Black holes and random matrices

Stephen Shenker
Stanford University

Strings 2017

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 1/17



@ What accounts for the finiteness of the black hole entropy—from the
bulk point of view?
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@ What accounts for the finiteness of the black hole entropy—from the
bulk point of view?

@ The stakes are high here. Many approaches to understanding the
bulk—

TFD/Eternal black hole

Ryu-Takayanagi

Geometry from entanglement

Tensor networks

ER = EPR

Code subspaces

suggest that any complete bulk description of quantum gravity must
be able to describe these states.
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@ A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of (O(t)O(0)). (O is a bulk (smeared boundary) operator)

(0(£)0(0)) = 3 e En|{m| O] n) 2l EnEn)t/ 3 =
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@ A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of (O(t)O(0)). (O is a bulk (smeared boundary) operator)

(0(£)0(0)) = 3 e En|{m| O] n) 2l EnEn)t/ 3 =

@ At long times the phases from the chaotic discrete spectrum cause
(O(t)O(0)) to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.

(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
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@ A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of (O(t)O(0)). (O is a bulk (smeared boundary) operator)

(0(£)0(0)) = 3 e En|{m| O] n) 2l EnEn)t/ 3 =

@ At long times the phases from the chaotic discrete spectrum cause
(O(t)O(0)) to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.

(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

@ To focus on the oscillating phases remove the matrix elements. Use a

related diagnostic: [Papadodimas-Raju]

> e HEntE I En—ENt — Z(8 1 it)Z(B — it) = Z(t)Z*(t)

m,n
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@ A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of (O(t)O(0)). (O is a bulk (smeared boundary) operator)

(0(£)0(0)) = 3 e En|{m| O] n) 2l EnEn)t/ 3 =

@ At long times the phases from the chaotic discrete spectrum cause
(O(t)O(0)) to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.

(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

@ To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]

> e HEntE I En—ENt — Z(8 1 it)Z(B — it) = Z(t)Z*(t)

m,n

@ The “spectral form factor”
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Properties of Z(t)Z*(t)

Z(t)Z*(t) = Z o B(En+En) gi(Em—En)t

e Z(B,0)Z*(,0) = Z(B)? (= L? = €*° for B =0)

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 4 /17



Properties of Z(t)Z*(t)

Z(t)Z*(t) = Z o B(En+En) gi(Em—En)t

° Z(8,0)Z*(8,0) = Z(8)* (= L* = &** for 5 =0)
@ Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)
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Properties of Z(t)Z*(t)

Z(t)Z*(t) = Z o B(En+En) gi(Em—En)t

° Z(8,0)Z*(8,0) = Z(8)* (= L* = &** for 5 =0)
@ Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

@ At long times, after a bit of time averaging (or J averaging in SYK),
the oscillating phases go to zero and only the n = m terms contribute.
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Properties of Z(t)Z*(t)

2(6)2°(t) = Ze—ﬂ (Ent£r) i(En—En)e

° Z(8,0)Z*(8,0) = Z(8)* (= L* = &** for 5 =0)
@ Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

@ At long times, after a bit of time averaging (or J averaging in SYK),
the oscillating phases go to zero and only the n = m terms contribute.

o Z(B)?> = Z(2B). (= L= e° for B =0)
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Properties of Z(t)Z*(t)

2(6)2°(t) = Ze—ﬂ (Ent£r) i(En—En)e

° Z(8,0)Z*(8,0) = Z(8)* (= L* = &** for 5 =0)
@ Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

@ At long times, after a bit of time averaging (or J averaging in SYK),
the oscillating phases go to zero and only the n = m terms contribute.
o Z(B)?> = Z(2B). (= L= e° for B =0)

25 S

@ e=> — e~, an exponential change. How does this occur?
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SYK as a toy model

@ SYK can serve as a toy model to address these questions:
[see Stanford’s talk]
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@ has a sector dual to AdS» dilaton gravity
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SYK as a toy model

@ SYK can serve as a toy model to address these questions:
[see Stanford’s talk]

@ has a sector dual to AdS» dilaton gravity

e Chaotic, discrete spectrum
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SYK as a toy model

@ SYK can serve as a toy model to address these questions:
[see Stanford’s talk]
@ has a sector dual to AdS» dilaton gravity
e Chaotic, discrete spectrum
e G(t,t'),x(t,t") description has aspects reminiscent of a bulk
description:
o O(N) singlets
e nonlocal
o Nonperturbatively well defined (two replicas)

(Z(8)Z*(t)) = / dGopdTp exp(—N 1(Gap, Tas))
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SYK as a toy model

@ SYK can serve as a toy model to address these questions:
[see Stanford’s talk]

has a sector dual to AdS, dilaton gravity

Chaotic, discrete spectrum

G(t,t'),X(t,t") description has aspects reminiscent of a bulk
description:

o O(N) singlets

e nonlocal

o Nonperturbatively well defined (two replicas)

(Z(8)Z*(t)) = / dGopdTp exp(—N 1(Gap, Tas))

o Finite dimensional Hilbert space, D = L = 2V/2, amenable to
numerics

@ Guidance about what to look for
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ZZ*(t) in SYK

[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen
Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka]
([CGHPSSSST])

See also
[Garcia-Garcia—Verbaarschot]
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Meaning

SYk, Ny = .’34, 90 sa‘mples, ﬁ;s, a(t) T ° Resu |tS

‘ ‘ ‘ ‘
10" 10 10’ 102 10 10t 10° 10
Time t/J7!
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Meaning

10° T T T T T
YK, N, =34, les, p=5, R —
S m = 34, 90 samples, $=5, g(t) ° Results
10»1 L . .
@ The Slope +» Semiclassical
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10 quantum gravity
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Meaning

o STk Ny =54, 00 samples .60 | o Results
o @ The Slope +» Semiclassical
0% F quantum gravity

S0 f @ The Ramp and Plateau
w0t b Random Matrix Theory
10° F

‘ ‘
10" 10 10’ 102 10 10t 10° 10
Time t/J7!
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Meaning

100 T T T T T
SYK, N, = 34, 90 samples, =5, g(t) —— ° Results
10»1 L . .
@ The Slope +» Semiclassical
-2 | .
10 quantum gravity
F10° p @ The Ramp and Plateau +
10 b Random Matrix Theory
w05 [ @ The Dip <> crossover time
10" 10 10" 102 10® 10t 10°  10®
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Slope, contd.

T T T T T
SYK, Ny, =34, 90 samples, p=5, g(t) ——

Slope is determined by semiclassical
quantum gravity—nonuniversal

07 10°  10' 102 10 10t 10° 10°
Time t/J7!
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Slope, contd.

” SR My = 34,50 ampres 16, o)
Slope is determined by semiclassical
- quantum gravity—nonuniversal
3 10°
In SYK slope ~ 1/t3. One loop exact
TR | Schwarzian result: p(E) ~ e*(E — Eg)'/?

e o ([Bagrets-Altland-Kamenev; CGBPSSSST;
Stanford-Witten])
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T T T T T
SYK, N, =34, 90 samples, p=5, (t) ——

07 10°  10' 102 10 10t 10° 10°
Time t/J7!

Stephen Shenker (Stanford University)

Slope is determined by semiclassical
quantum gravity—nonuniversal

In SYK slope ~ 1/t3. One loop exact
Schwarzian result: p(E) ~ e*(E — Eg)'/?
([Bagrets-Altland-Kamenev; CGBPSSSST;
Stanford-Witten])

In BTZ summing over modular transforms
of blocks gives oscillating slope with power
law envelope: nonperturbatively small
oscillations in the density of states.
[Dyer—Gur-Ari]
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The Ramp and Plateau

The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be

o SYK, Nm:é4, 90 sa‘mDIes, ;x‘:s, g(t) R - H H
o universal in quantum chaotic systems
107
g 100
107
10°
107 1(‘7“ 10 1(‘;2 1‘03 u‘)‘ 1(‘75 10°
Time t/J™"
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The Ramp and Plateau

The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

SYK, Ny, =34, 80 samples, =5, g(t) ——

(ZZ*(t)) is essentially the Fourier transform
of pA(E, E'), the pair correlation function

100 10 10t 107 10°
Time t/J™"
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The Ramp and Plateau

SYK, Ny, =34, 80 samples, =5, g(t) ——

0" 10°  1' 102 10 10t 107 10°
Time t/J™"

Stephen Shenker (Stanford University)

The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

(ZZ*(t)) is essentially the Fourier transform

of pA(E, E'), the pair correlation function

B sin?(L(E — E'))
(L(E - E"))?

pP(E,E)~1

[Dyson; Gaudin; Mehta]
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SYK, Ny, =34, 80 samples, =5, g(t) ——
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The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

(ZZ*(t)) is essentially the Fourier transform

of pA(E, E'), the pair correlation function

B sin?(L(E — E'))
(L(E - E"))?

pP(E,E)~1
[Dyson; Gaudin; Mehta]

The decrease before the plateau is due to
anticorrelation of levels
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The Ramp and Plateau

SYK, Ny, =34, 80 samples, =5, g(t) ——

0" 10°  1' 102 10 10t 107 10°
Time t/J™"

Stephen Shenker (Stanford University)

The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

(ZZ*(t)) is essentially the Fourier transform

of pA(E, E'), the pair correlation function

B sin?(L(E — E'))
(L(E - E"))?

pP(E,E)~1
[Dyson; Gaudin; Mehta]

The decrease before the plateau is due to
anticorrelation of levels

Conjecture that this pattern is universal in
quantum black holes

Some evidence for this in melonic models
[Witten; Gurau; Carrozza-Tanasa;

Klebanov-Tarnopolsky;-Krishnan-Kumar=Sa nyal]
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N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 10 / 17



N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

o t<t, pA(EE)~1 “spectral rigidity”

1
- L2(E—E’)2 '
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N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

o t<t, pA(EE)~1 “spectral rigidity”

1
- L2(E—E’)2 '

1
2

) % perturbative in RMT ~ e N, nonperturbative in % SYK.
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N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

t < ty, pA(EE)~1- ﬁ “spectral rigidity”

1
2

~ ech

% perturbative in RMT , nonperturbative in % SYK.

sin?(L(E — E")) — exp(—2L(E — E’)), Altshuler-Andreev instanton

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 10 / 17



N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

t < ty, pA(EE)~1- ﬁ “spectral rigidity”

1
2

cN

~ e~V nonperturbative in % SYK.

% perturbative in RMT

sin?(L(E — E")) — exp(—2L(E — E’)), Altshuler-Andreev instanton

o ~ exp(—eM)in SYK ()
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N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

t < ty, pA(EE)~1- ﬁ “spectral rigidity”

1
2

cN

~ e~V nonperturbative in % SYK.

% perturbative in RMT

sin?(L(E — E")) — exp(—2L(E — E’)), Altshuler-Andreev instanton

o ~ exp(—eM)in SYK ()

How are these effects realized in the G, X formulation?
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N versus L

sin? —E’
° p(2)(E7 El) ~1-— (L((é(fE/)E)Q))

t <ty pA(EE)~1

- ﬁ “spectral rigidity”

cN

% perturbative in RMT L e N nonperturbative in % SYK.

ro[2

sin?(L(E — E")) — exp(—2L(E — E’)), Altshuler-Andreev instanton

~ exp(—eN) in SYK (1)

How are these effects realized in the G, X formulation?

g = 2 SYK in progress [Saad, SS]
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Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress|

SYK, Ny, = 34, 90 samples, =5, g(t) ——

At what time does the ramp begin?

S0el
w0t b
05k
. . . . . .
107 10° 10 102 10° 10° 10° 10°
Time t/J™"
08
=54, 90 samples
05
= o0a
g
H
o
Z o2
8
01
0
2 s 4 05 0 05 1 15 2
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Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress|

SYK, Ny, = 34, 90 samples, =5, g(t) ——

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk
dynamics

g(t)
3

. . . .
0t 10 10" 102 10 0t 107 0P

Time t/J™"

=54, 90 samples ——

Density of states p(s)
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Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress|

SYK, Ny, = 34, 90 samples, =5, g(t) ——

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk

g 100 .
} dynamics
10
0 The Thouless time [Garcia-Garcia—Verbaarschot]
I T T

Time t/J™"

=54, 90 samples ——

Density of states p(s)

2 45 1 05 0o 05 1 15 2
ergy ¢
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Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress|

SYK, Ny, = 34, 90 samples, =5, g(t) ——

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk

g 10° -
. dynamics
10
10? The Thouless time [Garcia-Garcia—Verbaarschot]
B Single particle hopping, n sites: diffusion time,
teh ~ N
% 04

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 11 /17



Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress|

SYK, Ny, = 34, 90 samples, =5, g(t) ——

g(t)
3

. . . .
o0t 10 10t 10°

Time t/J™"

=54, 90 samples ——

Density of states p(s)

Stephen Shenker (Stanford University)

10f

6

At what time does the ramp begin?

The dip is just a crossover: edge versus bulk
dynamics

The Thouless time [Garcia-Garcia—Verbaarschot]
Single particle hopping, n sites: diffusion time,
tip ~ n?

Follow the ramp below the slope: use Gaussian
filter [Stanford]

Y(a, t)Y* (o, t) = Z e~ UEZHER) o ti(Em—En)t

m,n

Strings 2017 11 /17
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0)%(a)

0), <YY /Yt

9t B

SYK, Ny, = 34, 80 samples, =5, g(t) ——

100 10" 10 10 10t 10°

Time ¢!

Dip time ty ~ 200, N = 34

o,
&
T

T
. 9(p=0)
<YYIV(t=0>>(0=2.5) ——

Time J t

Shenker (Stanford

.
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1=0)%>(c)

0), <YY/IV(E

9t B

SYK, Ny, = 34, 80 samples, =5, g(t) ——

107!

100 100 10?10 10t 100 1P
Time ¢!

Dip time ty ~ 200, N = 34

Onset of ramp t,

o,
®
T

S 9
I

.
. g(p=0)
\ <YYIY(t=02>(0=2.5)

.
10’ 102
Time J t
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SYK, Ny, = 34, 80 samples, =5, g(t) ——

Onset of ramp t,

0 10” g0t 102 100 1t
Time ¢!

before the dip)

T
. 9(p=0)
ot b \ <YYIV(t=0>(a=2.5) —— ]

o,
®
T
-
L

0)%>()

10° F \ 1

104 b i 1

wis E VWV!

0), <YY/¥(E

=
=

gt p
3 3
.
5
\v
\i‘?
Y

.
102 10°
Time J t
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SYK, Ny, = 34, 80 samples, =5, g(t) ——

0 10” g0t 102 100 1t
Time ¢!

Dip time ty ~ 200, N = 34

<10, N =34

~

Onset of ramp t,

(The ramp is an exponentially subleading
effect in ZZ* and correlation functions

o,
®
T

0), <YY/¥(1=0)%(ct)

S
&
T

S
&
T

before the dip)

An upper bound. Very little variation in N
for N < 34

Time J t

Stephen Shenker (Stanford University)
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SYK, Ny, = 34, 80 samples, =5, g(t) ——

0)%>(ct)

& &

0), <YY/IV(E
3

S,
&

9t B

Dip time ty ~ 200, N = 34

Onset of ramp t, <10, N = 34

~

(The ramp is an exponentially subleading
effect in ZZ* and correlation functions
before the dip)

An upper bound. Very little variation in N
for N < 34

log N? scrambling?
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SYK, Ny, = 34, 80 samples, =5, g(t) ——

0)%>(ct)

& &

0), <YY/IV(E
3

S,
&

9t B

Dip time ty ~ 200, N = 34

<10, N =34

~

Onset of ramp t,

(The ramp is an exponentially subleading
effect in ZZ* and correlation functions
before the dip)

An upper bound. Very little variation in N
for N < 34

log N? scrambling?

Maybe; no.
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Geometrically local qubits

Local 056, N= 15

n geometrically local qubits

Local GSG
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Geometrically local qubits

Local 056, N= 15

n geometrically local qubits

H=Y, )"0 ;34-1' J random

Local GSG
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Geometrically local qubits

Local 056, N= 15

n geometrically local qubits

H=Y, )"0 ;34-1' J random

Scrambling time ~ n

Sttt U

Local GSG
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Geometrically local qubits

n geometrically local qubits

H=5%", Jaﬁ & ;34-1' J random

Scrambling time ~ n

Gaussian density of states —
- slope ~ exp(—Nt?), rapid decay
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Geometrically local qubits

n geometrically local qubits

H=Y, )"0 ;34-1' J random

Scrambling time ~ n

Gaussian density of states —
slope ~ exp(—Nt?), rapid decay

Local GSG

i t, ~ n® 7 diffusion?
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Geometrically local qubits

Local GSG

Stephen Shenker (Stanford University)

n geometrically local qubits

H=Y, )"0 ;34-1' J random

Scrambling time ~ n

Gaussian density of states —
slope ~ exp(—Nt?), rapid decay

t, ~ n% ? diffusion?

Maybe not scrambling...
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Brownian circuits

@ Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]
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@ Generic. Also happens in Brownian circuit
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Brownian circuits

@ Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]
@ Generic. Also happens in Brownian circuit

° e—th N e—iHmAte—iH,,,,lAt o e—iHlAt
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Brownian circuits

@ Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]

@ Generic. Also happens in Brownian circuit
° e—th N e—iHmAte—iH,,,,lAt o e—iHlAt
e H,, drawn from an ensemble
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Brownian circuits

Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]

Generic. Also happens in Brownian circuit

e—th N e—iHmAte—iH,,,,lAt o e—iHlAt
H,, drawn from an ensemble

Unitary gates U = Up,Up—1... Us
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Brownian circuits

Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]

Generic. Also happens in Brownian circuit

e—th N e—iHmAte—iH,,,,lAt o e—iHlAt
H,, drawn from an ensemble

Unitary gates U = Up,Up—1... Us

Can analyze dynamics including scrambling analytically
[Oliveira-Dahlsten-Plenio; Lashkari-Stanford-Hastings-Osborne-Hayden;

Harrow-Low; ...]

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 14 /17



Markov chain

e Study UpUT, p = >_pp0p, Op a string of Paulis
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e Study UpUT, p = >_pp0p, Op a string of Paulis
@ (Need k copies for k design)
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e Study UpUT, p = >_pp0p, Op a string of Paulis
@ (Need k copies for k design)

@ Defines a Markov process on on Pauli strings e.g.,
ITIZZIIXIT...
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e Study UpUT, p = >_pp0p, Op a string of Paulis
@ (Need k copies for k design)

@ Defines a Markov process on on Pauli strings e.g.,
ITIZZIIXIT...

@ Random two qubit gates: 1T — I 1; AB — 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]
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e Study UpUT, p = >_pp0p, Op a string of Paulis
@ (Need k copies for k design)

@ Defines a Markov process on on Pauli strings e.g.,
ITIZZIIXIT...

@ Random two qubit gates: 1T — I 1; AB — 15 other possibilities,
uniformly (for k = 2) [Harrow-Low]

@ Initial condition for an OTOC: ZITITIIIIIII
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e Study UpUT, p = >_pp0p, Op a string of Paulis

@ (Need k copies for k design)

@ Defines a Markov process on on Pauli strings e.g.,
ITIZZIIXIT...

@ Random two qubit gates: 1T — I 1; AB — 15 other possibilities,

uniformly (for k = 2) [Harrow-Low]

Initial condition for an OTOC: ZIIIIIIIIII

Time to randomize last qubit ~ n, scrambling time [Nahum-Vijay-Haah;
Keyserlingk-Rakovszky-Pollmann-Sondhi]
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Markov chain, contd.

o For spectral statistics study (tr(U%)tr((U)K)), k =1,2...
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Markov chain, contd.

o For spectral statistics study (tr(U%)tr((U)K)), k =1,2...
o RMT statistics (tr(U¥)tr((UT)¥)) — Haar average value
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Markov chain, contd.

o For spectral statistics study (tr(U%)tr((U)K)), k =1,2...
o RMT statistics (tr(U¥)tr((UT)¥)) — Haar average value

@ For k =2 (two design) slowest terms are like U,,U%,Us,Uz, (no sum)
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Markov chain, contd.

For spectral statistics study (tr(U)tr((UT)¥)), k =1,2...

RMT statistics (tr(U*)tr((UT)¥)) — Haar average value

For k = 2 (two design) slowest terms are like U,,U%,U., Uz, (no sum)
Study Ula){a|UT where |a) = |0000)

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 16 / 17



Markov chain, contd.

For spectral statistics study (tr(U)tr((UT)¥)), k =1,2...

RMT statistics (tr(U*)tr((UT)¥)) — Haar average value

For k = 2 (two design) slowest terms are like U,,U%,U., Uz, (no sum)
Study Ula){a|UT where |a) = |0000)

e |0000)(0000| = (3)"(I+ Z)"

Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 16 / 17



Markov chain, contd.

For spectral statistics study (tr(U)tr((UT)¥)), k =1,2...

RMT statistics (tr(U*)tr((UT)¥)) — Haar average value

For k = 2 (two design) slowest terms are like U,,U%,U., Uz, (no sum)
Study Ula){a|UT where |a) = |0000)

10000)(0000| = (3)"(I+ Z)"

21727117Z71... Easy to equilibrate
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Markov chain, contd.

For spectral statistics study (tr(U)tr((UT)¥)), k =1,2...

RMT statistics (tr(U*)tr((UT)¥)) — Haar average value

For k = 2 (two design) slowest terms are like U,,U%,U., Uz, (no sum)
Study Ula){a|UT where |a) = |0000)

10000)(0000| = (3)"(I+ Z)"

21727117Z71... Easy to equilibrate

Equilibration time ~ log n, shorter than scrambling !
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Markov chain, contd.

For spectral statistics study (tr(U)tr((UT)¥)), k =1,2...

RMT statistics (tr(U*)tr((UT)¥)) — Haar average value

For k = 2 (two design) slowest terms are like U,,U%,U., Uz, (no sum)
Study Ula){a|UT where |a) = |0000)

10000)(0000| = (3)"(I+ Z)"

21727117Z71... Easy to equilibrate

Equilibration time ~ log n, shorter than scrambling !

Correlation functions of very complicated operators [Roberts-Yoshida;
Cotler-Hunter-Jones-Liu-Yoshida]
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Evaporation and RMT

@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP
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Evaporation and RMT

@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP

@ For g-local systems like SYK nP — log n [Susskind]
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@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP

@ For g-local systems like SYK nP — log n [Susskind]

@ A plausible guess
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Evaporation and RMT

@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP

@ For g-local systems like SYK nP — log n [Susskind]

@ A plausible guess

@ Important because the black hole evaporation time is ~ S ~ n.
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Evaporation and RMT

@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP

For g-local systems like SYK nP — log n [Susskind]

A plausible guess

Important because the black hole evaporation time is ~ S ~ n.

So these phenomena would appear in small black holes as well,
although as an exponentially subleading effect
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Evaporation and RMT

@ For geometrically local Hamiltonian systems (in contrast to Brownian
circuits) it looks like some kind of propagation (diffusion?) is
occurring: t ~ nP

For g-local systems like SYK nP — log n [Susskind]

A plausible guess

Important because the black hole evaporation time is ~ S ~ n.

So these phenomena would appear in small black holes as well,
although as an exponentially subleading effect

We need to know what they mean in quantum gravity!
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