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SYK
model

Emergent	reparametrization symmetry
which	is	spontaneously	and	explicitly	broken

S = �C

Z
du{f(u), u} Schwarzian action

Motion	of	the	boundary	in	AdS2

Dominate	many	
aspects	of	
the	IR	dynamics

- Low	temperature	entropy
- Gravitational	backreaction
- Chaos	exponent
- Wormhole	traversability
(location	of	horizon)

Nearly	AdS2	
gravity



Very	simple	gravitational	dynamics
in	NAdS2

The	Schwarzian àmotion	of	the	boundary



Nearly	AdS2	Dynamics	

Bulk	fields	propagate	
on	a	rigid	AdS2	space.	

Boundary	moves	in	a	rigid	AdS2 space,	
following	 local	dynamical	laws.
(like	a	massive	particle		in	an	electric	field)		

UV	particle		or	UV	brane	as	in	
a	Randall-Sundrum model

Encodes	gravitational	effects

AdS2



AdS2

Constraints
Linked	by	the	constraints	that	
the	total	SL(2)	charges	are	zero.

Qa
L +Qa

matter +Qa
R = 0 a = 1, 2, 3



Example



The	horizon	moves	out	when	you	drop	in	a	particle



The	horizon	moves	out	when	you	drop	in	a	particle

Emission	of	a	bulk	excitation

The	boundary	trajectory	gets	
a	“kick”	determined	by	local	
energy	momentum	conservation	in
the	ambient	AdS2 space.	
(SL(2)	charge	conservation).	

New	position	of	the	horizon

Old	position	of	the	horizon



Rindler AdS2	coordinates,	
wormhole

Euclidean	black	hole

Euclidean	&	Lorentzian	pictures

H2

|TFDi =
X

n

e��En/2|ĒniL ⇥ |EniR



Interaction	between	the	two	boundaries

eig�L(tL)�R(tR)

Insert	in	the	evolution	operator	

eigh�L(tL)�R(tR)i

approximate

Impulsive	force	between	the	two
boundaries.	
- Can	be	attractive	for	the	
right	sign	of	g	.	
- Kicks	the	trajectories	inwards.

Gao	Jafferis Wall



Interaction	makes	the	wormhole	traversable

New	position	of	the	horizon
We	can	now	send	a	signal	
from	the	left	to	the	right.	

The	wormhole	has	been	
rendered	traversable.	

No	contradiction	because
we	have	a	non-local	interaction
between	the	two	boundaries.



What	it	is	NOT!



The	cat	feels	fine	going	through	the	wormhole

No	animals	were	harmed	during	this	experiment



Simpler	protocol



Doing	a	measurement	à Teleportation

Act	on	the	right	with	

From	the	point	of	view	of	the
right,	we	get	the	same,
whether	we	measure	or	not.		

�L �! sL

sL
eigsL�R(tR)

measure

Send	classical	information

Quantum	state	goes	
through	the	wormhole



Minor	differences	with	usual	teleportation	discussion:

- We	do	not	need	to	measure	the	left	state	completely.	

- Encoding	and	decoding	are	done	via	standard	Hamiltonian	evolution.	

As	usual:	
There	is	a	bound	on	the	information	we	can	send:

Nclassical bits � 2Nquits



Origin	of	the	bound	in	gravity	

The	insertion	of	the	message
also	gives	a	small	kick	to	the	
trajectory.	

Moves	the	insertion	points
of	the	non-local	operator	
away	from	each	other

h�L(tL)�R(tR)i becomes
smaller

Attractive	force	weakens	à
no	opening	of	the	wormhole.	

Back	reaction	due	to	insertion	of
the	message



Precise	formula	for	the	2pt	function

Amount	of	information	we	can	send	is	roughly			g	 hV i = 1 , h�2
L(0)i ⇠ 1

- Fourier	transform	the	signals	we	want	to	send.
- Correlator	of	V	is	evaluated	on	a	background	with	momentum	p	à p	dependent	SL(2)	
transformation	on	V	.	

- Effect	is	amplified	by	boosts,	or	chaos	
- Get	an	extra	phase	from	 hV i

C = he�igV �R(t)e
igV �L(�t)i , V = �L(0)�R(0)

Includes	gravitational	back	reaction

C ⇠
Z

dp(p)2��1eipe�ige
i g

(1+pGNet)2�

GNet ⇠ 1

N
et



Simplified			limit		

C ⇠
Z

dp(p)2��1eipe�ige
i g

(1+GNpet)2�

C ⇠
Z

dp(p)2��1eipe�i(g2�GNet)p

Just	a	simple	``translation’’	 (one	of	the	operations	of	SL(2)).	

The	signal	does	not	``feel’’	anything	!		Composite	objects	are	simply	translated	whole	!

Shock	waves	in	two	dimensions	are	not	felt.	(In	higher	dimensions	there	are	tidal	forces).	

C = he�igV �R(t)e
igV �L(�t)i , V = �L(0)�R(0)



Quantum	mechanical	model



H =
X

i1,··· ,i4

Ji1i2i3i4 i1 i2 i3 i4

Same	as	the	action	for	the
UV	boundary
in	the	gravity	description.	

Low	energies.	

S[f ] / �N

J

Z
{f, ⌧}d⌧

The	SYK	model
Sachdev Ye	Kitaev
Georges,	Parcollet



H =
X

i1,··· ,i4

Ji1i2i3i4 i1 i2 i3 i4

Same	as	the	action	for	the
UV	boundary
in	the	gravity	description.	

Low	energies.	

S[f ] / �N

J

Z
{f, ⌧}d⌧

G(t, t0) = h i i(t0)i ! 1

|t� t0|2�

G(t, t0)f =


f 0(t)f 0(t0)

(f(t)� f(t0))2

��

Dependence	of	
Correlators	on	the	
boundary	position

Morally	like	the	AdS2	metric



• We	got	the	same	action	for	the	boundary	
degree	of	freedom	(Schwarzian).

• All	that	we	said	about	the	motion	of	the	UV	
boundary		NAdS2 bulk,	also	holds	for	SYK.	

• Traversability in	SYK	!
• Same	formula	!



Convenient	operators

S1 = i 1 2 , S2 = i 3 4 , · · ·

S2
k = 1

V =
X

SkL(0)SkR(0)

“spin	operators”,		+1,	-1	eigenvalues		

Interaction	between	the	
boundaries

Define	the	``spin”	operators:



Pure	states	in	SYK



Measure	all	spins																									à get	the	joint	eigenstate |BsiSk ! sk

``Diagonal’’		correlators	on	this	state

Same	as	in	the	thermal	state

h |i 1(t) 2(t)| i = h |S1(t)| i = s1G�(t)
2 + o(1/N)

Off	diagonal	correlators:

| i = e�H�/2|Bsi Project	on	to	lower	energy	states

Given	in	terms	of	thermal	two	point	function

h | i(t) i(t0)| i = Tr[e��H
 

i(t) i(t0)] + o(1/N q�1)

This	set	generates	the	full Hilbert	space



Euclidean	configuration

|Bsi

hBs|

Shock	wave	
(end	of	space)

| i = e�H�/2|Bsi



Euclidean	configuration

|Bsi

hBs|

Shock	wave	
(end	of	space)

| i = e�H�/2|Bsi

Region	outside	the	horizon

Complete	
measurement



Adding	bulk	particles

|Bsi

hBs|

Behind	horizon

Euclidean	preparation Lorentzian	state



How	can	we	see	behind	the	horizon	?

Lorentzian	state

HSYK + g
X

k

skSk

HSYK

sk

See	the	whole	region



he�ig
R
dtiskSki ⇠ e�i

R
dtghBs|iskSk|Bsi ! eiSextra

(f)

S
extra

[f ] = g

Z
dt(f 0)2�

S = S
Schwarzian

+ S
extra

Gives	this	modified	evolution.	

Extra	term	à new	force	pushing	the	boundary	particle	inwards



Relation	to	the	black	hole	cloning	
paradox



Relation	to	the	black	hole	cloning	
paradox

• Alice	has	an	old	black	hole.		
• Bob	has	a	quantum	computer	entangled	with	
Alice’s	black	hole.		

• Alice	sends	in	a	M-qubit	message.	And	waits	
for	it	to	scramble	in	

• Bob	only	needs	a	few	more	than	M	qubits	(2M	
bits)	of	Hawking	radiation	from	Alice’s	hole	to	
decode	the	message.	

Susskind-Thorlacius
Hayden-Preskill



Bob	could	see	two	copies:	
- Decoded	one
- One	Alice	sent

Cloning	puzzle

Figure	from	the	paper	of	Preskill and	Hayden.	



Analysis



Bob’s	computer		

Maximally	entangled

Alice’s	black	hole



Bob		à produces	a	second	black	hole,	
maximally	entangled	with	the	first.	

Maximally	entangled

(This	is	hard	to	do
Harlow	Hayden	)

Alice’s	black	hole



Bob’s	black	hole

Maximally	entangled

Alice’s	black	hole



Say	they	are	nearly	AdS2	 black	holes…



Alice’s	message

Bob’s	black	hole Alice’s	black	hole



Alice’s	message

Bob	gets	some	radiation	and	feeds	it	to	his	computer	(black	hole).	

Bob	getting	radiation

Feeding
his	computer	=	
black	hole.	

Trajectories	of	the	boundaries
after	Bob	catches	the	Hawking	mode

Bob’s	black	hole

Alice’s	black	hole

Bob	now	gets	the	
message	at	P

P

Only	one	copy	of	the	message	in	the	bulk	!



Alice’s	message

The	message	switched	sides	!

P

Backward	
extrapolation
Of	the	state	
of	Alice’s	boundary
after		Bob’s
extraction,	using
the	unperturbed	
Hamiltonian.	

New	horizon

Bob’s	black	hole
Alice’s	black	hole



Alice’s	message

More	like	the	HP	figure…

PBob	will	not	get	it	here.

Bob	gets	the	empty
machinery		

Bob’s	black	hole
Alice’s	black	hole



Alice’s	message

More	like	the	HP	figure…

PBob	extracts	the	
machinery

Bob’s	black	hole
Alice’s	black	hole



Alice’s	message

Bob

P

Alice’s	black	hole



Alice’s	message

Bob	evolves	backwards	in	time

Bob’s	black	hole Alice’s	black	hole

Bob	gets	the
message	



• The	message	is	never	duplicated	in	the	bulk	
picture.	

• The	process	of	extracting	the	message	puts	it	out	
of	reach	from	Alice.	

• No	need	to	invoke	unkown new	transplanckian
physics	to	solve	the	no-cloning	problem.	

• All	understandable	from	standard	rules	of	gravity	
on	the	wormhole	geometry.	

• Assumes	ER=EPR.	



Conclusions

• Simple	picture	for	the	gravitational	dynamics	of	
nearly-AdS2.		

• Traversability has	a	simple	origin.
• Nothing	special	is	felt	by	the	traveler.	
• Traversability and	teleportation.	
• Traversability in	SYK	has	the	same	description.		
• Consistent	with	information	transfer	bounds.	
• We	constructed	a	full	set	of	pure	states	which	
appear	to	have	smooth	horizons.		And	generate	
the	Hilbert	space.	

• We	showed	how	to	look	at	the	whole	region	
behind	these	horizons.	







Extra	Slides



Nearly	AdS2
Keep	the	leading	effects	that	perturb	away	from	
AdS2	 Jackiw Teitelboim

Almheiri Polchinski

Ground	state	entropy

Comes		from	the	area	of	the	additional	dimensions,	if	we	are	getting	this	from	4	d	
gravity	for	a	near	extremal	black	hole.		General	action	for	any	situation	with	an
AdS2 region.	

�0

Z
d

2
x

p
gR+

Z
d

2
x

p
g�(R+ 2)



Equation	of	motion	for	 à metric	is	AdS2			.		Rigid	geometry	!

Only	dynamical	information	à location	of	the	boundary.	

�

�b

Z

Bdy
K Local	action	on	the	boundary

Z

Bulk

p
g�(R+ 2) + �b

Z

Bdy
K + Smatter[g,�]





One	solution

ADM	mass	à size

Rest	of	solutions	
Related	by	AdS2
isometries



• General	relativity	has	wormhole-like	solutions.	
• Simplest	version	is	the	maximally	extended	
Schwarzschild	solution.	

Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.
The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

not in causal contact and information cannot be transmitted across the bridge. This can

easily seen from the Penrose diagram, and is consistent with the fact that entanglement

does not imply non-local signal propagation.

(a)
(b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck
connecting two asymptotically flat regions. (b) Here we have two distant entangled black
holes in the same space. The horizons are identified as indicated. This is not an exact
solution of the equations but an approximate solution where we can ignore the small force
between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the

eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

can consider two very distant black holes in the same space. If the black holes were not

entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

created at t = 0 in the entangled state (2.1), then the bridge between them represents the

entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7

L R



Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.
The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

not in causal contact and information cannot be transmitted across the bridge. This can

easily seen from the Penrose diagram, and is consistent with the fact that entanglement

does not imply non-local signal propagation.

(a)
(b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck
connecting two asymptotically flat regions. (b) Here we have two distant entangled black
holes in the same space. The horizons are identified as indicated. This is not an exact
solution of the equations but an approximate solution where we can ignore the small force
between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the

eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

can consider two very distant black holes in the same space. If the black holes were not

entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

created at t = 0 in the entangled state (2.1), then the bridge between them represents the

entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7

Right	exterior
Left	exterior

singularity

These	are	not	traversable.	Even	quantum	mechanically	à Integrated	null	energy	
condition

Z
dx

+
T++ � 0

Observer	cannot
get	out



• This	is	good,	otherwise	general	relativity	would	
lead	to	violations	of	the	principle	on	which	it	is	
based:	a	maximum	propagation	speed	for	signals.	

• We	will	talk	about	some	special	situations	where	
it	makes	sense	to	talk	about	traversable	
wormholes.	These	do	not	violate	any	of	the	
above	principles.	But	they	tell	us	interesting	
things	about	black	holes.	



Kruskal-Schwarzschild-AdS black	hole

Entangled state in 
two non-interacting 
quantum systems. 

Israel
JM

two interior regions. It is important not to confuse the future interior with the left exterior.

Sometimes the left exterior is referred colloquially as the “interior” of the right black hole,

but we think it is important not to do that. Note that no signal from the future interior

can travel to either of the two exteriors.

Interior
Future

Past 
Interior

L R

Left

Exterior
Right

Exterior

Figure 1: Penrose diagram of the eternal black hole in AdS. 1 and 2, or Left and Right,
denote the two boundaries and the two CFT’s that the system is dual to.

The system is described by two identical uncoupled CFTs defined on disconnected

boundary spheres. We’ll call them the Left and Right sectors. The energy levels of the

QFT’s En are discrete. The corresponding eigenstates are denoted |n⇤L, |n⇤R. To simplify

the notation the tensor product state |n⇤L ⇥ |m⇤R will be called |n, m⇤.
The eternal black hole is described by the entangled state,

|�⇤ =
�

n

e��En/2|n, n⇤ (2.1)

where � is the inverse temperature of the black hole. The density matrix of each side is a

pure thermal density matrix.

This state can be interpreted in two ways. The first is that it represents the thermofield

description of a single black hole in thermal equilibrium [6]. In this context the evolution of

the state is usually defined by a fictitious thermofield Hamiltonian which is the di⇥erence

of Hamiltonians of the two CFTs.

Htf = HR �HL. (2.2)

The thermofield hamiltonian (2.2) generates boosts which are translations of the usual

hyperbolic angle ⇥. One can think of the boost as propagating upward on the right side

4

ER

| i =
X

n

e��En/2|ĒniL ⇥ |EniR

Geometric connection
from entanglement



Traversable	wormholes
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4

ER

Gao,	Jafferis,	Wall

Couple	the	two	field	theories.	
Direct	interaction	between	fields	near
each	boundary.	

Can	create	negative	energy	in	the	interior	à

Gravitational	scattering	pushes	the	particle
through.	

Negative	energy

Sint = g�L(0)�R(0)



• We	will	study	this	phenomenon	in	more	detail	
for	the	particular	case	of	nearly-AdS2 ,	where	
the	effect	is	particularly	simple

• We	will	show	that	the	SYK	quantum	
mechanical	theory	displays	the	same	
phenomenon.	

• We	will	show	that	we	can	use	this	to	analyze	
some	aspects	about	cloning	of	quantum	
information	in	black	holes.	



In	Classical	mechanics	?

• Two	classical	systems	in	the	analog	of	the	TFD	(same	
positions	and	opposite	momenta)

• Two	cups	of	water	(classical)	in	the	TFD.		

• Tap	on	the	left	one	at	some	early	time,	-t	.
• At	t=0		we	let	them	touch	each	other	and	transfer	vibrations	
• At	time	t	on	the	right	we	feel	the	bump	on	the	right	cup.	



Similar	effect	in	classical	mechanics

• Two	classical	systems	in	the	analog	of	the	TFD	
(same	positions	and	opposite	momenta)

• At	some	early	time,	-t,		we	perturb	x2L on	the	left	side.	
• At	t=0		we	couple	x1Lx1R (is	another	coordinate).	

• At	time	t	on	the	right	we	measure	p2R	and	find	it	
displaced	in	a	manner	correlated	with	the	initial	
displacement	of	x2L	

Sint = g(x1L(0)� x1R(0))
2



Change	in	x1L	
From	changing	x2L

Interaction	à kick	to	p1R	.	

@x1L(0)

@x2L(�t)

@p2R(t)

@p1R(0)
⇠ {x1L(0)p1L(�t)}{p2R(t)x1R(0)} ⇠ (· · · )2

Change	in	p2R due	to	change	in	p1R	

Are	equal	

Change	in		p2R	 is	correlated	with	change	of	x2L

Sint = g(x1L(0)� x1R(0))
2

�p2R(t) / e

�Lt
�x2L(�t)

Chaos	fueled	growth



Dynamics

The	boundary	trajectory	gets	
a	“kick”	determined	by	local	
energy	momentum	conservation.	

New	position	of	the	horizon

Old	position	of	the	horizon

Absoption of	a	bulk	excitation



The	SYK	model
Sachdev Ye	Kitaev
Georges,	Parcollet

N	Majorana fermions	 { i, j} = �ij

Random	couplings,	gaussian distribution.

To	leading	order	à treat	Jijkl as	an	additional	field	

J	=	dimensionful coupling.		We	will	be	interested	in	the	strong	coupling	region

hJ2
i1i2i3i4i = J2/N3

H =
X

i1,··· ,i4

Ji1i2i3i4 i1 i2 i3 i4

1 ⌧ �J, ⌧J ⌧ N



G(⌧, ⌧ 0) =
1

N

X

i

h i(⌧) i(⌧
0)i

S = Nf [G(⌧, ⌧ 0)]

Gf = (f 0(⌧)f 0(⌧ 0))�G(f(⌧), f(⌧ 0))

Define	new	variable

Integrate	out	fermions	and	get	an	action	in	terms	of	a	new	field	G

Is	analogous	to	the	full	bulk	gravity	+	matter		action.	

There	is	a	particular	G	that	minimizes	the	action.	It	is	SL(2)	invariant.			
(analogous	to	the	vacuum	AdS geometry)

Set	of	low	action	fluctuations	of	this	solution.	Parametrized	by	a	function	of	a	single	variable.
Reparametrization mode.	

Low	energy	action:

S =
N

J

Z
{f, ⌧}d⌧

Same	as	the	action	for	the	UV	boundary
in	the	gravity	description.	



H =
X

i1,··· ,i4

Ji1i2i3i4 i1 i2 i3 i4

Same	as	the	action	for	the
UV	boundary
in	the	gravity	description.	

Low	energies.	

Ĝ(t, t0) =
1

N

X

i

 i(t) i(t0)

Z
DĜe�S[Ĝ] !

Z
Dfe�S[f ]

S[f ] / �N

J

Z
{f, ⌧}d⌧

Z
DĜĜ(t, t0)e�S[Ĝ] !

Z
Dfe�S[f ](f 0(t)f 0(t0))�Gc(f(t), f(t

0))

hĜ(t, t0)i = Gc(t, t
0) / 1

|t� t0|2�



Same	precise	formula	for	the	2pt	
function

Amount	of	information	we	can	send	is	roughly			g	

C = he�igV �R(t)e
igV �L(�t)i , V = g�L(0)�R(0)

C = he�igV  j R(t)e
igV  j L(�t)i , V = g

1

K

KX

j=1

 L(0) R(0)

C ⇠
Z

dp(p)2��1eipe�ige
i g

(1+pet)2�



Alice’s	message

Bob

Alice’s	black
hole	

Before	transfer:	Alice	has	the	message	but	Bob	does	not
After	transfer:	Bob	has	it	but	Alice	does	not	!

Bob	getting	radiation

P

Backward	
extrapolation
Of	the	state	
of	Alice’s	boundary
after		Bob’s
extraction,	using
the	unperturbed	
Hamiltonian.	


