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Key Takeaways'

» TD learning is an incremental-update RL algorithm for prediction

» n-step TD learning tries to balance Monte-Carlo approaches with
1-step TD by having a variable n

Important Observation: Different n-values result in different RMSE
* Question we address: How to adaptively select nin n-step TD

Algorithm used: Two-timescale Discrete SPSA with n-step TD
* Main Results:
» Prove almost sure convergence of the resulting two-timescale
scheme using a differential inclusions analysis
« Demonstrate experimentally that the scheme gives optimal RMSE
and is better than the well-known OCBA procedure for discrete
stochastic optimization
'L.Mandal and S.Bhatnagar, n-step temporal difference learning with an optimal n,
Automatica, Article 112449, 2025; Arxiv: https://arxiv.org/pdf/2303.07068, 2024.




Outline of the Talk

@ Markov decision processes and RL

© The prediction problem and Monte-Carlo approaches

© Stochastic approximation and model-free approaches

@ Stochastic optimization and SPSA

© One-simulation SPSA with the smallest cyclic cancellation of bias
© TD learning and n-step TD learning

@ Discrete random projections

© Differential inclusions based analysis under lack of Lipschitz
continuity of the objective

© Key experiments and comparisons with OCBA



Markov Decision Processes?

+ Consider a sequence of random variables (MDP) {X,}, X, € S,
Vn, that depends on a control-valued sequence {Z,}, Z, € A, Vn,
and which satisfies the controlled Markov property.

» Here S = state Space and A = action space.
* Assume S and A are finite sets.

Let k(Xn, Zn, Xn11) be the cost incurred when state at time nis X,
action chosen is Z, and the next state is X, 1.

2M.L.Puterman, Markov Decision Processes, John Wiley, 1995



The Controlled Markov Property
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Figure 1: The Controlled Markov Behaviour



The Infinite Horizon Discounted Cost Problem

+ Objective: Find a sequence of controls {Z,} that minimizes the
cost-to-go or the value function

Vizy() = E {Z Vh(X, 2, Xj1) | Xo = i
j=0

* Let V*(I) = Enzlr}! V{Zn}(l)
* The Bellman equation: The optimal cost function V* satisfies

= min Zpl/, k(i,a.j) +vV*(j), i€S.

aeA )

Further, V* is the unique solution of this equation within the class
of bounded functions.



The Prediction Problem

* By a policy, we mean a sequence of functions {mq, 7, ...} with
m:S—AI=01,...
A stationary policy 7 is one where 7; = 7j = 7, Vi # j.

The Prediction Problem Given a policy , find it's value V,(s)
where

Va(s) = E {Z VKX 2, X41) | Xo = i
j=0

Bellman Equation for Policy 7

Vﬂ'(l) = Zp(l)jvﬂ-(l))(k(lv 77(’)’/) +’Yv7r(/))) i€S.
J



The Reinforcement Learning Setting

Environment

Figure 2: Agent-Environment Interaction

» No access to transition probabilities but data.
» Often single-stage rewards (possibly random) in place of costs. 8



Monte-Carlo Based Prediction

» Recall that V( nyr,yxof/ ieS

* Monte-Carlo Estimates of V (1): Run multiple episodes with policy
.
- Episode k: s, alf, r&, st al, rf s, ... s d rk sk
» Assume state i is visited N times.
 Let return from the mth visit to state /, visited at instant /, be defined

as
TM—|—1

Z v
t=0
* Monte-Carlo estimate of V(i)
1N
=5 2 Gr)
m=1
» Problem with Monte-Carlo: Cannot start updates unless a full
episode is run.



Stochastic Approximation®

+ Objective: Solve the equation J(#) = 0 when analytical form of J
is not known, however, ‘noisy’ measurements J(6(n)) + M, can

be obtained
0 J(0) + M,
30 {?
Mn+1
» The Robbins-Monro Algorithm:
0(n+1) =0(n) + a(n)(J(6(n)) + Mp+) (1)

3H.Robbins and S.Monro Annals of Mathematical Statistics, 22: 400-407, 1951

10



Applications of SA*

» Convergence of SA can be shown under fairly general
assumptions

* Applications

+ Noisy fixed Point Computation — Find 6* s.t. f(6*) = 0" under noisy
measurements of f
J(O) =f(0) -6

» Noisy gradient scheme — Find local minima of f

J(0) = —V£(9)

“V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan
Book Agency, 2022.
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A General Convergence Result®

« (C1) J: RN — RN is Lipschitz continuous
* (C2) ) a(n) =o0, Y a(n)? < oo

n n
* (C3) M1, n > 0 is a martingale difference w.r.t. {F,}, where
Fn = o(6(m), Mm, m < n), n> 1. Further, for some K > 0,

EQll Mps1 117 Fal < K(1+ 1| 6(n) |I?)
* (C4) sup || 6(n) ||< oo almost surely
n

» Theorem Under (C1)-(C4), 6(n) — Aa.s., where Ais a
(sample-path dependent) compact connected internally chain
recurrent set of the ODE 6 = h(6).

°M.Benaim, A dynamical system approach to stochastic approximations, SIAM
J.Contr.Optim., 34(2):437-472, 1996.

®V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan
Book Agency, 2022.
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A Problem of Stochastic Optimization

. Let J : RN — R be a given objective function having the form
J(x) = E.[h(x, )], where 1 denotes ‘noise’ and E,,[] is the
expectation under that noise

h(x{/,ul)

)

S i, u3)

X

* |AIM: Find x* s.t. J(x¥) = min, J(x)
XER

13



Gradient Estimation Schemes’

+ Single-simulation classical perturbation analysis schemes based
on sample performance gradients: require
VJ(x) = VE,[h(x, )] = E[V.h(x, p)].

» Zeroth-order gradient estimation methods
« Finite-Difference Stochastic Approximation - Kiefer & Wolfowitz
(1952): require 2N simulations for one gradient estimate
* Random Perturbation Approaches
» SPSA: one or two simulations with Bernoulli perturbation
» SF: one or two simulations with Gaussian or Cauchy perturbations
» RDSA: one or two simulations with uniform on the hyper-rectangle

» Where applicable direct gradient schemes are the best but many

times they are not applicable.
7S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for

Optimization: Simultaneous Perturbation Methods, Springer, 2013.
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Simultaneous Perturbation Stochastic Approximation

« Let A(n) = (Aq(n),...,An(n))T be a vector of
i.i.d., £1-symmetric, Bernoulli random variables.

« Two-simulation SPSA estimate:® Run two simulations with
parameters 6(n) + dA(n) and 8(n) — SA(n).

Vid(0) = (h(0 + 64, 1) — h(0 — 64), 12)) /26 .

« One-simulation SPSA estimate:® Run one simulation with
parameter 6(n) + dA(n).

Vid(0) = h(6 + 61, j11) /A,

8J.C.Spall, IEEE Transactions on Automatic Control, 37(3):332-341,1992.
°J.C.Spall, Automatica, 33(1):109-112, 1997.

15



Consistency of the SPSA Estimators

» Two-Simulation Estimator: Using Taylor’'s expansions,

£ J(O(n) 4+ dA(n)) — J(6(n) — dA(n))
) [ 200(n) }

.
— Eyn) {A(”) A%H(”))] + 0(3) = V,J(6(n)) + 0(5)-

* One-Simulation Estimator: Using a Taylor’'s expansion,

J(O(n) + 6A(n)) B J(O(n)
E“’”[ SA,(n) } = Eoto [m/(n)}

A(n)TvJ(8(n))
Aj(n)

+Eg(n) |: :| + O(6) = Vid(0(n)) + O(9).

16



Problem with One-Simulation SPSA and Alternative

» Both one and two simulation estimators give an approximate
gradient direction.

» Even though one-simulation SPSA is desirable in “real-world”
scenarios, it suffers from an additional bias term resulting in poor
performance.

* Alternative: Use One-SPSA but with +1-valued deterministic
perturbations (instead of randomized) that cancel cyclically at
regular intervals.'0"

10S.Bhatnagar, M.Fu, S.Marcus and [.Wang, ACM Transactions on Modeling and
Computer Simulation, 13(2):180-209, 2003.

11S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for
Optimization: Simultaneous Perturbation Methods, Springer, 2013.
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One-Simulation Deterministic Perturbation SPSA vs. Ran-

domized SPSA [Bhatnagar et al. (2003)]
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Temporal Difference Learning

Recall Bellman equation for a given policy :

Vi(i) = > p(i, (i), ))(r(i, (i), ) + vV ())), i € S.
jES

» TD performs incremental updates using stochastic approximation.
Let Vi, = (Va(1),..., Va(IS|)™ and s, = state visited at time n.
TD update incorporates bootstrapping: Vn,

Vni1(Sn) = Via(sn) + a(n)(rn + v Va(Sn+1) — Va(sn)),

with Vip1(j) = Va(j), Vj # sn.

19



n-Step TD Learning

* n-step Bellman equation (for a given policy):

n—1

Vie(io) = > Pliks (i), k1) (V<1 G, w(ik); 1) 7" Vie (in))-
k=0

* n-step TD is a bridge between TD and Monte-Carlo.
min(k+n,T)
s LetV(S)= Y AR,
J=K+1
* n-step TD update: lf k + n< T,

V7(Sx) = Vn(Se) + 1" Va(Spn).
Vni1(Se) = Va(Si) + a(m)[Vin(S) — Vi(S)]-

20



What nto use in n-step TD

— a=0.2
0.40 — a=0.4
0.35
0.30
w 0.25
s
e 0.20
0.15
0.10
0.051
iz ™ © ® \,Q
Value of n

Figure 3: Obtained RMSE for different values of n and fixed o« on a Random
Walk Example.

+ Different values of n give rise to different estimator variance.

» Objective: Find n that adaptively minimizes RMSE. 21



MSE and Projection to the Convex Hull

- Let gn(S) £ (V(S) — V(S))2.
* Goal: Find n* € D= {1,2,..., L} that minimizes the long-run
average MSE

Zgn(si)] :

« Let D=1, L] 2 the closed convex hull of the discrete parameter
set D.
« LetT : R — D denote the projection

F(x) = min(L, max(x, 1)),

to the set D.
« The n-update will proceed in the space D but the actual values are

decided by a second projection operator.
22



Random Projection to the Discrete Parameter Space'?

e ForneR,letk<n<k+1,1< k<L,

F(n) = k, w.p. (k+1—n) @)
k+1, wp.(n—k)

andforn<1orn> L, welet

1, ifn<1
r(n) := _ (3)
L, ifn>L.

« Fork<n<k+1(i.e., ne D), let
Va(x) == BVK(x) + (1 — B) K+ (x).

'23. Bhatnagar S, V.K. Mishra, and N. Hemachandra, Stochastic algorithms for
discrete parameter simulation optimization, IEEE Transactions on Automation Science
and Engineering, 8(4):780-93, 2011.

23



Parameters in the Algorithm

+ Step-Size Sequences: Consider two step-size sequences {am}
and {bn} satisfying the following conditions:

Zam—me—oo k:{” —1ask — oo,

Zafn<oo,2bfn<oo, lim @:0.
m m

m—oo Dm

+ Sensitivity Parameter: Let § > 0 be a small constant.

+ Perturbation Sequence: Define the perturbation sequence {An,}
as follows: A, = 41 on even iterations and —1 on odd iterations.

24



n-Step TD Algorithm with Adaptive n

» Update Equations: For m >0,/ € S,

Nyt = F( — an ;Z:) (4)
Yist = Yo+ bm (o (Sm) = Yim) . (5)
Vmia () = Vin() + Binls, (Vo (1) = Vin(D))- (6)

* Here nf = T(nm + 0Ap).
* AI0, o (Sm) = (U (Sm) = Vin(Sm))?.

 Also,
Is (i) =
sn(/) { 0 otherwise,

accounts for asynchronous updates.

25



Lack of Reqgularity at Kk € D

« Lemma 1: J(n) is a Lipschitz continuous function in n € D.
Further, its derivative is piecewise Lipschitz continuous on
intervals [k, k +1), 1 < k < L but discontinuous in general with
points of discontinuity in the set D.

» We obtain in particular that

dJ(n) dJ(n)

< _
an In=m — an < Kifm — 1,
forall m,/ e[k, k+1),1 <k <L
e However,
ad(n) lim ad(n)

[im )
nlk dn ntk dn

26



The Faster Timescale Analysis

» Consider the following system of ODEs corresponding to the fast

timescale:
n(t) = 0, (7)
Y(t) = J(T(n(t) + A1) - Y(1), (8)
V(t) = D(Viry+(t) = V(1)) 9)
* From (7), n(t) = n, Vt, hence (8)-(9) become
Y(t) = J(T(n+6A(1)) — Y(b), (10)
V() = D(Vpe — V(1). (11)

m—1 m
- Here A(f) = Am, fort € [ Y a(i), > a(i)l, m> 1.
i=0 i=0

Now (10) has Y* = \(n) = J(T(n+ 6Ap)) as its unique GASE.
* V* =V, is the unique GASE of (11).

27



Discontinuity of Slower Scale ODE

* Proposition 1: The following hold:
a) ||Ym—J([[(n+6An))| — 0a.ss. as m— oo,
) [|Vm — V|| = 0a.s. as m— oc.
» Consider now the slower timescale recursion for the n-update.
The associated ODE is the following:

J(F(n(t) + JA(1)))
(‘ NG > 12)

b | M

n(t) =

« If J(n) exists and is Lipschitz, then one can argue that {n,;} would
converge almost surely to a neighborhood of the set of attractors
of the ODE

A

A(t) = T(=J(n)).

« However, J(n) is discontinuous in general for n € D (Lemma 1).

28



A Set-Valued Map for the Slower Dynamics

* Define a set-valued map H(n) as follows:
H(n) = Nyso NCO({T(=J(m))||m — nl| < n}).

For n e (k,k + 1) with k, k +1 € D, H(n) = —J(n)

* Forn=k € [2,L— 1], H(n) = [k, Bk], where oy = lower limit of
J(n) at n = k and B« = upper limit of J(n) at n = k.

* Forn=1and n= L, we still let H(n) = [ax, Bx] with k =1 or L if

0 € H(n). Else, we take the closed convex hull of the points

0, ak, Bk when k =1 or k= L.

29



Marchaud Set-Valued Map

n

» A set-valued map h is called Marchaud if
* h(x) is convex and compact for each x

e sup ||w| <K@+ | x||) for each x
weh(x)

* his upper-semicontinuous, i.e., given {x,} ¢ R" and {y,} c R™
with x, — x and y, — y with y, € h(x,),¥n, we have y € h(x)
30



* Lemma 2: The set-valued map H(n) is Marchaud.
+ Consider the Differential Inclusion

A(t) € H(n(t)). (13)

« Thus, every solution to the above Dl is absolutely continuous.'®

'3J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability
Theory, Springer, 1984.

31



Invariant Set

« M c R is invariant if for every x € M, there exists xe ¥ s.t.
x(t) € MVt with x(0) = x

32



Attractor of a DI

« A c RYis attracting if it is compact and there exists a
neighborhood U such that for any e > 0, 37 (¢) > 0 with
®([T(€), 00), U) C N(A)

T(g)

« If the above A is invariant, it is called an attractor -



Internally Chain Transitive Set

* We say x iyifve, T >0, dn > 0, solutions x1, ..., X, to Dl and
time points t, ... t, with t, — t,_y > T, such that
(@ xi(s) e AV0O<s<ti—t4,i=1,...,n
(0) [Ixi(t;) — xi+1(0)|| < €, Vi
(©) 1x1(0) = xI[, IXn(tn) — Il < '€
* (X1,...,Xpn) is called (e, T) chain in A from x to y.

» The set Ais ICT if it is compact and x A y forall x,y € A.
34



» Theorem 1: ny, — P almost surely as m — oo, where P is an
internally chain transitive set of the DI (13).

* Proof: We can rewrite (4) as follows:

Mgy =T (nm — b (J(F(”’ggm‘m’"))» . (14)

» The above is analogous to

Amit = T(Nm — bm(2(Mm) + O(9))), (15)

where z(nm) € H(nm) with z(nm) = J(nm) for np € (kK k+ 1),
k,k+1eD.

* Let y(-) be any bounded perturbed solution to the DI (13).

35



Main Result (Contd)

+ The limit set L(y) = Nt=0{Y(S)|s > t} is then internally chain
transitive (cf. Theorem 3.6'4)

» The trajectory obtained from (15) by itself is a bounded and
perturbed solution to the DI (13). The claim follows.

* Remark 1: From Theorem 1, if ?(—J(n*)) = 0 for some
n* € C c D, then 0 € H(n*) and the recursion (15) will converge
to the largest chain transitive invariant set contained in C.

» There are at least two points in D, namely n=1 and n = L for
which 0 € H(n). Thus, in general, if the algorithm does not
converge to a point in the set D° = {2,3,..., L — 1}, it will
converge to eithern=1orn= L.

“M. Benaim, J. Hofbauer, and S. Sorin, Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44(1), pp.328-348, 2005.
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Numerical Experiments

* Experiments on two RL benchmark environments
+ Random Walk (21 states)'®
« Grid World (256 states)'®
» Multiple experiments run for different initial condition, step-sizes
etc.

®R.Sutton and A.Barto, Reinforcement Learning, MIT Press, 2018.
8\M. Chevalier-Boisvert et al., Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. NeurlPS, 36, 2024.
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Results on Grid World
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Figure 4: (a) n-updates and (b) RMSE for initial n = 16 and o = 0.4.
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Figure 5: (a) n-updates and (b) RMSE for initial n =2 and o« = 0.4.
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Optimal Computing Budget Allocation'’

* OCBA is a well known algorithm for discrete parameter stochastic
optimization over small and medium sized parameter sets.

» The procedure initially asks for a computing budget and assigns a
small budget for initial exploration across parameters.

» Subsequently, over multiple stages it assigns budget based on the
current estimates (of value function for different n and it also
makes use of RMSE).

» The procedure continues until the computing budget is exhausted.

7C.-H. Chen and L. H. Lee, Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. Singapore: World Scientific, 2010
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Comparisons in RMSE with OCBA on GW

., —--= OCBA, a=0.6
N == SDPSA, o=0.6
0.8 1 N, -—-0CBA, a=0.4
. -=-SDPSA, a=0.4
— OCBA, o=0.2
—— SDPSA, a=0.2
0.6 A
T -~
= 0.4+ "\ =
\
\
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§® m"@ ,,,c:»@ ‘p@ %o@

Total Budget (No. of Iterations)

Figure 6: RMSE values w.r.t. computation budget of OCBA and SDPSA with
fixed o on GW. 40



Comparisons with OCBA - RMSE and Computational Time

Table 1: Comparison Results of OCBA and SDPSA on GW.

Time (Sec.) RMSE

ainn-step TD | OCBA | SDPSA | OCBA | SDPSA

0.6 588 452 0.10 0.04

0.4 610 405 0.40 0.08

0.2 571 490 0.40 0.12

41



Conclusions and Future Work

Devised a two-timescale stochastic approximation scheme to find
optimal nin n-step TD learning.

» Gave a proof of convergence.
» Experimental results show better results than OCBA - a well
known algorithm for discrete parameter stochastic optimization

Future work can focus on

* actor-critic algorithms with n-TD critic with an adaptive n.
« finding optimal A for TD(\) in function approximation schemes.

42



