

New Phases of QCD₃ and QCD₄

Nathan Seiberg IAS

- D. Gaiotto, A. Kapustin, Z. Komargodski, and NS, arXiv:1703.00501;
- Z. Komargodski, and NS, arXiv:170?.????;
- D. Gaiotto, Z. Komargodski, and NS, arXiv:170?.?????

4d pure gauge SU(N)

- Large N: 1st order transition at $\theta = \pi$.
 - -CP (or T) is spontaneously broken there [Witten]
- Finite N: a one-form global symmetry associated with the center of the gauge group [Gaiotto, Kapustin, NS, and Willett].
 - At $\theta = \pi$: mixed 't Hooft anomaly between it and CP.
 - 't Hooft anomaly matching: cannot move continuously from confinement at $\theta=0$ to confinement at $\theta=2\pi$.
 - Specifically, at $\theta=\pi$ deconfinement, or broken *CP*, or TQFT
 - Simplest scenario (as at large N): a single 1st order phase transition at $\theta = \pi$.
 - Assume it (more exotic scenarios are in the paper).

4d pure gauge SU(N) at finite T

• Because of the anomaly, cannot move continuously from confinement at $\theta=0$ to confinement at $\theta=2\pi$.

QCD₄ with one quark ($N_f = 1$)

- No chiral symmetry for massless quarks, but at infinite N a massless η' $m_{\eta'}^2 = \frac{1}{N}\Lambda^2 + O\left(\frac{1}{N^2}\right)$ [Witten]
- With massive quarks

$$m_{\eta'}^2 = \frac{1}{N}\Lambda^2 + Re(m)\Lambda + O(1/N^2, m^2, m/N)$$

- Therefore, even at finite N can find an exactly massless η' .
- For large |m| the same behavior as in the pure gauge system.
- First order transition in the complex $me^{i\theta}$ plane

$$me^{i heta}$$

QCD_4 with N_f quarks for $1 < N_f < N_{CFT}$

- For $N_f \ge N_{CFT}(N)$ a CFT or lack of asymptotic freedom
- For $1 < N_f < N_{CFT}$ a massless theory $-SU(N_f)$ sigma model
- Turn on equal masses. As for $N_f=1$, a first order transition line at $\theta=\pi$, which ends at the massless point [Dashen]

$$m^{N_f}e^{i\theta}$$

QCD_3 $SU(N)_k$ with N_f quarks

- Now we can add a Chern-Simons term with coefficient k.
- For large N_f a non-trivial fixed point [Appelquist and Nash]
- Assume that this remains the case for $N_f \geq N^*(N,k)$
- Topological phases at large |m|

$$SU(N)_{k-N_f/2}$$
 $SU(N)_{k+N_f/2}$ $m < 0$ Phase transition, CFT

- What happens for $N_f < N^*(N,k)$?
- Use recently suggested dualities...

Dual descriptions

Many references. These are some of the recent ones.

...; Giombi, Yin; Aharony, Gur-Ari, Yacoby; Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin; Maldacena, Zhiboedov; Aharony, Giombi, Gur-Ari, Maldacena, Yacoby; Jain, Minwalla, Sharma, Takimi, Wadia, Yokoyama; Minwalla, Yokoyama; Yokoyama; Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama; Inbasekar, Jain, Mazumdar, Minwalla, Umesh, Yokoyama; Jain, Minwalla, Yokoyama; Gur-Ari, Yacoby; Son; Wang, Senthil; Metlitski, Vishwanath; Barkeshli, McGreevy; Radicevic; Aharony; Karch, Tong; NS, Senthil, Wang, Witten; Hsin, NS; Kachru, Mulligan, Torroba, Wang; Metlitski, Vishwanath, Xu; Aharony, Benini, Hsin, NS; Benini, Hsin, NS ...

Dual descriptions

 N_f fermions coupled to

 N_f scalars at $|\Phi|^4$ point coupled to

$$SU(N)_k \leftrightarrow$$

$$U\left(\frac{N_f}{2}+k\right)_{-N}$$

We take N positive and k non-negative.

The scalars are in a generalized Wilson-Fisher fixed point or a gauged version of it.

For $N_f > 2k$ apply time reversal and then $k \to -k$ to find another possible duality

$$SU(N)_k \longleftrightarrow U\left(\frac{N_f}{2} - k\right)_N$$

Dual descriptions

 N_f fermions coupled to

 N_f scalars at $|\Phi|^4$ point coupled to

•
$$SU(N)_k$$

$$\leftrightarrow$$

$$U\left(\frac{N_f}{2}+k\right)_{-N}$$

•
$$SU(N)_k$$

$$\leftrightarrow$$

$$U\left(\frac{N_f}{2}-k\right)_N$$

Checks:

- For large N and k with fixed ratio explicit calculations and relation to AdS duals (only the first one)
- For $N_f = 0$ level/rank duality (only the first one)
- Relation to SUSY dualities of [...; Giveon, Kutasov; ...]
- Flow to fewer flavors
- Global symmetry and 't Hooft anomaly matching (for simplicity, limit to N > 2)

Problem for $N_f > 2k$

 N_f fermions coupled to

 N_f scalars at $|\Phi|^4$ point coupled to

•
$$SU(N)_k$$

$$\longleftrightarrow$$

$$U\left(\frac{N_f}{2}+k\right)_{-N}$$

•
$$SU(N)_k$$

$$\leftrightarrow$$

$$U\left(\frac{N_f}{2}-k\right)_N$$

A mass deformation in the fermionic theory leads to a gapped system $SU(N)_{k\pm N_f/2}$ (depending on the sign of the mass).

In the scalar theories for one sign it leads to a gapped theory $U\left(\frac{N_f}{2}+k\right)_{-N}\leftrightarrow SU(N)_{k+N_f/2}$, which is good.

But with the other sign the gauge symmetry is completely Higgsed and we end up with a massless theory.

$SU(N)_k$ with N_f quarks $N_f \le 2k$

$$U(k + N_f/2)_{-N}$$
 with $N_f \phi$

$$SU(N)_{k-N_f/2} \leftrightarrow U(k-N_f/2)_{-N_f}$$

$$SU(N)_{k+N_f/2} \leftrightarrow U(k+N_f/2)_{-N}$$

m < 0

m > 0

Phase transition

$SU(N)_k$ with N_f quarks $2k < N_f < N^* (N, k)$

$$U(N_f/2-k)_N \text{ with } N_f \phi$$

$$U(N_f/2+k)_{-N} \text{ with } N_f \phi$$

$$SU(N)_{k-N_f/2} \leftrightarrow U(N_f/2-k)_N$$

$$SU(N)_{k+N_f/2} \leftrightarrow U(N_f/2+k)_{-N}$$

$$U(N_f/2+k)_{-N}$$

$$m<0$$

$$\frac{U(N_f)}{U(\frac{N_f}{2}+k)\times U(\frac{N_f}{2}-k)}$$

$$m>0$$
with $N\Gamma_{WZ}$

$SU(N)_k$ with N_f quarks $2k < N_f < N^* (N, k)$

- Three phases
 - For large |m| semiclassical physics gapped, topological.
 - For small |m| a new quantum phase with global symmetry breaking $U(N_f)/U\left(\frac{N_f}{2}+k\right)\times U\left(\frac{N_f}{2}-k\right)$
 - Each phase transition has a weakly coupled bosonic dual description
- The intermediate phase
 - Wess-Zumino term from the Chern-Simons term
 - For k=0: $U(N_f) \to U(N_f/2) \times U(N_f/2)$ with a WZ term
 - Assuming this we can derive for other values of k
 - Skyrmions in the nonlinear model are monopoles in the bosonic theory and are the baryons in the fermionic theory 14

4d pure gauge SU(N)

Return to 4d. Will soon relate to the 3d story.

Study the domain wall at the first order transition point at $\theta = \pi$.

- The theory on the domain wall needs to account for the different 't Hooft anomalies between the two sides of the wall.
- $SU(N)_{-1}$ (Same as on the domain wall between neighboring vacua of $\mathcal{N}=1$ SUSY SU(N) pure gauge theory.)

QCD_4 with $N_f = 1$

 $me^{i\theta}$

Study the domain wall at the transition.

massless η' "4d Ising point"

- No anomaly argument
- For large negative $me^{i\theta}$, expect $SU(N)_{-1}$
- For small mass, should be trivial use the η' theory
- There must be a phase transition on the domain wall.
- Same phases as in 3d $SU(N)_{-1/2} \text{ with } N_f = 1 \;\; \psi \; \leftrightarrow \;\; U(1)_N \;\; \text{with } N_f = 1 \;\; \phi$

QCD_4 with $1 < N_f < N_{CFT}$

 $m^{N_f}e^{i heta}$

Study the domain wall at the transition.

 $SU(N_f)$ chiral Lagrangian

- For large negative $m^{N_f}e^{i\theta}$ expect $SU(N)_{-1}$
- For small mass, CP^{N_f-1} with $N\Gamma_{WZ}$ use the chiral Lagrangian
- There must be a phase transition on the domain wall
- Same phases as in 3d $SU(N)_{-1+N_f/2} \text{ with } N_f \text{ quarks} \leftrightarrow U(1)_N \text{ with } N_f \text{ scalars}$
- Consistent with the intermediate phase in the 3d discussion

Summary

QCD_4

- $N_f = 0$
 - New parity anomaly
 - Phase transition at $\theta = \pi$ for all N
 - $-T_{deconfinement} \leq T_{CP}$
- $N_f = 1$
 - massless η' for all N
- All N_f
 - first order transition with domain walls

Summary

QCD₃ with a Chern-Simons term

- Large N_f : a second order transition separating two gapped topological phases
- Small N_f : same as large N_f , but with a bosonic dual
- Intermediate N_f : three phases. Two of them are gapped and topological. Intermediate phase with global symmetry breaking.

Consistent with the analysis of domain walls in QCD_4 Interesting generalization to SO(N)/Spin(N) and Sp(N) gauge theories — new insights about confinement.