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GRADIENT BASED OPTIMIZATION

Goal:
Minimize : F(x)

@ Deterministic optimization, we get access to VF(x)

@ Learning or Stochastic optimization: F(x) = E,.p[f(x;z)]

@ We get access to stochastic gradients of form Vf(x;z;) where z; ~ D

D[ V(X 21)] = VE(x)




SCORE FUNCTION BASED SAMPLING

Goal:

Sample from distribution with density : p(x) = e F* () Zp

@ We get access to “score function” (gradient): VF(x)
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GRADIENT BASED OPTIMIZATION VS SAMPLING

Optimization Sampling
Minimize F(x) Sample from p(x) o exp(—FF(x))
Gradient Descent (GD): Langevin Monte Carlo Sampling:

X¢ = X¢—1 — NV (x¢-1) X  Xi-1 — IV F(x-1) + /215 e,

Stochastic GD (learning):
Xt < Xp—1 — NV f(Xe—1, 2¢)

Gradient Langevin Dynamics (GLD)

Xt < X1 —NVF(xp_1) + \/2776—16,5

Stochastic GLD (learning)

Xt < X¢—1 — UVF(Xt—l) -+ \/27’]6_1675
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Is there a unifying analysis technique?



OUTLINE

@ Reviewing the continuous time (idealized) processes



GRADIENT FLOW

Consider the continuous time (idealized) Gradient Descent process:

dx(t) = —VE(x(t))dt

@ Think of x(0) = xq as the starting point
@ w.l.o.g. assume F is minimized at 0 and that F(0) = 0

@ In general if we SGD or GD with some step size scheme could
work, then we would expect this idealized process to work

@ Eg. Given € > 0, and any starting point xg, there exists t < oo such
that F(x(t)) < e

@ Define t.(xp) to be the smallest such time.



LLANGEVIN DIFFUSION PROCESS

Consider the continuous time (idealized) Gradient Langevin
Dynamics process:

dx(t) = =VF(x(t))dt + \/2p~1dB(t)

where B(t) is the standard brownian motion in R?

@ In general if we assume SGLD or GLD would works, would
expect this idealized process to work

@ Define Hitting time Tt (xg) = inf{t: F(x(t)) < €}.

@ We would expect hitting time to be well behaved



(GENERATOR FOR A MARKOV PROCESS

The (infinitesimal) generator of a Markov process x(t) is the operator
L defined on all (sufficiently differentiable) functions f by

Lf(x) ~ Iim 4‘[f(x(t))] _f(x)

t—0 {

o Gradient Flow: L% f(x) = — (VF(x), Vf(x))

o Langevin Diffussion: £"Pf(x) = — (VF(x), Vf(x)) + B Af (x)
where A is the Laplacian operator



OUTLINE

@ Lyapunov Functions



LYAPUNOV POTENTIAL

A non-negative function @ is a Lyapunov Potential on open set A if
® >1 and on set A we have:

—LO >A\OD

o For optimization we will consider the set A = {x ¢ R? : F(x) > €}



OUTLINE

© Analysis of Optimization Using Lyapunov Function



WHY LYAPUNOV FUNCTION HELPS: GD

Say the Lyapunov potential was H-smooth and function F is L
Lipschitz, then

D(x¢) = O(x¢-1 —MVF(X¢-1))

2
<O (1)~ (VE(xi-1), VO () + o [9F (1)

HL22
. HL™n

<O(xi—1) —M(VF(xt=1), VO (x:-1)) 5

HLZnZ

< O(xp-1) —MAD(xp-1) +

Rearranging and taking an average:

HL?n
2T

1 & @
1< =) O(xpq) < (x0) -
I'iH nA

Setting 1, T cannot be too large before we get contradiction.



Lyapunov Function for GF Exists + is smooth

Variance of gradient
estimates are bounded

-+

Gradient Descent Works Stochastic Gradient Descent

Learns

Smoothness of Potential can be replaced by more
general Self-boundedness of Gradient Norm



WHY LYAPUNOV FUNCTION HELPS: GLD

Same idea: Taylor up to one higher order

e, [P(x)] = @(x¢-1) —MVF(x¢-1) + VNP er)
< (D(Xt_l) -1 (VF(Xt_l), Vq)(xt—l))
] . HL2n2

+4nB 7 Ee, [¢] VO (xi-1)e

=< O(x4-1) —M(VF(x¢-1), VO(x¢-1))
HLZT]Z

+ higher order

B TAD (X 1) + + higher order

HL2T|2

<O(x¢_1) —NAD(xp_1) + + higher order



Lyapunov Function for LD Exists + is higher order smoothness

Variance of gradient
estimates are bounded

-+

Gradient Langevin Dynamics works SGLD Works for Learning



LYAPUNOV FUNCTION

A non-negative function @ is a Lyapunov Potential on open set A if
® >1 and on set A we have:

—LO >\

o For optimization we will consider the set A = {x ¢ R? : F(x) > €}

@ Using [Cattiaux & Guillin "17] (for LD and GF just plain calculus):
Existence of such potential @ is equivalent to existence of 0 > 0 s.t.

L exp(0T4c)] < o0

In other words the continuous time process work (for both GF and
GLD) if and only if such Lyapunov potentials exist.



Gradient Flow or Langevin Diffussion Works

A corresponding Lyapunov Function

on the € sub-optimal set exists



OUTLINE

© Sampling From Isoperimetric Inequalities



POINCARE INEQUALITY

A measure 1 on R satisfies Poincare Inequality (PI) with constant
Cpr(n) if for all infinitely differentiable functions f,

Var,(f) < Car() [ |vf[Pdu

v

@ When Variance is replaced by entropy of f* the above inequality is
referred to as Log-Sobolev Inequality (LSI) with constant Cj (1)

o Taking measure pg to be given by the density p(x) = e”PF¥)/Z, PI
and LSI are properties on F.
@ For a function F, pg satistying PI is a much weaker condition than

F being convex or PL or KL or pretty much most conditions under
which GD and friends are shown to converge.



ISOPERIMETRIC INEQUALITIES IMPLIES SAMPLING

@ Letting 7ir be measure from SDE for time T and 71y be initialization

for LD:

2T /Cpr(p )X2

2
X (mr|lupg) <e (10|1p )-

@ From existing literature, inequalities like PI and LSI imply that
sampling is possible with upper bounds on rates of convergence

@ Such isoperimetric inequalities are amongst the more general
conditions under which we can derive sampling results

@ [Cattiaux & Guillin "17]: Existence of Lyapunov function for
Langevin Diffusion is equivalent to g satistying PI.



OUTLINE

@ Isoperimetric Inequalities and Lyapunov Functions



Lyapunov Function for LD Exists

Poincare Inequality Holds

Sampling



RESULTS

Problem Setting

Our Result

Best in Literature

GLD Poincaré &
Lipschitz

5(max{d3CpI(u5)3, d2cm(#3)2 })

2

~ d14 Cpl 3
O( . 1(6#6 ) )
(Balasubrama-

nian et al.,

2022)

SGLD Poincaré &
Lipschitz

5(max{d3cpl(,u )3 d’ Cm(#ﬂ) })

No finite guarantee

SGLD smooth &

dissipative

5(max{d3CpI(u )3 d’ Cpx(l-‘ﬁ) })

(. [d°Cu(pg)® 47
O(min{ =%, 57}
(Xu et al., 2018; Zou
et al., 2021)
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ASSUMPTIONS

Locally PI Assumption: For small enough [/ > 0 there exists radius
r(l) >0s.t. {x:F(x) <I} c Bo(X*,7(I)) s.t. the measure pg 1ocal())
satisfies Poincare Inequality with constant Cpy 1 ca1(/). Here X™ is
the set of minima of F and B (X ™, r(l)) = {x :d(x, X*) <r(l)}.

Dissipativity: c¢q,c, R > 0 s.t. for some x* € X", we have that
Vx e B(x*,R)S,

(VE(x),x-x")>c1F(x) and F(x)>cpfx—x7|

Note: Above condition is more general than dissipativity



OPTIMIZABILITY WITH GF IMPLIES POINCARE

When (3 = Q(d), under the assumptions that pg is Locally PI and the
dissipativity assumption, we have that if F is optimizable using gradient flow,
then the measure g satisfies Poincare inequality with

1
Cpi(pnp) = O (CPI,Local + E)

Remark: Under weak convexity + Quadratic tail growth of F Log
sobolev Inequality also holds.



IMPLICATIONS

@ Obtain Isoperimetric inequalities with poly(d, 1/3) for a host of
non-log-concave measures. Eg. when F satisfies PL, KL conditions
Or 1S quasar convex etc.

@ Implies continuous time sampling result in TV for such measures
under arbitrary initialization

@ Under additional smoothness of potential we can obtain discrete
time Langevin Monte Carlo algorithm with poly(d,1/$3,1/€) rates.



WEAK POINCARE INEQUALITY

e Often we may not have convergence of GF from everywhere but
only from set of initializations S (good set of initializations).

@ In this case one can obtain a weaker notion of Poincare like
inequality termed weak Poincare inequality.

@ Under weak PI while mixing from arbitrary starting distribution
may not work but appropriate warm start still works.

A measure p on R? is said to satisfy a (Cyypr(1t), &) Weak Poincare
Inequality (PI) if for all infinitely differentiable f’s, (osc(f) = supf — inf f)

Var () < Cwpi(1) [ | 9f Py + 5 ose(f)




INITIALIZATION DEPENDENT GF TO WEAK

POINCARE

When (3 = Q(d), under the assumptions that g is Locally PI and the
dissipativity assumption, we have that if F is optimizable using gradient flow
when starting from a good initialization set S, then the measure \1p satisfies
(Cwpr(1), 8)Weak Poincare inequality with

Cpi(unp) = 0O (CPI,Local + %) . 0=0(up(S%))




SUMMARY

@ Strong connection between optimizability using gradient flow
and Isoperimetric inequalities

@ Layman terms: Isoperimetric inequalities implies optimizability
with gradient descent

@ Layman terms: Optimizability using gradient descent implies
sampling up to ()(d) temperature regimes

@ Implication: General conditions for GD to work like KL, PL,
quasar convex, linearizability imply sampling using objective as
energy function for appropriate temp



Thanks!



