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Key Takeaways1

• TD learning is an incremental-update RL algorithm for prediction

• n-step TD learning tries to balance Monte-Carlo approaches with
1-step TD by having a variable n

• Important Observation: Different n-values result in different RMSE

• Question we address: How to adaptively select n in n-step TD

• Algorithm used: Two-timescale Discrete SPSA with n-step TD
• Main Results:

• Prove almost sure convergence of the resulting two-timescale
scheme using a differential inclusions analysis

• Demonstrate experimentally that the scheme gives optimal RMSE
and is better than the well-known OCBA procedure for discrete
stochastic optimization

1L.Mandal and S.Bhatnagar, n-step temporal difference learning with an optimal n,
Automatica, Article 112449, 2025; Arxiv: https://arxiv.org/pdf/2303.07068, 2024.
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Markov Decision Processes2

• Consider a sequence of random variables (MDP) {Xn}, Xn ∈ S,
∀n, that depends on a control-valued sequence {Zn}, Zn ∈ A, ∀n,
and which satisfies the controlled Markov property.

• Here S ≡ state Space and A ≡ action space.

• Assume S and A are finite sets.

• Let k(Xn,Zn,Xn+1) be the cost incurred when state at time n is Xn,
action chosen is Zn and the next state is Xn+1.

2M.L.Puterman, Markov Decision Processes, John Wiley, 1995
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The Controlled Markov Property

• For all i0, i1, . . . , s, s′,b0,b1 . . ., a in appropriate sets,

P(Xn+1 = s′ | Xn = s,Zn = a, . . . ,X0 = i0,Z0 = b0)

= P(Xn+1 = s′ | Xn = s,Zn = a) = p(s, s′,a)

n n+1 n+2n−1n−2

s n

an

s
n+1

Figure 1: The Controlled Markov Behaviour
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The Infinite Horizon Discounted Cost Problem

• Objective: Find a sequence of controls {Zn} that minimizes the
cost-to-go or the value function

V{Zn}(i) = E

 ∞∑
j=0

γ jk(Xj ,Zj ,Xj+1) | X0 = i


• Let V ∗(i) = min

{Zn}
V{Zn}(i)

• The Bellman equation: The optimal cost function V ∗ satisfies

V ∗(i) = min
a∈A(i)

∑
j

p(i , j ,a)(k(i ,a, j) + γV ∗(j)), i ∈ S.

Further, V ∗ is the unique solution of this equation within the class
of bounded functions.

6



The Prediction Problem

• By a policy, we mean a sequence of functions {π0, π1, . . .} with
πi : S → A, i = 0,1, . . .

• A stationary policy π is one where πi = πj ≡ π, ∀i ̸= j .

• The Prediction Problem Given a policy π, find it’s value Vπ(s)
where

Vπ(s) = Eπ

 ∞∑
j=0

γ jk(Xj ,Zj ,Xj+1) | X0 = i


• Bellman Equation for Policy π

Vπ(i) =
∑

j

p(i , j , π(i))(k(i , π(i), j) + γVπ(j)), i ∈ S.
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The Reinforcement Learning Setting
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Figure 2: Agent-Environment Interaction

• No access to transition probabilities but data.
• Often single-stage rewards (possibly random) in place of costs. 8



Monte-Carlo Based Prediction

• Recall that Vπ(i) = Eπ

 ∞∑
j=0

γ j rj |X0 = i

, i ∈ S.

• Monte-Carlo Estimates of Vπ(i): Run multiple episodes with policy
π.

• Episode k : sk
0 ,a

k
0 , r

k
0 , s

k
1 ,a

k
1 , r

k
1 , s

k
2 , . . . , s

k
T k−1,a

k
T k−1, r

k
T k−1, s

k
T k .

• Assume state i is visited N times.
• Let return from the mth visit to state i , visited at instant l , be defined

as

Gm
l (i) =

T m−l−1∑
t=0

γt rm
t+l

• Monte-Carlo estimate of Vπ(i)

V̂π(i) =
1
N

N∑
m=1

Gm
l (i).

• Problem with Monte-Carlo: Cannot start updates unless a full
episode is run.
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Stochastic Approximation3

• Objective: Solve the equation J(θ) = 0 when analytical form of J
is not known, however, ‘noisy’ measurements J(θ(n)) + Mn+1 can
be obtained

J(.)

J(θ θ) + Μn+1

M
n+1

• The Robbins-Monro Algorithm:

θ(n + 1) = θ(n) + a(n)(J(θ(n)) + Mn+1) (1)
3H.Robbins and S.Monro Annals of Mathematical Statistics, 22: 400–407, 1951
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Applications of SA4

• Convergence of SA can be shown under fairly general
assumptions

• Applications

• Noisy fixed Point Computation – Find θ∗ s.t. f (θ∗) = θ∗ under noisy
measurements of f

J(θ) = f (θ)− θ

• Noisy gradient scheme – Find local minima of f

J(θ) = −∇f (θ)

4V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan
Book Agency, 2022.
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A General Convergence Result5 6

• (C1) J : RN → RN is Lipschitz continuous
• (C2)

∑
n

a(n) = ∞,
∑

n

a(n)2 < ∞

• (C3) Mn+1,n ≥ 0 is a martingale difference w.r.t. {Fn}, where
Fn = σ(θ(m),Mm,m ≤ n), n ≥ 1. Further, for some K > 0,

E [∥ Mn+1 ∥2| Fn] ≤ K (1+ ∥ θ(n) ∥2)

• (C4) sup
n

∥ θ(n) ∥< ∞ almost surely

• Theorem Under (C1)-(C4), θ(n) → A a.s., where A is a
(sample-path dependent) compact connected internally chain
recurrent set of the ODE θ̇ = h(θ).

5M.Benaim, A dynamical system approach to stochastic approximations, SIAM
J.Contr.Optim., 34(2):437-472, 1996.

6V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan
Book Agency, 2022.
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A Problem of Stochastic Optimization

• Let J : RN → R be a given objective function having the form
J(x) = Eµ[h(x , µ)], where µ denotes ‘noise’ and Eµ[·] is the
expectation under that noise

x

J(x)

h(x,

h(x,

µ
1

)

µ
3

)

h(x, µ
2

)

• AIM: Find x∗ s.t. J(x∗) = min
x∈RN

J(x)
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Gradient Estimation Schemes7

• Single-simulation classical perturbation analysis schemes based
on sample performance gradients: require
∇J(x) = ∇Eµ[h(x , µ)] = E [∇µh(x , µ)].

• Zeroth-order gradient estimation methods
• Finite-Difference Stochastic Approximation - Kiefer & Wolfowitz

(1952): require 2N simulations for one gradient estimate
• Random Perturbation Approaches

• SPSA: one or two simulations with Bernoulli perturbation
• SF: one or two simulations with Gaussian or Cauchy perturbations
• RDSA: one or two simulations with uniform on the hyper-rectangle

• Where applicable direct gradient schemes are the best but many
times they are not applicable.

7S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for
Optimization: Simultaneous Perturbation Methods, Springer, 2013.
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Simultaneous Perturbation Stochastic Approximation

• Let ∆(n) = (∆1(n), . . . ,∆N(n))T be a vector of
i.i.d., ±1-symmetric, Bernoulli random variables.

• Two-simulation SPSA estimate:8 Run two simulations with
parameters θ(n) + δ∆(n) and θ(n)− δ∆(n).

∇̃iJ(θ) = (h(θ + δ∆, µ1)− h(θ − δ∆), µ2))/2δ∆i .

• One-simulation SPSA estimate:9 Run one simulation with
parameter θ(n) + δ∆(n).

∇̃iJ(θ) = h(θ + δ∆, µ1)/δ∆i .

8J.C.Spall, IEEE Transactions on Automatic Control, 37(3):332-341,1992.
9J.C.Spall, Automatica, 33(1):109-112, 1997.
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Consistency of the SPSA Estimators

• Two-Simulation Estimator: Using Taylor’s expansions,

Eθ(n)

[
J(θ(n) + δ∆(n))− J(θ(n)− δ∆(n))

2δ∆i(n)

]

= Eθ(n)

[
∆(n)T∇J(θ(n))

∆i(n)

]
+ o(δ) = ∇iJ(θ(n)) + o(δ).

• One-Simulation Estimator: Using a Taylor’s expansion,

Eθ(n)

[
J(θ(n) + δ∆(n))

δ∆i(n)

]
= Eθ(n)

[
J(θ(n)
δ∆i(n)

]

+Eθ(n)

[
∆(n)T∇J(θ(n))

∆i(n)

]
+ O(δ) = ∇iJ(θ(n)) + O(δ).
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Problem with One-Simulation SPSA and Alternative

• Both one and two simulation estimators give an approximate
gradient direction.

• Even though one-simulation SPSA is desirable in “real-world”
scenarios, it suffers from an additional bias term resulting in poor
performance.

• Alternative: Use One-SPSA but with ±1-valued deterministic
perturbations (instead of randomized) that cancel cyclically at
regular intervals.1011

10S.Bhatnagar, M.Fu, S.Marcus and I.Wang, ACM Transactions on Modeling and
Computer Simulation, 13(2):180-209, 2003.
11S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for
Optimization: Simultaneous Perturbation Methods, Springer, 2013.
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One-Simulation Deterministic Perturbation SPSA vs. Ran-
domized SPSA [Bhatnagar et al. (2003)]
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Temporal Difference Learning

• Recall Bellman equation for a given policy π:

Vπ(i) =
∑
j∈S

p(i , π(i), j)(r(i , π(i), j) + γVπ(j)), i ∈ S.

• TD performs incremental updates using stochastic approximation.

• Let Vn = (Vn(1), . . . ,Vn(|S|)T and sn = state visited at time n.

• TD update incorporates bootstrapping: ∀n,

Vn+1(sn) = Vn(sn) + a(n)(rn + γVn(sn+1)− Vn(sn)),

with Vn+1(j) = Vn(j), ∀j ̸= sn.
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n-Step TD Learning

• n-step Bellman equation (for a given policy):

Vπ(i0) =
n−1∑
k=0

p(ik , π(ik ), ik+1)(γ
k r(ik , π(ik ), ik+1) + γnVπ(in)).

• n-step TD is a bridge between TD and Monte-Carlo.

• Let V̂ n(Sκ) =

min(κ+n,T )∑
j=κ+1

γ j−κ−1Rj .

• n-step TD update: If κ+ n < T ,

V̂ n(Sκ) := V̂n(Sκ) + γnVn(Sκ+n),

Vn+1(Sκ) = Vn(Sκ) + a(n)[V̂n(Sκ)− Vn(Sκ)].

20



What n to use in n-step TD

Value of n

R
M

SE

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 α =0.2 
α =0.4 
α =0.6 

Figure 3: Obtained RMSE for different values of n and fixed α on a Random
Walk Example.

• Different values of n give rise to different estimator variance.
• Objective: Find n that adaptively minimizes RMSE. 21



MSE and Projection to the Convex Hull

• Let gn(Si)
△
= (V̂ n(Si)− Vn(Si))

2.
• Goal: Find n∗ ∈ D = {1,2, . . . ,L} that minimizes the long-run

average MSE

J(n) = lim
m→∞

1
m
E

[
m∑

i=1

gn(Si)

]
.

• Let D̄ = [1,L]
△
= the closed convex hull of the discrete parameter

set D.
• Let Γ̄ : R → D̄ denote the projection

Γ̄(x) = min(L,max(x ,1)),

to the set D̄.
• The n-update will proceed in the space D̄ but the actual values are

decided by a second projection operator.
22



Random Projection to the Discrete Parameter Space12

• For n ∈ R, let k ≤ n ≤ k + 1, 1 ≤ k < L,

Γ(n) :=

k , w.p. (k + 1 − n)

k + 1, w.p. (n − k)
(2)

and for n < 1 or n > L, we let

Γ(n) :=

1, if n < 1

L, if n ≥ L.
(3)

• For k ≤ n ≤ k + 1 (i.e., n ∈ D̄), let

V̂n(x) := βV̂ k (x) + (1 − β)V̂ k+1(x).
12S. Bhatnagar S, V.K. Mishra, and N. Hemachandra, Stochastic algorithms for
discrete parameter simulation optimization, IEEE Transactions on Automation Science
and Engineering, 8(4):780-93, 2011.
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Parameters in the Algorithm

• Step-Size Sequences: Consider two step-size sequences {am}
and {bm} satisfying the following conditions:

am,bm > 0, ∀n,∑
m

am =
∑

m

bm = ∞,
ak+1

ak
→ 1 as k → ∞,

∑
m

a2
m < ∞,

∑
m

b2
m < ∞, lim

m→∞

am

bm
= 0.

• Sensitivity Parameter: Let δ > 0 be a small constant.

• Perturbation Sequence: Define the perturbation sequence {∆m}
as follows: ∆m = +1 on even iterations and −1 on odd iterations.
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n-Step TD Algorithm with Adaptive n

• Update Equations: For m ≥ 0, i ∈ S,

nm+1 = Γ̄

(
nm − am

Ym+1

δ∆m

)
, (4)

Ym+1 = Ym + bm

(
gn+

m
(Sm)− Ym

)
, (5)

Vm+1(i) = Vm(i) + bmISm(i)(V̂n+
m
(i)− Vm(i)). (6)

• Here n+
m = Γ̄(nm + δ∆m).

• Also, gn+
m
(Sm)

△
= (V̂n+

m
(Sm)− Vm(Sm))

2.

• Also,

ISm(i) =

{
+1 Sm = i
0 otherwise,

accounts for asynchronous updates.

25



Lack of Regularity at k ∈ D

• Lemma 1: J(n) is a Lipschitz continuous function in n ∈ D̄.
Further, its derivative is piecewise Lipschitz continuous on
intervals [k , k + 1), 1 ≤ k ≤ L but discontinuous in general with
points of discontinuity in the set D.

• We obtain in particular that∣∣∣∣dJ(n)
dn

|n=m − dJ(n)
dn

|n=l

∣∣∣∣ ≤ K1|m − l |,

for all m, l ∈ [k , k + 1),1 ≤ k ≤ L.

• However,

lim
n↓k

dJ(n)
dn

̸= lim
n↑k

dJ(n)
dn

.
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The Faster Timescale Analysis

• Consider the following system of ODEs corresponding to the fast
timescale:

ṅ(t) = 0, (7)

Ẏ (t) = J(Γ̄(n(t) + δ∆(t)))− Y (t), (8)

V̇ (t) = D(Vn(t)+(t)− V (t)). (9)

• From (7), n(t) ≡ n, ∀t , hence (8)-(9) become

Ẏ (t) = J(Γ̄(n + δ∆(t)))− Y (t), (10)

V̇ (t) = D(Vn+ − V (t)). (11)

• Here ∆(t) = ∆m, for t ∈ [
m−1∑
i=0

a(i),
m∑

i=0

a(i)], m ≥ 1.

• Now (10) has Y ∗ = λ(n) ≡ J(Γ̄(n + δ∆m)) as its unique GASE.
• V ∗ = Vn+ is the unique GASE of (11).
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Discontinuity of Slower Scale ODE

• Proposition 1: The following hold:
(a) ∥Ym − J(Γ̄(n + δ∆m))∥ → 0 a.s. as m → ∞,
(b) ∥Vm − Vn+∥ → 0 a.s. as m → ∞.

• Consider now the slower timescale recursion for the n-update.
The associated ODE is the following:

ṅ(t) = ˆ̄Γ

(
−J(Γ̄(n(t) + δ∆(t)))

δ∆(t)

)
. (12)

• If J̇(n) exists and is Lipschitz, then one can argue that {nm} would
converge almost surely to a neighborhood of the set of attractors
of the ODE

ṅ(t) = ˆ̄Γ(−J̇(n)).

• However, J̇(n) is discontinuous in general for n ∈ D (Lemma 1).
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A Set-Valued Map for the Slower Dynamics

• Define a set-valued map H(n) as follows:

H(n) = ∩η>0 ∩ co({ˆ̄Γ(−J̇(m))|∥m − n∥ < η}).

• For n ∈ (k , k + 1) with k , k + 1 ∈ D, H(n) = −J̇(n)

• For n = k ∈ [2,L − 1], H(n) = [αk , βk ], where αk ≡ lower limit of
J̇(n) at n = k and βk ≡ upper limit of J̇(n) at n = k .

• For n = 1 and n = L, we still let H(n) = [αk , βk ] with k = 1 or L if
0 ∈ H(n). Else, we take the closed convex hull of the points
0, αk , βk when k = 1 or k = L.
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Marchaud Set-Valued Map

x
1

h(x1)

R
n

R
m

x
2

x
3

x

h(x)

h(x3
)

h(x
2

) y
1

y
2

y
3

y

• A set-valued map h is called Marchaud if
• h(x) is convex and compact for each x
• sup

w∈h(x)
∥ w ∥ ≤ K (1+ ∥ x ∥) for each x

• h is upper-semicontinuous, i.e., given {xn} ⊂ Rn and {yn} ⊂ Rm

with xn → x and yn → y with yn ∈ h(xn),∀n, we have y ∈ h(x)
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Results

• Lemma 2: The set-valued map H(n) is Marchaud.

• Consider the Differential Inclusion

ṅ(t) ∈ H(n(t)). (13)

• Thus, every solution to the above DI is absolutely continuous.13

13J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability
Theory, Springer, 1984.
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Invariant Set

• M ⊂ Rd is invariant if for every x ∈ M, there exists x∈ Σ s.t.
x(t) ∈ M ∀t with x(0) = x

x

M
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Attractor of a DI

• A ⊂ Rd is attracting if it is compact and there exists a
neighborhood U such that for any ϵ > 0, ∃T (ϵ) ≥ 0 with
Φ([T (ϵ),∞),U) ⊂ Nϵ(A)

A

U

A

U

N
ε

(A )

T(ε)

• If the above A is invariant, it is called an attractor
33



Internally Chain Transitive Set
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time

• We say x A→ y if ∀ϵ,T > 0, ∃n > 0, solutions x1, . . . , xn to DI and
time points t1, . . . tn with tn − tn−1 ≥ T , such that
(a) xi(s) ∈ A, ∀0 ≤ s ≤ ti − ti−1, i = 1, . . . ,n
(b) ∥xi(ti)− xi+1(0)∥ ≤ ϵ, ∀i
(c) ∥x1(0)− x∥, ∥xn(tn)− y∥ ≤ ϵ

• (x1, . . . , xn) is called (ϵ,T ) chain in A from x to y .
• The set A is ICT if it is compact and x A→ y for all x , y ∈ A.
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Main Result

• Theorem 1: nm → P almost surely as m → ∞, where P is an
internally chain transitive set of the DI (13).

• Proof: We can rewrite (4) as follows:

nm+1 = Γ̄

(
nm − bm

(
J(Γ̄(nm + δ∆m))

δ∆m

))
. (14)

• The above is analogous to

nm+1 = Γ̄(nm − bm(z(nm) + O(δ))), (15)

where z(nm) ∈ H(nm) with z(nm) = J̇(nm) for nm ∈ (k , k + 1),
k , k + 1 ∈ D.

• Let y(·) be any bounded perturbed solution to the DI (13).
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Main Result (Contd)

• The limit set L(y) = ∩t≥0{y(s)|s ≥ t} is then internally chain
transitive (cf. Theorem 3.614)

• The trajectory obtained from (15) by itself is a bounded and
perturbed solution to the DI (13). The claim follows.

• Remark 1: From Theorem 1, if ˆ̄Γ(−J̇(n∗)) = 0 for some
n∗ ∈ C ⊂ D̄, then 0 ∈ H(n∗) and the recursion (15) will converge
to the largest chain transitive invariant set contained in C.

• There are at least two points in D, namely n = 1 and n = L for
which 0 ∈ H(n). Thus, in general, if the algorithm does not
converge to a point in the set Do = {2,3, . . . ,L − 1}, it will
converge to either n = 1 or n = L.

14M. Benaı̈m, J. Hofbauer, and S. Sorin, Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44(1), pp.328-348, 2005.
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Numerical Experiments

• Experiments on two RL benchmark environments
• Random Walk (21 states)15

• Grid World (256 states)16

• Multiple experiments run for different initial condition, step-sizes
etc.

15R.Sutton and A.Barto, Reinforcement Learning, MIT Press, 2018.
16M. Chevalier-Boisvert et al., Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. NeurIPS, 36, 2024.
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Results on Grid World

Figure 4: (a) n-updates and (b) RMSE for initial n = 16 and α = 0.4.

Figure 5: (a) n-updates and (b) RMSE for initial n = 2 and α = 0.4.
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Optimal Computing Budget Allocation17

• OCBA is a well known algorithm for discrete parameter stochastic
optimization over small and medium sized parameter sets.

• The procedure initially asks for a computing budget and assigns a
small budget for initial exploration across parameters.

• Subsequently, over multiple stages it assigns budget based on the
current estimates (of value function for different n and it also
makes use of RMSE).

• The procedure continues until the computing budget is exhausted.

17C.-H. Chen and L. H. Lee, Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. Singapore: World Scientific, 2010
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Comparisons in RMSE with OCBA on GW

Figure 6: RMSE values w.r.t. computation budget of OCBA and SDPSA with
fixed α on GW. 40



Comparisons with OCBA - RMSE and Computational Time

Table 1: Comparison Results of OCBA and SDPSA on GW.

α in n-step TD

Time (Sec.) RMSE

OCBA SDPSA OCBA SDPSA

0.6 588 452 0.10 0.04

0.4 610 405 0.40 0.08

0.2 571 490 0.40 0.12
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Conclusions and Future Work

• Devised a two-timescale stochastic approximation scheme to find
optimal n in n-step TD learning.

• Gave a proof of convergence.

• Experimental results show better results than OCBA - a well
known algorithm for discrete parameter stochastic optimization

• Future work can focus on
• actor-critic algorithms with n-TD critic with an adaptive n.
• finding optimal λ for TD(λ) in function approximation schemes.
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