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A question

What accounts for the finiteness of the black hole entropy–from the
bulk point of view?

The stakes are high here. Many approaches to understanding the
bulk–

TFD/Eternal black hole
Ryu-Takayanagi
Geometry from entanglement
Tensor networks
ER = EPR
Code subspaces
. . .

suggest that any complete bulk description of quantum gravity must
be able to describe these states.
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A diagnostic

A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of hO(t)O(0)i. (O is a bulk (smeared boundary) operator)

hO(t)O(0)i =
X

m,n

e��Em |hm|O|ni|2e i(Em�En)t/
X

n

e��En

At long times the phases from the chaotic discrete spectrum cause
hO(t)O(0)i to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]

X

m,n

e��(Em+En)e i(Em�En)t = Z (� + it)Z (� � it) = Z (t)Z ⇤(t)

The “spectral form factor”

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 3 / 17



A diagnostic

A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of hO(t)O(0)i. (O is a bulk (smeared boundary) operator)

hO(t)O(0)i =
X

m,n

e��Em |hm|O|ni|2e i(Em�En)t/
X

n

e��En

At long times the phases from the chaotic discrete spectrum cause
hO(t)O(0)i to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]

X

m,n

e��(Em+En)e i(Em�En)t = Z (� + it)Z (� � it) = Z (t)Z ⇤(t)

The “spectral form factor”

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 3 / 17



A diagnostic

A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of hO(t)O(0)i. (O is a bulk (smeared boundary) operator)

hO(t)O(0)i =
X

m,n

e��Em |hm|O|ni|2e i(Em�En)t/
X

n

e��En

At long times the phases from the chaotic discrete spectrum cause
hO(t)O(0)i to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]

X

m,n

e��(Em+En)e i(Em�En)t = Z (� + it)Z (� � it) = Z (t)Z ⇤(t)

The “spectral form factor”

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 3 / 17



A diagnostic

A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of hO(t)O(0)i. (O is a bulk (smeared boundary) operator)

hO(t)O(0)i =
X

m,n

e��Em |hm|O|ni|2e i(Em�En)t/
X

n

e��En

At long times the phases from the chaotic discrete spectrum cause
hO(t)O(0)i to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]

X

m,n

e��(Em+En)e i(Em�En)t = Z (� + it)Z (� � it) = Z (t)Z ⇤(t)

The “spectral form factor”

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 3 / 17



Properties of Z (t)Z ⇤(t)

Z (t)Z ⇤(t) =
X

m,n

e��(Em+En)e i(Em�En)t

Z (�, 0)Z ⇤(�, 0) = Z (�)2 (= L2 = e2S for � = 0)

Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

At long times, after a bit of time averaging (or J averaging in SYK),
the oscillating phases go to zero and only the n = m terms contribute.

Z (�)2 ! Z (2�). (= L = eS for � = 0)

e2S ! eS , an exponential change. How does this occur?
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SYK as a toy model

SYK can serve as a toy model to address these questions:
[see Stanford’s talk]

has a sector dual to AdS
2

dilaton gravity

Chaotic, discrete spectrum

G (t, t 0),⌃(t, t 0) description has aspects reminiscent of a bulk
description:

O(N) singlets
nonlocal
Nonperturbatively well defined (two replicas)

hZ (t)Z⇤(t)i =
Z

dGabd⌃ab exp(�N I (Gab,⌃ab))

Finite dimensional Hilbert space, D = L = 2N/2, amenable to
numerics

Guidance about what to look for
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ZZ ⇤(t) in SYK

[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen

Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka]

([CGHPSSSST])

See also
[Garcia-Garcia–Verbaarschot]
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Meaning

10-5

10-4

10-3

10-2

10-1

100

10-1 100 101 102 103 104 105 106

g
(t

)

Time t /J -1

SYK, Nm = 34, 90 samples, β=5, g(t ) Results

The Slope $ Semiclassical
quantum gravity

The Ramp and Plateau $
Random Matrix Theory

The Dip $ crossover time
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Slope, contd.
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g
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Time t /J -1
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t

g(β,t)

1 5 10 50100
1040
1042
1044
1046

t

gn(β,t)
α
t3

gBTZ(β,t)

gn(β,t)

gn(β,2πn)

ZBTZ(2β)

Slope is determined by semiclassical
quantum gravity–nonuniversal

In SYK slope ⇠ 1/t3. One loop exact
Schwarzian result: ⇢(E ) ⇠ eS0(E � E

0

)1/2

([Bagrets-Altland-Kamenev; CGBPSSSST;

Stanford-Witten])

In BTZ summing over modular transforms
of blocks gives oscillating slope with power
law envelope: nonperturbatively small
oscillations in the density of states.
[Dyer–Gur-Ari]
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The Ramp and Plateau

10-5

10-4

10-3

10-2

10-1

100

10-1 100 101 102 103 104 105 106

g
(t

)

Time t /J -1

SYK, Nm = 34, 90 samples, β=5, g(t )

The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

hZZ ⇤(t)i is essentially the Fourier transform
of ⇢(2)(E ,E 0), the pair correlation function

⇢(2)(E ,E 0) ⇠ 1� sin2(L(E � E 0))

(L(E � E 0))2

[Dyson; Gaudin; Mehta]

The decrease before the plateau is due to
anticorrelation of levels

Conjecture that this pattern is universal in
quantum black holes

Some evidence for this in melonic models
[Witten; Gurau; Carrozza-Tanasa;

Klebanov-Tarnopolsky; Krishnan-Kumar-Sanyal]
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N versus L

⇢(2)(E ,E 0) ⇠ 1� sin

2

(L(E�E 0
))

(L(E�E 0
))

2

t ⌧ tp, ⇢(2)(E ,E 0) ⇠ 1� 1

L2(E�E 0
)

2

, “spectral rigidity”

1

L2
perturbative in RMT, 1

L2
⇠ e�cN , nonperturbative in 1

N , SYK.

sin2(L(E � E 0)) ! exp(�2L(E � E 0)), Altshuler-Andreev instanton

⇠ exp(�ecN) in SYK (!)

How are these e↵ects realized in the G ,⌃ formulation?

q = 2 SYK in progress [Saad, SS]
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⇠ e�cN , nonperturbative in 1

N , SYK.

sin2(L(E � E 0)) ! exp(�2L(E � E 0)), Altshuler-Andreev instanton

⇠ exp(�ecN) in SYK (!)

How are these e↵ects realized in the G ,⌃ formulation?

q = 2 SYK in progress [Saad, SS]
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Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]
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Energy ε

N = 34, 90 samples

At what time does the ramp begin?

The dip is just a crossover: edge versus bulk
dynamics

The Thouless time [Garcia-Garcia–Verbaarschot]

Single particle hopping, n sites: di↵usion time,
tth ⇠ n2

Follow the ramp below the slope: use Gaussian
filter [Stanford]

Y (↵, t)Y ⇤(↵, t) =
X

m,n

e�↵(E2

n+E2

m)e+i(Em�En)t
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YY ⇤
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Dip time td ⇠ 200, N = 34

Onset of ramp tr . 10, N = 34

(The ramp is an exponentially subleading
e↵ect in ZZ ⇤ and correlation functions
before the dip)

An upper bound. Very little variation in N
for N  34

logN? scrambling?

Maybe; no.
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Geometrically local qubits

10-2 10-1 100 101 102 103 104 105 106

t

10-10

10-8

10-6

10-4

10-2

100

g(
t)=

<|
tr 

U
(t)

|2 >

Local QSG, N = 15

6 8 10 12 14 16
N

0

50

100

150

200

250

R
am

p 
Ti

m
e

Local QSG

n geometrically local qubits

H =
P

i J
↵�
i �↵

i �
�
i+1

, J random

Scrambling time ⇠ n

Gaussian density of states !
slope ⇠ exp(�Nt2), rapid decay

tr ⇠ n2 ? di↵usion?

Maybe not scrambling...
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Brownian circuits

Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]

Generic. Also happens in Brownian circuit

e�iHt ! e�iHm�te�iHm�1

�t . . . e�iH
1

�t

Hm drawn from an ensemble

Unitary gates U = UmUm�1

. . .U
1

Can analyze dynamics including scrambling analytically
[Oliveira-Dahlsten-Plenio; Lashkari-Stanford-Hastings-Osborne-Hayden;

Harrow-Low; ...]
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Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain

Study U⇢U†, ⇢ =
P

p �p�p, �p a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Random two qubit gates: I I ! I I; AB ! 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ⇠ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 15 / 17



Markov chain, contd.

For spectral statistics study htr(Uk)tr((U†)k)i, k = 1, 2 . . .

RMT statistics htr(Uk)tr((U†)k)i ! Haar average value

For k = 2 (two design) slowest terms are like UaaU⇤
aaUaaU⇤

aa (no sum)

Study U|aiha|U† where |ai = |0000i
|0000ih0000| = (1

2

)n(I+ Z)n

Z I Z Z I I Z Z I . . . Easy to equilibrate

Equilibration time ⇠ log n, shorter than scrambling !

Correlation functions of very complicated operators [Roberts-Yoshida;

Cotler-Hunter-Jones-Liu-Yoshida]
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Evaporation and RMT

For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (di↵usion?) is
occurring: t ⇠ np

For q-local systems like SYK np ! log n [Susskind]

A plausible guess

Important because the black hole evaporation time is ⇠ S ⇠ n.

So these phenomena would appear in small black holes as well,
although as an exponentially subleading e↵ect

We need to know what they mean in quantum gravity!
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