodesic is a local
minimum till exponential time.

It would be interesting if we can prove the global minimality of
this geodesic till exponential time, in particular by using universal
properties of chaotic systems, such as spectral statistics or the
eigenstate thermalization hypothesis [Deutsch, Srednicki, Rigol et al...].
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Outlook

This may eventually lead to a deeper understanding of the relations
between complexity, chaos, entanglement structure and emergence of
gravitational dynamics in the AdS/CFT correspondence.

Gravity

Chaos

Entanglement 
structure

Complexity
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Appendix: N = 2, U = SU(2) at finite µ

Solving for all the geodesics at finite µ seems hard. We can
brute-force it in the simple case of N = 2, with two fermions.

Here, the generators of the Lie algebra are

T1 = ψ1, T2 = ψ2, T12 = iψ1ψ2

We take the Hamiltonian to be of the form

H = J1T1 + J2T2.

The complexity of e−iHt can be obtained with a combination of
analytic and numerical methods:
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Appendix: N = 2, U = SU(2)

If we average over J1, J2 with Gaussian distributions, then the
averaged complexity develops a plateau:

This saturation is an effect of disorder averaging, but at large N
we expect the complexity in even a single instance of the SYK
model to saturate.
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