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Microstate Geometry Program

Microstate Geometry = Smooth, horizonless solutions to the bosonic sector of
supergravity with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed

Supergravity because we seek stringy resolutions at the horizon scale

» Very long-range effects = Massless limit of strings ...

What is the form of generic, BPS, time-independent horizonless,
smooth solutions in supergravity?

What CFT states do they describe?



Primary Motivation for Microstate Geometries

Resolving the black-hole information problem seems to require
microstate structure to be encoded and supported at the horizon scale

Microstate Geometries

* The only (known) mechanism that can support
structure at the horizon scale

* Supergravity captures the universal, macroscopic
features of microstate structure

* Semi-classical analysis: To what extent can supergravity
encode microstate structure?
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 D1-D5 CFT: A (4,4) supersymmetric CFT with ¢ =6 N1 Ns

a BPS states = (R,R)-ground states

/8 BPS states = (any left-moving state, R ground state)
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Black-Hole Microstates and CFT’s
 D1-D5 CFT: A (4,4) supersymmetric CFT with ¢ =6 N1 Ns

a BPS states = (R,R)-ground states

V8 BPS states = (any left-moving state, R ground state
y v g > R 8

Np

Strominger-Vafa state counting for BPS black hole in five dimensions:
S = 27 +4/N1NsNp

« MSW String: A (0,4) supersymmetric CFT (Maldacena-Strominger-Witten)

M5 brane wrapping a divisor in a CYs. Dual class, P € H2(CY3, Z)

MSW string CFT lives on remaining (1+1) dimensions of M5 brane

1
Central charge ¢ = 6 D, D = —/ P’
6 Jov,

State counting for BPS black hole in four dimensions: S = 2w+ D Np



One Focus of the Microstate Geometry Program

Describe the strongly coupled gravity duals of these CFT states.

To what extent can these CFT states be captured in supergravity?

= Universal gravity dual of both D1-D5 and MSW.



The D1-D5 CFT Open D1-D5 superstrings moving in T#
with N = N1 Ns Chan-Paton labels: (T4)N/Sy

T4 %@ = CFT on common D1-D5 direction, (t,y) & (u,v)
(4,4) supersymmetric CFT with ¢ =6 N1 Ns
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The D1-D5 CFT Open D1-D5 superstrings moving in T#
with N = N1 Ns Chan-Paton labels: (T4)N/Sy

T4 %ﬁ = CFT on common D1-D5 direction, (t,y) & (u,v)
(4,4) supersymmetric CFT with ¢ =6 N1 Ns

y = y+2TmR

»\::3 Maximally spinning (4 BPS) RR-ground state:

y > (+,4)Y space-time angular momenta
/ —_— (5%
D1 i .
/ : M= > (iLjr) = Y2(N,N)
y D5 : copies :
k4 + &
AN -— (++)
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%
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Holographic dual: Maximally spinning supertube in R#7

Supertube profile spins out into M#7space-time

(91(v), 92(v), 93(v), g94(v)) € R4
91(v) +iga(v) = a 2™/ R
g3(v) = ga(v) =0



The D1-D5 CFT Open D1-D5 superstrings moving in T#
with N = N1 Ns Chan-Paton labels: (7T4)N/Sny

y >
/ E N EN1 N5
D5 . copies
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Wﬁ = CFT on common D1-D5 direction, (t,y) & (u,v)

(4,4) supersymmetric CFT with ¢ =6 N1 Ns

y = y+21TR

V:} Maximally spinning (4 BPS) RR-ground state:

space-time angular momenta

> (uir) = %A(N,N)

(+,%),

Holographic dual: Maximally spinning supertube in R#7
Supertube profile spins out into M*7space-time Q1 Qs = R?a?

(91(v),92(v), g3(v), ga(v)) € R*
g1 (’U) + 199 (U) — a62ﬂ'iv/R back-react

AdS; X S3 X T4

g3(v) = ga(v) =0 ’> ] t" 0 iiisiiii



More general 2 BPS profiles
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More general 2 BPS profiles

S—
_ . D —
Orbifold CFT: k twisted sector — — %
S—
S
k loops — Length k loop
|+y2,+y2>k |+Y2,+Y2)k
Act with fermion zero modes l l

|0,0)k — 10,0)k

More general class of D1-D5 ground state

10,0y, 10,0y, 10,0y, 10,0y
l+Y5,+45) |4V2,+152) [4+%2,4%2) 14V, +75) § % %

L — 30— T VTTT — W % """
~ 0 ~ P

v \4

~ a2 copies ~ b? copies
Holographic dual supertube profile

g1(v) +1ig2(v) = a e2miv/ R “95(v)” = b sin(2rkv/R)

Partitioning of charges: Q1Qs = R?(a® +b?)
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Generic 3 BPS state: Add general left-moving excitations

Momentum charge, Qp =L0,left S = 27 \/Q1Q5QP (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”
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Families Vs BPS states in the D1-D5-P system

Generic 3 BPS state: Add general left-moving excitations

Momentum charge, Qp =L0,left S = 27 \/Q1Q5QP (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

(143, +30™ @ (i (5™ (Lo - J31)”yoo>k)Nk’m’”

m!n!

Quantum numbers

Ny N:
Define N = PR
e = 3N ()

D1-D5 [+5,+Y2) residue
Special f Q1Qs5 = R*(a® +b?)
Special forms:

Adding pure momentum: m = 0.

Vanishing angular momentum: m =0, a = 0.



The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states

of the form:
Nk;,mi,n;
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The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states

of the form:
Nki’mz”ni

(43 +00% 0 | @ (b (N (21 - 22"
Holographic duals @ 3
Add momentum and angular momentum N

ki,m;,n;
excitations to D1-D5 profiles: AdS3 (u,v,r) S3 (O,P,P)

g1(v) +iga(v) = ae™ "/ “g5(v)” = b sin(2r kv/R)
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Three mode numbers, (k,m,n) = Supergravity duals depend on:
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The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states

of the form:

1 1\ \V 1 + \m; 3 \ni Neimin;

(+ 5 +00% e | Q (mimm (5™ (L = J2,)™[00)x,
ki,mi,mn;

Holographic duals g ’
Add momentum and angular momentum A\
excitations to D1-D5 profiles: AdS3 (u,v,r) S3 (8,w,d)
91(v) + iga(v) = a ™/ B “g5(v)” = b sin(2rkv/R)
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Three mode numbers, (k,m,n) = Supergravity duals depend on:
Xemn = R (m+mn)v + 5(k—2m)y — 3k¢

k-mode: (-) <> jL=jr responsible for j. = jr = sNa’

. ~ m
m-mode (v-U) <> ji,Np  responsible for  Jjrn = 3N 3-b° Np = 3N -b°

n
n-mode (v) <> Np responsible for Np = 3N 1-b®



Building the Fluctuating BPS Microstate Geometries

lIB Supergravity on 7% Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz: (Gutowski, Martelli and Reall)
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Building the Fluctuating BPS Microstate Geometries

lIB Supergravity on 7% Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz: (Gutowski, Martelli and Reall)
2

u = null time; (v, 1) define a double S7fibration over a flat R? base with coordinates, y.

The scale of everything is set by the “warp factors:” V, P and Z3

The non-trivial homology cycles
are defined through the pinching
off of the §7 x S fibration at
special points in the R? base.

Maxwell Fields

Electric Potentials Magnetic Fluxes
1 nabe
2 P

G = d[— (du—kw)/\(dv—kﬁ)} + 0%y DZ, + %(dv%—@)/\@w

P = %ﬂabZaZb — 2122—5242
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X = BTN+ + S (- 2m)¢ = ko
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where D® = dy® - NO,DP
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Layer 2: Conditions on Metric pieces  An inhomogeneous linear system
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(Z3 ,w) depend upon (r, 0) and (quadratic) products of harmonics that depend upon
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The BPS Equations

Layer 1: Conditions on Maxwell Fields A homogeneous linear system
0@ = 4,0 : x4 D (0, 7,) = nabD@(b) : Dx, D/, = —nab@(b)/\ dg .
where D® = dy® - NO,DP

(Za, @(a)) depend upon (r, ) and
X = BTN+ + S (- 2m)¢ = ko

General solution known for two-centered geometries!

Layer 2: Conditions on Metric pieces  An inhomogeneous linear system

ds? = —\/%(varﬁ)(dquw—%Zg(varﬁ)) + VPV Hdyp+ A)? + VPV - dy

Dw + %4Dw — Z5dB = Z,0®
44D 4 (&,w + %ng) = 02P — ((0,21)(00Za) — 3(00Z4)%) — Lnjap %40 A O®)

(Z3 ,w) depend upon (r, 0) and (quadratic) products of harmonics that depend upon

Interesting families of particular solutions known. General solution not known.



Linear system of gravitational BPS equations:

Critical to constructing the holographic duals of a generic
superpositions of the states on multiple, independent strands:

\
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A Family of Microstate Geometries deep in the Black-Hole Regime
Add pure momentum states
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A Family of Microstate Geometries deep in the Black-Hole Regime
Add pure momentum states

1, 1\ \No 1 3 \n N1.0,n
No+ N1on= NiNs (+ 1, +H)V ® (m (L —J3)) \oo>1)
) ~ * 1 n 2
Q1 Qs = R?(a? +Db?) jo = jr = 3N a* NP-aNEb
.. V \ Y /
Can make Ne large, ju = js = 0 D1-D5 residue P excitations
Geometrv: All angular momentum Angular momentum = 0
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AdS, x S8
2" fas = V@iQs
2 2 2 2 2 dp” 2 2
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BTZ x S%= 2~ Qp
AdS,xS'xS3 [ Q1Qs

Scale of S stabilizes at px 0 x4s R

Smooth cap



A Family of Microstate Geometries deep in the Black-Hole Regime
Add pure momentum states

Nl,O,n
No+ N1on= NiNs (+ 1, +H)V ® (% (L, — Jil)n\oo>1)
- v 1 Ar 2
Q1 Qs = R*(a®+Db?) ju = Jr = iNa?  Np=3N b
. . \ V / \ v V4
Can make Ne large, ju = js = 0 D1-D5 residue P excitations
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Several significant results




Several significant results

* First deep, scaling microstate geometry in
Black-Hole regime with jL=jr > 0

* Deep, scaling microstate geometry that goes to BTZ

* Deep, scaling = Arbitrarily large red-shifts
Maicrostate Geometry = Smooth cap-off

e Momentum excitations localize at the bottom of the BT/ throat

* Holographic dictionary in AdS; for deep AdS,/BTZ throat

e Geometry dual to states counted by Strominger-Vafa
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Microstate Geometries for MSVV Black Holes

Phase dependence of fluctuations:
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Standard dimensional reduction to five 3 (uwr) ©.9.3)

dimensions on v fiber: Must set mm

Ni.m.,n
= Kill all the interesting modes (st (771)" (L1 — 7%,)"|00);)

However:
For k = 2m the solutions are independent of ¥, the Hopf fiber of the S3

-> Reduction of fluctuating D1-D5 solutions (superstrata) to
five-dimensional microstate geometries: capped BTZ x §2

Before doing this: first enrich the family of solutions

It is relatively easy to generalize the entire IIB construction to include a
KKM dipole charge, k, to the D1-D5 system
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Some T-dualities

Starting configuration
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M-theory background

D1-D5-KKM solution & M5-M5-M5 charges: (Q1,Qs,K)
+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on 1 lattice:
D1-D5-KKM (4,4) supersymmetry = M5-M5-M5 (0,4) supersymmetry
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M-theory background

D1-D5-KKM solution & M5-M5-M5 charges: (Q1,Qs,K)
+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on 1 lattice:
D1-D5-KKM (4,4) supersymmetry = M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) ... untouched in duality

- Momentum excitations of MSW string wrapping (5) direction ..
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MSWV string vs M5 on T (or K3 x T?)

» MSW: Single M brane wrapped on very ample divisor of CY3

» Here: Multiple, disjoint M branes T#s in T®

* Non-trivial fluctuations require turning deforming Kahler moduli of the tori,
“bending” disjoint M5’s into one another ...

Universality of the five-dimensional solution:

* We have reduced to five-dimensions and so our solution is valid for any
Calabi-Yau compactification with the same set of M5-brane charges
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Fluctuating Microstate Geometries for MSVV Strings

<«4— Flat Space Flat Space —p
Previous picture R31 x St R31 x St

compactified on

Hopf fiber of S3. AdS; x S?
Fluctuations: ——
Xmn = R (m+n)v — me BTZ x S2=
AdS: x S2 x St
AdS; or ST CH

Deep scaling, microstate geometries for
momentum excitations of MSW string ...

Deconstruction: Aftempts to realize black-hole microstate structure

with perturbative/singular DO branes or perturbative momenta on
“Deconstructed” MSW string

Here: Precise, fully back-reacted, capped-off BTZ x S2 realization of
the deconstructed configurations ...

..... related to D1-D5-P microstate structure
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» We have explicit microstate geometries that are holographic duals to
precise families of D1-D5-P CFT states

» First deep, scaling microstate geometry in Black-Hole Regime with
iL=jr—0

» Deep, scaling geometry going to BTZ % S3 or BTZ % S?

» Momentum excitations localize at bottom of throat and create smooth cap

» Holographic dictionary in AdS3 for deep AdS2/BTZ throat
» Microstate geometries for MSW ... and that fully realize deconstruction

» Microstate geometries capture large-scale universal features of all(?)
black-hole microstate descriptions: MSW/D1-D5-P/Denconstruction/Quiver QM

Open issues

» Twisted sector excitations. Relation to multi-centered geometries!?

» Holography/CFT states of MSWV string dual to new microstate geometries

» Probe the IR physics/large-t correlators of these new geometries



