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(1 Motivations

Motivation 1

What is the basic mechanism of AdS/CFT ?

[After 20 years from Maldacena’s discovery]

= One intriguing idea is the conjectured
interpretation of AdS/CFT as tensor networks (TNs).
[Swingle 2009,....]
“Emergent space from Quantum Entanglement”
Tensor network = Network of Quantum entanglement
=""Geometry” of Wave-functional in QFTs



In holography, the entanglement is computed as
the area of minimal surface [RT 06, HRT 07]
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Spacetime in gravity = Collections of bits of entanglement

= Emergent space via tensor network ?



MERA [vidal 05, ...] [TN for AdS/CFT: Swingle 09,...]
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LT = 6.

=Coarse-grainin
______________________ I __A______-____________gl_ a ob d a d
| B=disentangler] c -

S . N ¥ T Disentangler
| = Unitary trf.
logL| [S, <Min[#links]

oc log L

0, 0, 03 040 io-ﬁ 0, 0; 09 0,010, 0, C"i I.;Tls 0,5 017 Oy U—O v

A (length L) U |= agrees with
resultsin 2d CFT!




" A Basic Key Idea: Tensor Network of MERA
= a time slice of AdS space

.

Questions [see e.g. Beny 2011, Bao et.al. 2015, Czech et.al. 2015]
(a) Special Conformal invariance ?

(b) Non—isotropic tensor — 3 causal structure in MERA ?
(c) Why the EE bound is saturated ?
(d) How to derive Einstein eq. ? (Sub AdS Scale Locality)

Recent developments in lattice models

"Improved TN models:

=>(a),(b),(c) [Perfect TN: Pastawski-Yoshida-Harlow-Preskill 15]
[Random TN: Hayden-Nezami-Qi-Thomas-Walter-Yang 16]

“ Another Interpretation:

=(a),(b) [Kinematic Space: Czech, Lamprou, McCandlish, Sully 15]




Some of these problems may be due to lattice artifacts.

Moreover, we want to eventually understand the genuine
AdS/CFT in the continuum limit.

We propose a new alternative approach based on

»

path-integrals, related to a continuum limit of TNs.

~

Our guiding principle 1

Eliminating unnecessary tensors in TN for a given state
= Creating the most efficient TN (= Optimization of TN)

@ Solving the dynamics of Gravity (Einstein eq. etc.)

/




Motivation 2

How can we define complexity in CFTs ?

Computational Complexity of a quantum state
= Min [# of Quantum Gates]
= Min [# of Tensors] in TN

Recently, holographic formulas of complexity
have been proposed. [Refer to Brown’s ,Myers’s talk]

(i) Complexity = Max. volume in AdS [Stanford-Susskind 14]
(i) Complexity= Gravity action in WDW patch of AdS
[Brown-Roberts-Susskind-Swingle-Zhao 15, Lehner-Myers et.al. 16]

For CFTs, Complexity ~ Info.Metric [Miyaji-Numasawa-Shiba
-Watanabe-TT 15]



This motivates us to consider its QFT counterpart
» We introduce Path-integral Complexity”’ .

Original Path-int.
Optimized Path-int.

— X
a2 > Tensor Network

Our guiding principle 2 Zl » _%7
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Hyperbolic Space

= Lattice structure (= arrangement of tensors) in TN
€&=) Background metric gab in Euclid path-integral

*Optimization of TN for a state W
4=) Minimizing Path-integral Complexity 1,[0,, ]
w.r.t the metric g _,
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@ AdS from Optimization of Path-Integrals

(2-1) Formulation

A Basic Rule: Simplify a path-integral s.t.
it produces the correct UV wave functional.

Consider 2D CFTs for simplicity. (z=- Euclidean time, x=space)

Deformation of discretizations in path-integral
= Curved metric such that one cell (bit) = unit length.

B (ds® =e®? (dx? +dz?).

Note: The original flat metric is given by (€ is UV cutoff):
ds? = &2 (dx2 + dz?).




Optimization of Path-Integral [Miyaji-Watanabe-TT 16]
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Tensor Network Renormalization

(TNR) = Optimization of TN
[Evenbly-Vidal 14, 15]

Hyperbolic Spacg = Time slice of AdS3




The wave functional for CFT vacuum is given by
/gab(X,Z): background metric

¥ [@(x)]= j []D®(x,2) e *= ). 5(d(x) - D(x,z = 0))

O<z<oo
—00< X<00

In CFTs, owing to the Weyl invariance, we have

W8~ [ (x)] = exp(1[4(x, 2)])- Yo [@(x)] -

Optimized wf. Original wf.

Our Proposal (Optimization of Path-integral for CFTs):

Minimize 1[é(X,2)] w.rt @(X,Z)
with the boundary condition e \2282 g,




A Reason for Minimization

The normalization N estimates repetitions of same
operations of path-integration. - Minimize this !

= Our Complexity Formula:

C,, = Minfl,, [4(x, 2)]

C, =computational complexity of
the quantum state | V')



(2-2) Liouville Action as Complexity in 2D CFTs
[Caputa-Kundu-Miyaji-Watanabe-TT 17]

Liouville Action

Y
. g=¢€ 5ab —
I[¢]=Log P =S, [4], # of Isometries /‘\

| 9=0m [Czech 17]
/ # of Unitariesx

S, [4] = 24ﬂfdxdz[(8 §)? +(0,0): +e2

E dxdz[(ax¢)2 + (az¢ +ef )2 ]+ (surface term)

1 Hyperbolic plane (H2)
= Minimum: e* =7 B - Time slice of AdS3
ds® = (dx* +dz%)/ z°.



A Sketch: Optimization of Path-Integral

: 2T MERA
Lo Yo' [()] oc H D(x)]
T Optimize “
-Z '
= Hyperbolic
Space H2
7=00
—p UV modes k>1/z , dx?+dz’?
Space X are not important ! |0S” = /2




(2-3) Thermofield Double of 2D CFT
The TFD state at T=1/8 is described as the path-integral
Py [®,(x), @, ()]

=[ JIDpo(xz)e -5(<D1(x)—<1>(x, Z =§))5(®2(x)—®(x, 7= _ﬁ)j oc Stlel

Bl 4
CFT1 CF12
Minimization of S, [4(X, z)] o (@ @(x)
Ar?
— (@) _ : -B/4 +B/4
B? cos (27zz/,8) oL , B/>Z

= Time slice of BTZ black hole.
(i.e. Einstein-Rosen Bridge).



(2-4) Primary States and Back-reactions

Vacuum state on a circle |w|=1

We optimize the path-integral
on a disk with the unit radius.

The solution of ds? — Adwdw = Hyperbolic Disk

Liouville equation - (1- W|2)2 * (=Time slice of
Global AdS3)

Primary state on a circle lw|=1

We insert an operator O(W, W) at w=0.
It has conformal dim. hL=hR=h,

= O(x) ~e™".



Thus we minimize \szew /‘Pg:1 oc g°L191. g72"(0)

2 8W8W¢%e2¢ O 2wy =0
C

Solution: (s? = 4 é’d.g _, (=w= rei?
(=<1
= Deficit angle: 9~ 6+2za. (a=1-12h/c).

Note: the AdS/CFT predicts a = \/1— 24h/c.
Interestingly, if we consider the quantum Liouville CFT,

then h:%(Q—ay/Z.), c=1+3Q%, (Q=2/7+7).
= Weget a=+/1-24h/c.




Heuristic Summary

Time

Optimize

=

Map
[Goto-TT 17]

Local excitation A fine graining is needed
(energy source) = The metric gets larger !

This provides the back-reaction
mechanism as in general relativity !




3 Entanglement Wedge and Entropy
(3-1) Entanglement Wedge from Optimization

Consider an optimization of reduced density matrix O .
We decompose the geometry into two halves. A=aninterval

= Optimize A i Boundary 92
_ |3 _As (Squeezing) C}’z?v- Satisfies

Pr= | === =)

\Z/ K=0
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= Bdy condition:e’K =K, +0_¢ = 0. Entanglement wedge (EW) !



(3-2) Hol. Ent. Entropy from Optimization

j dxdz[(0,4)? +(0,4)? +6* |+ — [ ds|K ¢ + u,e”
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Reproduce
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(4 NAdS2/CFT1 (SYK model)

At first sight, one may be confused as the action

ds, =e*dz®, S, =u(dze’ ~O(c™).

gets trivial when minimized.

=We need to add the conformal sym. breaking effect !
[Sachdev-Ye-Kitaev model, Polchinski-Rosenhaus 16, Maldacena-Stanford 16]

Wy=e™ W, Sy = jdz[(52¢)2 +ue’]
dz* !
» dSlzd = —. Schwarz Derivative term

Z2



B Higher Dimensional CFTs

For simplicity, we focus on the optimization
of Weyl rescaling mode: g2 _ ez¢(x,z)(dzz n d)—(»z)

We argue that the complexity functional is given by

g2 . R
(d -1)(d - 2)}

(@-2)¢
SN[ ety 8 Ko L He g | S ~1)RY:
bdy (d-1)(d-2) d-1 162G, |

l4[#]= Nj‘dzdxdl{edqj +e92%(5 4 +e02%(p g +

Note:  lim[l,[¢]-1,[0]]= S, [¢]- S, [0]



Properties

* Time slices of pure AdSd+1 are reproduced for CFT vacua.

e When A=a round ball, EW and HEE are reproduced.

e The first order mass deformation (=AdS BH deformation)

of the metric is correctly reproduced.
[cf. AdS3/CFT2, 3 h/c corrections.]



Evaluations of Path-integral Complexity in various dim.

c L
2d CFT (1) Poincare AdS3: C = —.
127 ¢
(2) global AdS3: C :%-{i— }
&

_c|1_
(3) BTZ(TFD):C = 3[8 2,8}

3d CFT global AdS4: C = 47N {iﬁ% Iog(gﬂ.
E E

4d CFT global AdS5: C =27°N LJFE_E
3¢ ¢ 12
» C ~ Volume law divergence + subleading terms.

[Holographic complexity: Carmi-Myers-Rath 16, Reynolds-Ross 16]



A Connection to " "Complexity = Action’’ proposal

Consider a Pure AdSd+1 and Pick up the following patch:
ds® = R (— dt® + cos®t-e*™ -habdxadxb)

This agrees with Wheeler-DeWitt patch

— >
in [Brown-Roberts-Susskind-Swingle-Zhao 15]
if e*™h_ dx*dx” is given by Hd.
In this setup, we can show
< [FEIET

1
o = TN | dxdt/—g[R—2A]+ (bdy. term)

=(d—-2)-n, - 1,[¢]+ (IR surface term).
1 [n _ (@ —1)/2>j
Our complexity T 1r(d/2) >




® Conclusions

e We introduced path-integral complexity’’ of a given state,
which measures complexity of the corresponding TN.

 In 2D CFT, it is given by the Liouville action, which is
supported by the Weyl anomaly and the TNR complexity.
An optimization of path-integral of a CFT state
= Minimizing the complexity
< atime slice of its gravity dual in AdS/CFT

 We gave generalizations to higher dim. and CFT1.

Future Problems
Time dependent b.g. (gtt: covariant formulation) ?
Sub AdS locality ?, dS/CFT version ?, ....




Thank you very much |



Post-strings2018 Long Term Workshop:
“"New Frontiers in String Theory”

July 2- August 3, 2018
@ YITP, Kyoto U.

Preliminary web page:
http://www?2.yukawa.kyoto-u.ac.jp/~nfst2018/

Organizers

Yasuaki Hikida (YITP)

Shinji Hirano (Witwatersrand)
Kazuo Hosomichi (NDA)

Hiroshi Kunitomo (YITP)

Masaki Shigemori (Queen Mary)

OITre € difd
Shigeki Sugimoto (Chair, YITP) RO ——
Ta d a S h I Ta ka ya n a g I (Y I T P ) YTITP long-term workshop "New Frontiers in String Theory"
cee . e Start: July 2, 2018, Close: August 3, 2018
S e IJ I Te ra S h I m a (Y I T P) * Panasonic “\ElfliT()Tillljl, Yukawa Hall, Yukawa Institute for Theoretical Physics, Kyoto

University, IKyoto, Japan

Invited Speakers



	スライド番号 1
	① Motivations
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	Contents
	スライド番号 10
	[Evenbly-Vidal 14, 15]
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	④ NAdS2/CFT1  (SYK model)
	⑤ Higher Dimensional CFTs�
	スライド番号 24
	スライド番号 25
	スライド番号 26
	⑥ Conclusions
	スライド番号 28
	スライド番号 29

