n-Step Temporal Difference Learning with an Optimal n

Shalabh Bhatnagar

August 14, 2025

Department of Computer Science and Automation & Robert Bosch Centre for Cyber Physical Systems Indian Institute of Science Bangalore 560012

Key Takeaways¹

- TD learning is an incremental-update RL algorithm for prediction
- n-step TD learning tries to balance Monte-Carlo approaches with 1-step TD by having a variable n
- Important Observation: Different n-values result in different RMSE
- Question we address: How to adaptively select n in n-step TD
- Algorithm used: Two-timescale Discrete SPSA with n-step TD
- · Main Results:
 - Prove almost sure convergence of the resulting two-timescale scheme using a differential inclusions analysis
 - Demonstrate experimentally that the scheme gives optimal RMSE and is better than the well-known OCBA procedure for discrete stochastic optimization

¹L.Mandal and S.Bhatnagar, *n*-step temporal difference learning with an optimal *n*, Automatica, Article 112449, 2025; Arxiv: https://arxiv.org/pdf/2303.07068, 2024.

Outline of the Talk

- Markov decision processes and RL
- The prediction problem and Monte-Carlo approaches
- Stochastic approximation and model-free approaches
- Stochastic optimization and SPSA
- One-simulation SPSA with the smallest cyclic cancellation of bias
- TD learning and *n*-step TD learning
- Discrete random projections
- Oifferential inclusions based analysis under lack of Lipschitz continuity of the objective
- Yey experiments and comparisons with OCBA

Markov Decision Processes²

- Consider a sequence of random variables (MDP) {X_n}, X_n ∈ S,
 ∀n, that depends on a control-valued sequence {Z_n}, Z_n ∈ A, ∀n,
 and which satisfies the controlled Markov property.
- Here $S \equiv$ state Space and $A \equiv$ action space.
- Assume S and A are finite sets.
- Let $k(X_n, Z_n, X_{n+1})$ be the cost incurred when state at time n is X_n , action chosen is Z_n and the next state is X_{n+1} .

²M.L.Puterman, Markov Decision Processes, John Wiley, 1995

The Controlled Markov Property

• For all $i_0, i_1, \ldots, s, s', b_0, b_1, \ldots, a$ in appropriate sets,

Figure 1: The Controlled Markov Behaviour

The Infinite Horizon Discounted Cost Problem

 Objective: Find a sequence of controls {Z_n} that minimizes the cost-to-go or the value function

$$V_{\{Z_n\}}(i) = E\left[\sum_{j=0}^{\infty} \gamma^j k(X_j, Z_j, X_{j+1}) \mid X_0 = i\right]$$

- Let $V^*(i) = \min_{\{Z_n\}} V_{\{Z_n\}}(i)$
- The Bellman equation: The optimal cost function V^* satisfies

$$V^*(i) = \min_{a \in A(i)} \sum_j p(i, j, a)(k(i, a, j) + \gamma V^*(j)), \quad i \in S.$$

Further, V^* is the unique solution of this equation within the class of bounded functions.

The Prediction Problem

- By a policy, we mean a sequence of functions $\{\pi_0, \pi_1, \ldots\}$ with $\pi_i: \mathcal{S} \to \mathcal{A}, i = 0, 1, \ldots$
- A stationary policy π is one where $\pi_i = \pi_j \equiv \pi$, $\forall i \neq j$.
- The Prediction Problem Given a policy π , find it's value $V_{\pi}(s)$ where

$$V_{\pi}(s) = E_{\pi} \left[\sum_{j=0}^{\infty} \gamma^{j} k(X_{j}, Z_{j}, X_{j+1}) \mid X_{0} = i \right]$$

• Bellman Equation for Policy π

$$V_{\pi}(i) = \sum_{j} p(i,j,\pi(i))(k(i,\pi(i),j) + \gamma V_{\pi}(j)), \quad i \in \mathcal{S}.$$

The Reinforcement Learning Setting

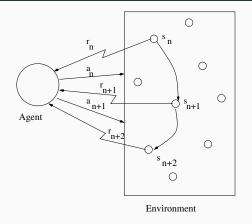


Figure 2: Agent-Environment Interaction

- No access to transition probabilities but data.
- Often single-stage rewards (possibly random) in place of costs.

Monte-Carlo Based Prediction

- Recall that $V_{\pi}(i) = E_{\pi}\left[\sum_{j=0}^{\infty} \gamma^{j} r_{j} | X_{0} = i\right], i \in S.$
- Monte-Carlo Estimates of $V_{\pi}(i)$: Run multiple episodes with policy π .
 - Episode k: $s_0^k, a_0^k, r_0^k, s_1^k, a_1^k, r_1^k, s_2^k, \dots, s_{T^k-1}^k, a_{T^k-1}^k, r_{T^k-1}^k, s_{T^k}^k$.
 - Assume state *i* is visited *N* times.
 - Let return from the mth visit to state i, visited at instant I, be defined as

$$G_{l}^{m}(i) = \sum_{t=0}^{T^{m}-l-1} \gamma^{t} r_{t+l}^{m}$$

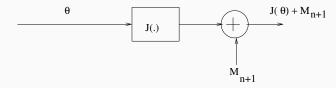
• Monte-Carlo estimate of $V_{\pi}(i)$

$$\hat{V}_{\pi}(i) = \frac{1}{N} \sum_{l}^{N} G_{l}^{m}(i).$$

 Problem with Monte-Carlo: Cannot start updates unless a full episode is run.

Stochastic Approximation³

• Objective: Solve the equation $J(\theta) = 0$ when analytical form of J is not known, however, 'noisy' measurements $J(\theta(n)) + M_{n+1}$ can be obtained



The Robbins-Monro Algorithm:

$$\theta(n+1) = \theta(n) + a(n)(J(\theta(n)) + M_{n+1}) \tag{1}$$

³H.Robbins and S.Monro Annals of Mathematical Statistics, 22: 400–407, 1951

Applications of SA⁴

- Convergence of SA can be shown under fairly general assumptions
- · Applications
 - Noisy fixed Point Computation Find θ^* s.t. $f(\theta^*) = \theta^*$ under noisy measurements of f

$$J(\theta) = f(\theta) - \theta$$

Noisy gradient scheme – Find local minima of f

$$J(\theta) = -\nabla f(\theta)$$

⁴V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan Book Agency, 2022.

A General Convergence Result⁵

- (C1) $J: \mathbb{R}^N \to \mathbb{R}^N$ is Lipschitz continuous
- (C2) $\sum_{n} a(n) = \infty$, $\sum_{n} a(n)^{2} < \infty$
- (C3) \overline{M}_{n+1} , $n \ge 0$ is a martingale difference w.r.t. $\{\mathcal{F}_n\}$, where $\mathcal{F}_n = \sigma(\theta(m), M_m, m \le n)$, $n \ge 1$. Further, for some K > 0,

$$E[||M_{n+1}||^2||\mathcal{F}_n] \le K(1+|||\theta(n)||^2)$$

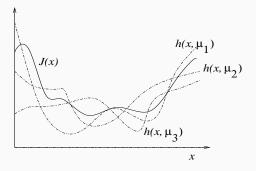
- (C4) $\sup_{n} \|\theta(n)\| < \infty$ almost surely
- Theorem Under (C1)-(C4), $\theta(n) \to A$ a.s., where A is a (sample-path dependent) compact connected internally chain recurrent set of the ODE $\dot{\theta} = h(\theta)$.

⁵M.Benaim, A dynamical system approach to stochastic approximations, SIAM J.Contr.Optim., 34(2):437-472, 1996.

⁶V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan Book Agency, 2022.

A Problem of Stochastic Optimization

Let J: R^N → R be a given objective function having the form
 J(x) = E_μ[h(x, μ)], where μ denotes 'noise' and E_μ[·] is the
 expectation under that noise



• AIM: Find
$$x^*$$
 s.t. $J(x^*) = \min_{x \in \mathcal{R}^N} J(x)$

Gradient Estimation Schemes⁷

 Single-simulation classical perturbation analysis schemes based on sample performance gradients: require
 ∇J(x) = ∇E_u[h(x, μ)] = E[∇_uh(x, μ)].

- · Zeroth-order gradient estimation methods
 - Finite-Difference Stochastic Approximation Kiefer & Wolfowitz (1952): require 2*N* simulations for one gradient estimate
 - Random Perturbation Approaches
 - · SPSA: one or two simulations with Bernoulli perturbation
 - SF: one or two simulations with Gaussian or Cauchy perturbations
 - RDSA: one or two simulations with uniform on the hyper-rectangle
- Where applicable direct gradient schemes are the best but many times they are not applicable.

⁷S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods, Springer, 2013.

Simultaneous Perturbation Stochastic Approximation

- Let Δ(n) = (Δ₁(n),...,Δ_N(n))^T be a vector of i.i.d., ±1-symmetric, Bernoulli random variables.
- Two-simulation SPSA estimate:⁸ Run two simulations with parameters $\theta(n) + \delta\Delta(n)$ and $\theta(n) \delta\Delta(n)$.

$$\tilde{\nabla}_i J(\theta) = (h(\theta + \delta \Delta, \mu_1) - h(\theta - \delta \Delta), \mu_2))/2\delta \Delta_i.$$

• One-simulation SPSA estimate: Pun one simulation with parameter $\theta(n) + \delta\Delta(n)$.

$$\tilde{\nabla}_i J(\theta) = h(\theta + \delta \Delta, \mu_1) / \delta \Delta_i.$$

⁸J.C.Spall, *IEEE Transactions on Automatic Control*, 37(3):332-341,1992.

⁹J.C.Spall, Automatica, 33(1):109-112, 1997.

Consistency of the SPSA Estimators

Two-Simulation Estimator: Using Taylor's expansions,

$$\begin{split} E_{\theta(n)} \left[\frac{J(\theta(n) + \delta\Delta(n)) - J(\theta(n) - \delta\Delta(n))}{2\delta\Delta_i(n)} \right] \\ = E_{\theta(n)} \left[\frac{\Delta(n)^T \nabla J(\theta(n))}{\Delta_i(n)} \right] + o(\delta) = \nabla_i J(\theta(n)) + o(\delta). \end{split}$$

One-Simulation Estimator: Using a Taylor's expansion,

$$E_{\theta(n)}\left[\frac{J(\theta(n) + \delta\Delta(n))}{\delta\Delta_{i}(n)}\right] = E_{\theta(n)}\left[\frac{J(\theta(n))}{\delta\Delta_{i}(n)}\right] + E_{\theta(n)}\left[\frac{\Delta(n)^{T}\nabla J(\theta(n))}{\Delta_{i}(n)}\right] + O(\delta) = \nabla_{i}J(\theta(n)) + O(\delta).$$

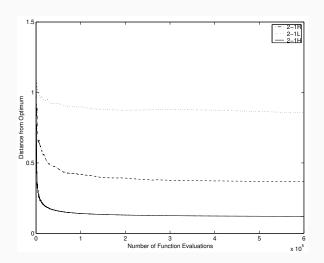
Problem with One-Simulation SPSA and Alternative

- Both one and two simulation estimators give an approximate gradient direction.
- Even though one-simulation SPSA is desirable in "real-world" scenarios, it suffers from an additional bias term resulting in poor performance.
- Alternative: Use One-SPSA but with ± 1 -valued deterministic perturbations (instead of randomized) that cancel cyclically at regular intervals. 1011

¹⁰S.Bhatnagar, M.Fu, S.Marcus and I.Wang, ACM Transactions on Modeling and Computer Simulation, 13(2):180-209, 2003.

¹¹S.Bhatnagar, H.L.Prasad and L.A.Prashanth, Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods, Springer, 2013.

One-Simulation Deterministic Perturbation SPSA vs. Randomized SPSA [Bhatnagar et al. (2003)]



Temporal Difference Learning

• Recall Bellman equation for a given policy π :

$$V_{\pi}(i) = \sum_{j \in S} p(i, \pi(i), j) (r(i, \pi(i), j) + \gamma V_{\pi}(j)), i \in S.$$

- TD performs incremental updates using stochastic approximation.
- Let $V_n = (V_n(1), \dots, V_n(|S|)^T$ and $s_n =$ state visited at time n.
- TD update incorporates bootstrapping: ∀*n*,

$$V_{n+1}(s_n) = V_n(s_n) + a(n)(r_n + \gamma V_n(s_{n+1}) - V_n(s_n)),$$

with $V_{n+1}(j) = V_n(j)$, $\forall j \neq s_n$.

n-Step TD Learning

n-step Bellman equation (for a given policy):

$$V_{\pi}(i_0) = \sum_{k=0}^{n-1} p(i_k, \pi(i_k), i_{k+1}) (\gamma^k r(i_k, \pi(i_k), i_{k+1}) + \gamma^n V_{\pi}(i_n)).$$

n-step TD is a bridge between TD and Monte-Carlo.

• Let
$$\hat{V}^n(S_{\kappa}) = \sum_{j=\kappa+1}^{\min(\kappa+n,T)} \gamma^{j-\kappa-1} R_j$$
.

• n-step TD update: If $\kappa + n < T$,

$$\hat{V}^n(S_\kappa) := \hat{V}_n(S_\kappa) + \gamma^n V_n(S_{\kappa+n}),$$

$$V_{n+1}(S_\kappa) = V_n(S_\kappa) + a(n)[\hat{V}_n(S_\kappa) - V_n(S_\kappa)].$$

What n to use in n-step TD

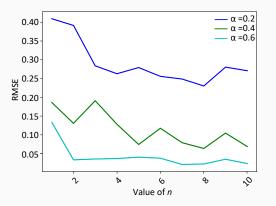


Figure 3: Obtained RMSE for different values of n and fixed α on a Random Walk Example.

- Different values of n give rise to different estimator variance.
- Objective: Find n that adaptively minimizes RMSE.

MSE and Projection to the Convex Hull

- Let $g_n(S_i) \stackrel{\triangle}{=} (\hat{V}^n(S_i) V_n(S_i))^2$.
- Goal: Find $n^* \in D = \{1, 2, \dots, L\}$ that minimizes the long-run average MSE

$$J(n) = \lim_{m \to \infty} \frac{1}{m} \mathbb{E} \left[\sum_{i=1}^m g_n(S_i) \right].$$

- Let $\bar{D} = [1, L] \stackrel{\triangle}{=}$ the closed convex hull of the discrete parameter set D.
- Let $\bar{\Gamma}:\mathbb{R}\to \bar{D}$ denote the projection

$$\bar{\Gamma}(x) = \min(L, \max(x, 1)),$$

to the set \bar{D} .

• The n-update will proceed in the space \bar{D} but the actual values are decided by a second projection operator.

Random Projection to the Discrete Parameter Space¹²

• For $n \in \mathbb{R}$, let $k \le n \le k+1$, $1 \le k < L$,

$$\Gamma(n) := \begin{cases} k, & \text{w.p. } (k+1-n) \\ k+1, & \text{w.p. } (n-k) \end{cases}$$
 (2)

and for n < 1 or n > L, we let

$$\Gamma(n) := \begin{cases} 1, & \text{if } n < 1 \\ L, & \text{if } n \ge L. \end{cases}$$
 (3)

• For $k \le n \le k+1$ (i.e., $n \in \bar{D}$), let

$$\hat{V}_n(x) := \beta \, \hat{V}^k(x) + (1-\beta) \, \hat{V}^{k+1}(x).$$

¹²S. Bhatnagar S, V.K. Mishra, and N. Hemachandra, Stochastic algorithms for discrete parameter simulation optimization, IEEE Transactions on Automation Science and Engineering, 8(4):780-93, 2011.

Parameters in the Algorithm

Step-Size Sequences: Consider two step-size sequences {a_m}
 and {b_m} satisfying the following conditions:

$$a_m,b_m>0,\ \forall n,$$

$$\sum_m a_m=\sum_m b_m=\infty,\ \frac{a_{k+1}}{a_k}\to 1\ \text{as}\ k\to\infty,$$

$$\sum_m a_m^2<\infty, \sum_m b_m^2<\infty, \ \lim_{m\to\infty} \frac{a_m}{b_m}=0.$$

- Sensitivity Parameter: Let $\delta > 0$ be a small constant.
- Perturbation Sequence: Define the perturbation sequence $\{\Delta_m\}$ as follows: $\Delta_m = +1$ on even iterations and -1 on odd iterations.

n-Step TD Algorithm with Adaptive n

• Update Equations: For $m \ge 0$, $i \in S$,

$$n_{m+1} = \bar{\Gamma} \left(n_m - a_m \frac{Y_{m+1}}{\delta \Delta_m} \right), \tag{4}$$

$$Y_{m+1} = Y_m + b_m \left(g_{n_m^+}(S_m) - Y_m \right),$$
 (5)

$$V_{m+1}(i) = V_m(i) + b_m I_{S_m}(i) (\hat{V}_{n_m^+}(i) - V_m(i)).$$
 (6)

- Here $n_m^+ = \bar{\Gamma}(n_m + \delta \Delta_m)$.
- Also, $g_{n_m^+}(S_m)\stackrel{\triangle}{=} (\hat{V}_{n_m^+}(S_m) V_m(S_m))^2$.
- Also,

$$I_{S_m}(i) = \begin{cases} +1 & S_m = i \\ 0 & \text{otherwise,} \end{cases}$$

accounts for asynchronous updates.

Lack of Regularity at $k \in D$

- Lemma 1: J(n) is a Lipschitz continuous function in n ∈ D̄.
 Further, its derivative is piecewise Lipschitz continuous on intervals [k, k + 1), 1 ≤ k ≤ L but discontinuous in general with points of discontinuity in the set D̄.
- We obtain in particular that

$$\left|\frac{dJ(n)}{dn}|_{n=m}-\frac{dJ(n)}{dn}|_{n=I}\right|\leq K_1|m-I|,$$

for all $m, l \in [k, k + 1), 1 \le k \le L$.

· However,

$$\lim_{n\downarrow k}\frac{dJ(n)}{dn}\neq\lim_{n\uparrow k}\frac{dJ(n)}{dn}.$$

The Faster Timescale Analysis

 Consider the following system of ODEs corresponding to the fast timescale:

$$\dot{n}(t) = 0, \tag{7}$$

$$\dot{Y}(t) = J(\bar{\Gamma}(n(t) + \delta\Delta(t))) - Y(t), \tag{8}$$

$$\dot{V}(t) = \mathbb{D}(V_{n(t)^+}(t) - V(t)).$$
 (9)

• From (7), $n(t) \equiv n$, $\forall t$, hence (8)-(9) become

$$\dot{Y}(t) = J(\bar{\Gamma}(n+\delta\Delta(t))) - Y(t), \tag{10}$$

$$\dot{V}(t) = \mathbb{D}(V_{n^+} - V(t)). \tag{11}$$

- Here $\Delta(t) = \Delta_m$, for $t \in [\sum_{i=0}^m a(i), \sum_{i=0}^m a(i)], m \ge 1$.
- Now (10) has $Y^* = \lambda(n) \equiv J(\bar{\Gamma}(n + \delta \Delta_m))$ as its unique GASE.
- $V^* = V_{n^+}$ is the unique GASE of (11).

Discontinuity of Slower Scale ODE

- Proposition 1: The following hold:
 - (a) $\|Y_m J(\bar{\Gamma}(n + \delta \Delta_m))\| \to 0$ a.s. as $m \to \infty$,
 - (b) $\|V_m V_{n^+}\| \to 0$ a.s. as $m \to \infty$.
- Consider now the slower timescale recursion for the *n*-update.
 The associated ODE is the following:

$$\dot{n}(t) = \hat{\bar{\Gamma}} \left(-\frac{J(\bar{\Gamma}(n(t) + \delta \Delta(t)))}{\delta \Delta(t)} \right). \tag{12}$$

• If J(n) exists and is Lipschitz, then one can argue that $\{n_m\}$ would converge almost surely to a neighborhood of the set of attractors of the ODE

$$\dot{n}(t) = \hat{\bar{\Gamma}}(-\dot{J}(n)).$$

• However, $\dot{J}(n)$ is discontinuous in general for $n \in D$ (Lemma 1).

A Set-Valued Map for the Slower Dynamics

• Define a set-valued map H(n) as follows:

$$H(n) = \cap_{\eta > 0} \cap \overline{co}(\{\hat{\bar{\Gamma}}(-\dot{J}(m)) | ||m - n|| < \eta\}).$$

- For $n \in (k, k + 1)$ with $k, k + 1 \in D$, $H(n) = -\dot{J}(n)$
- For $n = k \in [2, L 1]$, $H(n) = [\alpha_k, \beta_k]$, where $\alpha_k \equiv$ lower limit of $\dot{J}(n)$ at n = k and $\beta_k \equiv$ upper limit of $\dot{J}(n)$ at n = k.
- For n = 1 and n = L, we still let $H(n) = [\alpha_k, \beta_k]$ with k = 1 or L if $0 \in H(n)$. Else, we take the closed convex hull of the points $0, \alpha_k, \beta_k$ when k = 1 or k = L.

Marchaud Set-Valued Map



- A set-valued map h is called Marchaud if
 - h(x) is convex and compact for each x
 - $\sup_{w \in h(x)} \parallel w \parallel \le K(1+\parallel x \parallel)$ for each x
 - h is upper-semicontinuous, i.e., given $\{x_n\} \subset \mathcal{R}^n$ and $\{y_n\} \subset \mathcal{R}^m$ with $x_n \to x$ and $y_n \to y$ with $y_n \in h(x_n), \forall n$, we have $y \in h(x)$

Results

- Lemma 2: The set-valued map H(n) is Marchaud.
- Consider the Differential Inclusion

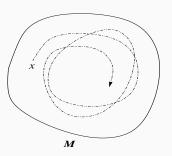
$$\dot{n}(t) \in H(n(t)). \tag{13}$$

• Thus, every solution to the above DI is absolutely continuous. 13

¹³J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer, 1984.

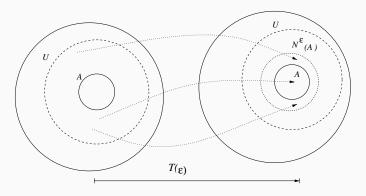
Invariant Set

• $M \subset \mathcal{R}^d$ is invariant if for every $x \in M$, there exists $\mathbf{x} \in \Sigma$ s.t. $x(t) \in M \ \forall t \ \text{with} \ x(0) = x$



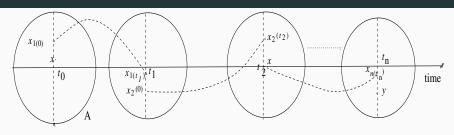
Attractor of a DI

• $A \subset \mathcal{R}^d$ is attracting if it is compact and there exists a neighborhood U such that for any $\epsilon > 0$, $\exists T(\epsilon) \geq 0$ with $\Phi([T(\epsilon), \infty), U) \subset N^{\epsilon}(A)$



If the above A is invariant, it is called an attractor

Internally Chain Transitive Set



- We say $x \stackrel{A}{\to} y$ if $\forall \epsilon, T > 0$, $\exists n > 0$, solutions x_1, \dots, x_n to DI and time points t_1, \dots, t_n with $t_n t_{n-1} \ge T$, such that
 - (a) $x_i(s) \in A, \forall 0 \le s \le t_i t_{i-1}, i = 1, ..., n$
 - (b) $||x_i(t_i) x_{i+1}(0)|| \le \epsilon, \forall i$
 - (c) $||x_1(0) x||, ||x_n(t_n) y|| \le \epsilon$
- (x_1, \ldots, x_n) is called (ϵ, T) chain in A from x to y.
- The set A is ICT if it is compact and $x \stackrel{A}{\rightarrow} y$ for all $x, y \in A$.

Main Result

- Theorem 1: $n_m \to P$ almost surely as $m \to \infty$, where P is an internally chain transitive set of the DI (13).
- Proof: We can rewrite (4) as follows:

$$n_{m+1} = \bar{\Gamma} \left(n_m - b_m \left(\frac{J(\bar{\Gamma}(n_m + \delta \Delta_m))}{\delta \Delta_m} \right) \right). \tag{14}$$

· The above is analogous to

$$n_{m+1} = \bar{\Gamma}(n_m - b_m(z(n_m) + O(\delta))),$$
 (15)

where $z(n_m) \in H(n_m)$ with $z(n_m) = J(n_m)$ for $n_m \in (k, k + 1)$, $k, k + 1 \in D$.

• Let $y(\cdot)$ be any bounded perturbed solution to the DI (13).

Main Result (Contd)

- The limit set $L(y) = \bigcap_{t \ge 0} \{ y(s) | s \ge t \}$ is then internally chain transitive (cf. Theorem 3.6¹⁴)
- The trajectory obtained from (15) by itself is a bounded and perturbed solution to the DI (13). The claim follows.
- Remark 1: From Theorem 1, if Γ(-J(n*)) = 0 for some n* ∈ C ⊂ D̄, then 0 ∈ H(n*) and the recursion (15) will converge to the largest chain transitive invariant set contained in C.
- There are at least two points in *D*, namely *n* = 1 and *n* = *L* for which 0 ∈ *H*(*n*). Thus, in general, if the algorithm does not converge to a point in the set *D*^o = {2,3,..., *L* − 1}, it will converge to either *n* = 1 or *n* = *L*.

¹⁴M. Benaïm, J. Hofbauer, and S. Sorin, Stochastic approximations and differential inclusions. SIAM Journal on Control and Optimization, 44(1), pp.328-348, 2005.

Numerical Experiments

- Experiments on two RL benchmark environments
 - Random Walk (21 states)¹⁵
 - Grid World (256 states)¹⁶
- Multiple experiments run for different initial condition, step-sizes etc.

¹⁵R.Sutton and A.Barto, Reinforcement Learning, MIT Press, 2018.

¹⁶M. Chevalier-Boisvert et al., Minigrid & miniworld: Modular & customizable reinforcement learning environments for goal-oriented tasks. NeurIPS, 36, 2024.

Results on Grid World

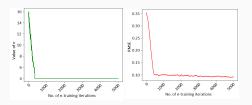


Figure 4: (a) *n*-updates and (b) RMSE for initial n = 16 and $\alpha = 0.4$.

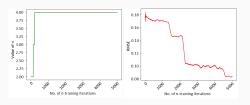


Figure 5: (a) *n*-updates and (b) RMSE for initial n = 2 and $\alpha = 0.4$.

Optimal Computing Budget Allocation¹⁷

- OCBA is a well known algorithm for discrete parameter stochastic optimization over small and medium sized parameter sets.
- The procedure initially asks for a computing budget and assigns a small budget for initial exploration across parameters.
- Subsequently, over multiple stages it assigns budget based on the current estimates (of value function for different n and it also makes use of RMSE).
- The procedure continues until the computing budget is exhausted.

¹⁷C.-H. Chen and L. H. Lee, Stochastic Simulation Optimization: An Optimal Computing Budget Allocation. Singapore: World Scientific, 2010

Comparisons in RMSE with OCBA on GW

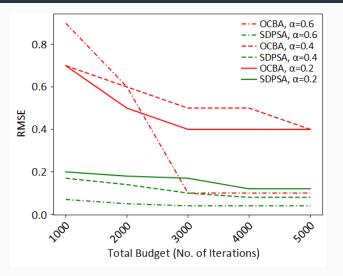


Figure 6: RMSE values w.r.t. computation budget of OCBA and SDPSA with fixed α on GW.

Comparisons with OCBA - RMSE and Computational Time

Table 1: Comparison Results of OCBA and SDPSA on GW.

	Time (Sec.)		RMSE	
α in <i>n</i> -step TD	OCBA	SDPSA	OCBA	SDPSA
0.6	588	452	0.10	0.04
0.4	610	405	0.40	80.0
0.2	571	490	0.40	0.12

Conclusions and Future Work

- Devised a two-timescale stochastic approximation scheme to find optimal n in n-step TD learning.
- · Gave a proof of convergence.
- Experimental results show better results than OCBA a well known algorithm for discrete parameter stochastic optimization
- · Future work can focus on
 - actor-critic algorithms with n-TD critic with an adaptive n.
 - finding optimal λ for TD(λ) in function approximation schemes.