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Plan of this talk

1. The SYK model and its large N solution
2. Connection to AdS; and assorted comments
3. Generalizations of the SYK model



Introduction to the SYK model
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The Sachdev-Ye-Kitaev model

Majorana fermions in QM are matrices v, satisfying
{¢aa¢b} = 6aba a7b: ]-a"'aN
A general Hamiltonian would be

ngneral = imabwaq/}b +.jabcdwawbwcwd + -

The SYK Hamiltonian is

) ) J?
Hsyk, = jabed Ya¥p¥ctd (i2ped) = el

» Dimensionless coupling is 5J. Interesting behavior at 5J > 1.

» Can also consider a version with fermions interacting in groups
of q, instead of four. g — oo and g — 2 are simpler limits.

» System “self-averages’ provided g > 2.
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Feynman diagrams

Typical diagram for G(7) = (¢a(7)14(0)) at large N:

(60)

/@\
N o

Self-consistency equation for sum of diagrams:
Cw)= ——c— Y (1) = J2G(1)3.

[Kitaev]



IR equations

In the IR limit 7J > 1, drop the “—iw" to simplify

G(w) = — _1 T~ —zl(w)’ Y () = S2G(r)7 L

Exact solution to IR equations on the line:

sgn(7) 1
e\ A==
G(7) x A .

i

and on the circle (finite temp):

G(1) x sirjgz((t;;)'

[Sachdev,Ye][Parcollet, Georges]

5L(2, R) covariant under x = tan 7 — axth

cx+d-”




Plots of G(7) = (¢(7)1(0))4




The decay of the two point function

In real time, we have

1

s WA Tt
sinh 5

G(t) x

which gives exponential decay. What is happening is ¢ is leaking
into the space of more complicated operators, 1) — i)i)...

e
N



Systematic approach to SYK at large N



The large N action
The path integral for fixed disorder is

Z(ﬂ) _ /Dwe_foﬁ W(TW(T)*—J’abcdlﬂa(TWb(T)wc(T)?Pd(T)_

Averaging over j,pcq With Gaussian measure gives nonlocal-in-time
theory. Can introduce new fields G, ¥ to simplify. ¥ is a Lagrange
multiplier that sets G(71,72) = 1 >, 1a(71)0a(72).
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The large N action
The path integral for fixed disorder is

Z(ﬂ) _ /Dwe_foﬁ W(TW(T)*‘J’abcdlﬂa(T)¢b(7)wc(7)¢d(7)_

Averaging over j,pcq With Gaussian measure gives nonlocal-in-time
theory. Can introduce new fields G, ¥ to simplify. ¥ is a Lagrange
multiplier that sets G(71,72) = 4 >, ta(71)0a(72). After
integrating out the fermions,

(3), = [ DG DEENIET)

1(G,X) = —% log det(0r — X)
J2

1 (B
+/ dTldTg[Z(Tl,Tz)G(Tl,Tz)—fG(Tl,T2)q
2 Jo q

Saddle point egs: G = [0 — Z]_l, Y (71,72) = J2G(11,m2)97 L.

[Parcollet,Georges,Sachdev][Kitaev]



The large N action: entropy

To get large N thermodynamics, plug G, X, back into the action,
Z(,B) ~ e NI(G X))

entropy/N
Qo
[‘\‘)

0 0.5 1 1.5
temperature

p(E) x &

[Parcollet,Georges,Sachdev].

Procedurally similar to how we compute entropy using gravity.



The large N action: emergent conformal symmetry
In the IR limit, we drop the J; term in the effective action, so it is
1 1 [P J?
| = —3logdet(X) + 5 | dnidr[T(r1,m2)G(r1,72) - 2 6(n.m)].
0

This is reparametrization invariant, under [Kitaev]

G(r1,m2) = (¢/(1)¢(12)) "9 G (¢(7). $(72))
(r1,72) = (¢'(1)¢ ()T E(d(7), d(72)).

So in the strict IR limit, the theory has diff (S!) symmetry.
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In the IR limit, we drop the J; term in the effective action, so it is
1 1 [P J?
| = —3logdet(X) + 5 | dnidr[T(r1,m2)G(r1,72) - 2 6(n.m)].
0

This is reparametrization invariant, under [Kitaev]

G(r1,72) = (¢ (1) (=) G (¢(m1), $(72))
S (r1,72) = (¢/(r) ¢ (2)) VL (6(m1), B(72)).
So in the strict IR limit, the theory has diff (S') symmetry. But

our solution (sin %T)_ZA only has SL(2, R). Expanding about this
saddle, we expect Nambu-Goldstone bosons living in the space

full group _ diff(S%)
preserved subgroup  SL(2,R)

space of NG bosons =

Integration over these zero modes leads to divergences.



The large N action: integration space
Beyond the strict IR limit, the zero modes get lifted slightly

Z action along here

A small ~ N/BJ

true
saddle pt

action elsewhere
is large ~ N

> G
The soft directions are parametrized by ¢ € diff(S')/SL(2, R)
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The large N action: integration space
Beyond the strict IR limit, the zero modes get lifted slightly

Z action along here

A small ~ N/BJ

true
saddle pt

action elsewhere
is large ~ N

> G
The soft directions are parametrized by ¢ € diff(S')/SL(2, R)

Gy = (¢/(11)d(12)) ™ Gu(¥(71), 6(72)).

SL(2,R) acts as x = tan % — f;iz EFT suggests the action
[Kitaev][Maldacena, DS]:

N B AN "2
Isen = —TO‘ drSch(tang/2,7),  Sch(x,7) = <X > Lx
0

x! 2 X/2 .




The large N action: mini summary

1. Can rewrite SYK in terms of bilocal fields G, %
(Z)) = / DG Dy e N/(C:X)

2. In IR, I(G, X) has spontaneously broken conformal symmetry.
Dominant fluctuations are reparametrizations of the saddle

Gs = (¢ ()¢ (7)) G (6(71), 6(72)).

3. Leading action for ¢ is the “Schwarzian theory”

Noo [P No [P (¢
loop = ——— h 2.7) = — RN

breaks the physical conformal symmetry.



Four comments on the relation to AdS, and
other things



(1) Nearly AdS, gravity

A simple theory of 2d gravity described by g, :
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(1) Nearly AdS, gravity

A simple theory of gravity in AdS, described by (g, f):
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[Teitelboim][Jackiw][Almheiri,Polchinski]
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(1) Nearly AdS, gravity

A simple theory of gravity in AdS, described by (g, f):

1
/JT:—So—G|:bIk\/§(R+2)f—{—2/ fK:|

bdy
[Teitelboim][Jackiw][Almheiri,Polchinski]

Reduces to the Schwarzian theory!

Step 1: integral over f implies R +2 = 0. Step 2: integral over
metrics then reduces to cut-outs from hyperbolic disk.



(1) Nearly AdS, gravity




(1) Nearly AdS, gravity

total length = 5/6

B
Iy =—-S0 — 2/ fFK — -5 - f,/ d7 Sch(tan ¢/2, 1)
bdy G Jo

2

G

[Maldacena, DS, Z. Yang] See also [Jensen][Engelsoy, Mertens, Verlinde]



(1) Nearly AdS, gravity

Euclidean Lorentzian



(1) Nearly AdS, gravity

Euclidean Lorentzian

SYK is a “"QM completion” of the JT black hole.



(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.
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ALt
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SYK saturates the bound A\; < 3

Easy to see in variables of Schwarzian theory. Expand
¢(1) = 7 + €(7). Then have solutions
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(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.

1
({a(0) w(1)}) o e a
b
SYK saturates the bound A\; < %r
Easy to see in variables of Schwarzian theory. Expand
¢(1) = 7 + €(7). Then have solutions
i _2mip 2my
e(r)y=1,7es ", e 7 = e(t) xes .

Linearized SL(2, R) gauge transformations are

. 2 -
Se(r)=1,e5' e 5T,



(2) Chaos and the Schwarzian theory



(3) Very low temperatures

BJ < N BJ ~N BJ > N

V V EI,-/& f
¢ : tod

For BJ > N, large fluctuations in ¢.




(3) Very low temperatures

BJ < N BJ ~N BJ > N

For 8J > N, large fluctuations in ¢. However, Zs., turns out to
be one-loop exact,

_ d“[(b] Na 18 grSch(tan ¢/2,7) _ # 2n’Na
ZSCh(ﬂ) - SL(Q, R)e S0 - (6_/)3/26 7

[CGHPSSSST][DS,Witten][Bagrets,Altland, Kamenev][Z. Yang][Mertens, Turiaci, Verlinde]
Gives us control of low-energy density of states:

Zsen(B) = /OO dEp(E)e PE,  p(E) o sinh\/C(E — Ey).

Eo



(4) Massive modes

Other directions in G, X space correspond to roughly
integer-spaced spectrum of massive modes propagating in AdS».

> action along here

A small ~ N/B)

action elsewhere
is large ~ N

> G

Interactions between modes will be important for sorting out bulk
theory! Requires higher point functions of fermions [Gross,Rosenhaus].
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Generalizations of SYK

» global symmetry (e.g. complex fermions)
[Sachdev][Davison,Fu,Georges,Gu,Jensen,Sachdev]

» more flavors [Gross Rosenhaus]

» additional quadratic fermions [Banerjee,Altman]
[Chen,Fan,Chen,Zhai,Zhang]

> lattices of SYK [Gu,Qi,DS][Song,C.M.Jian,Balents][S.K.Jian,Yao]
> supersymmetry [Fu, Gaiotto, Maldacena, Sachdev]

» models without disorder [Witten][Klebanov, Tarnopolsky][Gurau][Peng,
Spradlin,Volovich] [Ferrari][Peng]

» higher d field theory models [Turiaci,
Verlinde][Berkooz,Narayan,Rozali,Simon][Murugan,DS, Witten]



Supersymmetry

[Fu, Gaiotto, Maldacena, Sachdev]
N =1 version, using Majorana fermions
2 .
H= Q7 Q = iCapcVathpipe

N = 2 version, using complex fermions

H = {Q,b}, Q = iCapcPathpipe, 6 = iC:bc@aEb@c

Low-energy effective theory is N' =1 or N/ = 2 super-Schwarzian.



Disorder j,peq is unfamiliar for holography

» No global symmetry so no singlet condition to impose.

» What is the bulk interpretation of the different j,pcq?



Models without disorder!

[Witten][Gurau][Klebanov, Tarnopolsky]

One version: organize N fermions into a tensor X s5c Where
a=1,...,nand N = n3. The Hamiltonian is

H = gXalblclXalb262Xazblc2Xagb2C1

O\

| I

|
I

» Same as SYK at order one and order 1/N.

» O(n)3 symmetry. Can gauge, consider only singlet operators.
(Their number grows very rapidly with energy.)



Higher dimensions
How to generalize to continuum models in higher d?

1. Try with fermions: [Turiaci, Verlinde][Berkooz,Narayan,Rozali,Simon]
= [ & (0200 + 5,000 + Japeatatlcl
2. Try with bosons: [Klebanov, Tarnopolsky][Murugan,DS, Witten]
= [ &2 [06,36,+ Jacatutnocs]

3. Try with superfields, (1,1) supersymmetry [Murugan,DS,Witten]
- / APxc20 [Dy®2 0505 + Capc®sP50]
D /d2X Cabc¢a¢b¢_c + CabcCab’c’¢b¢c¢b’¢c’

Twist of spin 4: E—J =~ 0.29. Chaos exp.: A; =~ 0.58 x %r



A puzzle!

What are the corrections to a large N theory that tell us the
spectrum is discrete at finite N7

» For large ||, good approximation to Z just from Schwarzian:

Zsen( ) = 751"

» In QM Z(Bo + it) should not vanish for large t. What fixes
this in the full G, X theory?!

1See talk by Shenker for more precise statement with two replicas.



Summary

» SYK is a solvable but strongly interacting model.
» Low energy theory is Schwarzian = JT gravity in AdS,.

» Many interesting generalizations, puzzles remain!



Higher dimensions

These flow to a CFT at large N. Sketch of four point function:
_ 1 _
(4pt) () = Z/ dE C(E, J)Ge J(x; X)-
7 J1+iR

C(E, J) = bunch of gamma functions, Gg ; = conformal block.

» Can deform E contour to get OPE expansion, defined by
poles in C(E, J). Twist of lightest spin 4 op. is E—J =~ 0.29.
> Can represent J sum as integral and deform J contour to get
Regge/Chaos limit, exponent is \; ~ 0.58 X %”
Theory has O(1) interaction strength at large N. Not enough for a
local gravity dual.



