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The H-H wavefunction of the Universe

* The small G, or semiclassical, limit gives a

WKB like approximation to the wavefunction
of the universe:

\IJU _|_ . e e “positive frequency part”

* There are many possible solutions.
* HH proposed a particular choice.



* Lorentzian geometries with a deformation into
Euclidean signature and with no boundary

* Inspired by the i€ prescription.

Hartle-Hawking
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ds? = —dr? + sinh® 7dQ2
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* The most conservative claim is that this
computes the positive frequency’ part of
the asymptotic wavefunction.

* No claim about other pieces.

e This is what we claim in EAdS, in the standard
(Euclidean) AdS/CFT correspondence.



Gives the right fluctuations

Halliwell Hawking, 1984

Same as the standard de Sitter vacuum fluctuations.



Gives the right fluctuations

Halliwell Hawking, 1984

Complex geometries

AN

Real boundary conditions: g, =1+ h

It is essential that they are complex!
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It has one phenomenological problem



Problem with the HH wavefunctionA

* |In the context of inflation.

* (Calculate the probability that we have a positively
curved universe.

Ns NeXp[

P

Value of the inflaton at the time that the length scale of the sphere
crosses the horizon during inflation.



Problem with the HH wavefunctionA

* |In the context of inflation.

* (Calculate the probability that we have a positively
curved universe.

Ns NeXp[

P

Value of the inflaton at the time that the length scale of the sphere

crosses the horizon during inflation. o . _
Minimum radius compatible

with current curvature, Q,, bounds
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Something is wrong...



Something is right...



This is how we compute EAdS partition
functions!

Part of standard AdS/CFT correspondence

Gubser, Klebanov, Polyakov, Witten

Excellent agreements with
S3 partition functions.

S3 Pestun, Kapustin, Willet, Yaakov
Drukker, Marino, Putrov, Jafferis,
Klebanov, Pufu, Safdi + many others

ds® = dp® + sinh® pd3



The two problems are closely related

* The de-Sitter problem is related to a “minus”
EAdS problem. "

T complex plane: Harlow Stanford
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* |tis a particular analytic continuation.
* We are not modifying the original Lagrangian

* |tis asolution with positive cosmological
constant.



A comment on the relation to the RG

De Boer, verlinde?

Heemskerk, Polchinski



Euclidean AdS and partition functions

Uylg) = exp [Co/\/§+62/\/§R+---] Uien(9)
— \

Function of ratios of metric
components.

Counterterms



Euclidean AdS and partition functions
Volg) =exp |ao [ Vi+ e [ VIR + | Winl)

Define another solution of the WdW equation: Argument of wavefunction

/

\If%)‘f/[g] = exp [—Co/\/E—CQ/\/ER+°'°] 5(5/@0)

Contains UV Renormalization Group trajectory. 1t order eqn. Choice of wavefunction
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“Klein Gordon”’ inner product. Evaluated on a “slice”

Improvement = Now both pieces obey the WdW equation.



Asymptotic conditions: fix gg

Slice where we compute the/
Klein Gordon inner product

Answer is independent of the slice = Renormalization group invariance




End of EAdS and RG comment



* |tis worth studying Hartle — Hawking
wavefunctions.

 Maybe once we understand them well enough
the phenomenological problem will go away.

* |s a kind of “information problem” in
cosmology



We will focus on nearly-dS, gravity

* Simple de Sitter theory

 Arises as some limit of certain four
dimensional computations.



Nearly dS, Gravity

1S = gy [/ d*r\/gR — 2/ K] +i/d2;l?\/§¢)(R —2) — z'Q/ oI
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|
JT action

Contributes only to entropy

metric is fixed to dS,

Action = 1S = —qubb/K = —qubb/du—l—qubb/du{a:(u?T, u}

Schwarzian
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iS = —i2¢b/K = —i2gf)b/du—|—z’2gbb/du{x(u),u}
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Length of boundary Space reparametrization mode

e A Schwarzian mode.

e Off shell mode that we should integrate out.

 Two independent Schwarzian modes: one for the
“bra’”’ and one for the “ket”.

e Allows us to various quantum gravity corrections.



Two cases

 The wavefunction in JT theory

 Quantum corrections to matter correlators (in
JT + matter ).



The vacuum HH wavefunction

v

Classical: cl

Superspace=2d = @p, L — é

Quantum: Integrate over fluctuations
Bagrets, Altland, Kamenev
Stanford Witten 1
Kitaev Suh W~ 372 W
Yang
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Two separate disks
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Gravitational corrections to
cosmological correlators

Reparametrization

N\

matter
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Gravitational corrections to
cosmological correlators

Similar to N-AdS, computations. J:M. Stanford Yang

An i in the action for the Schwarzians.
Two Schwarzians.
Found the leading corrections.

Much simpler than gravitational corrections in
4d |



Contributions from other geometries ?



Contributions of other geometries ?

Saad, Shenker and Stanford understood this for N-AdS, gravity.

@ < =
AdS + b + + ...

Sum over other surfaces with constant negative curvature.



Sum over geometries in N-dS,

* Need positive curvature geometries.
* Naively only S?
 But we also have "minus’ all the previous ones.

@ — S
—AdS + b + + ...

Is an identical problem. Only that we have an extra i for the wiggles at infinity.

\Ij X ZSSS (57 So) |5—>—’L£ SSS=Saad, Shenker, Stanford

‘ Also given by a matrix integral!




Pure state or density matrix?

Pure state

>

<::::::::::Ij Ket contour ‘I}
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Bra contour



Pure state or density matrix?

Density Matrix Page

Barvinsky, Deayet, Kamenshchik

Identify Ket contour

Bra contour

| olge, 9]

Ordinary thermal states in QFT are produced by such a contour.



In NAdS, gravity

 We also have the double cone’”’ geometry considered by
Saad, Stanford and Shenker.

We could interpret it as the HH wavefunction for
two entangled universes.
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Or, as the contribution to the density matrix of a single
universe.

N2V
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It is formally hermitian

It diverges when the two lengths are equal (along the diagonal)

Small correction relative to the two disks, since it does not have the de-Sitter entropy contribution



More general theories of gravity

The standard static patch solution of dS can be
viewed in this way = thermal equilibrium

We searched for time dependent solutions of this
type but we did not find one that we liked.

U nreliab|e regimes. ( Nfieigs ~ Sgs) Barvinsky, Deayet, Kamenshchik
Unstable solutions. (unstable Euclidean wormholes)

Bad wavefunctions. (wavefunctions unsuppressed in some directions)



Motivation/Speculation



Cosmological wormholes?

A
] Ket contour
: ® 3 Trace connects
® both sides
Bra contour /1
..$ CZ—77nnot seen[|qu><\I}U|] = Pobserved

In cosmology there are regions we do not see!

dS/CFT + coupling = wormhole ( “double trace’” deformations) (related to
Bousso, Maloney, Strominger & Gao, Jafferis, Wall, JM. Qi, Saad, Shenker, Stanford)

Could there be a way to directly compute the observed density matrix ?



Conclusions

We reviewed the HH wavefunction.
Slightly improved picture for the RG flow in usual AdS/CFT.
Introduced Nearly-dS, gravity.

Computed perturbative quantum gravity effects in Nearly-
ds,

We mentioned that the sum over topologies is the same
as the one considered by Saad, Shenker, Stanford.

We discussed why it seems natural to expect
“"cosmological wormholes”. But we owe you a good
example... (other than the dS static patch)

The End



