
A Bit of Sequence Prediction: Lec 1



THE AI REVOLUTION



NEXT TOKEN PREDICTION

1 The workhorse of LLM’s

2 Given tokens seen so far, predict the next one.

3 Studied under various names, autoregression, sequence
prediction, etc.

4 The simplest setting . . .
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THE BIT PREDICTION GAME

1 Player I chooses heads or tails and does not reveal choice

2 Player II chooses heads or tails

3 Coins are revealed, if coin faces match, player II gets both coins
and if not player I gets both coinsx

What is the optimal strategy?

Player I Player II
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MIND READING MACHINE

David Hagelbarger Claude Shannon

Made money playing with humans



BIT PREDICTION FRAMEWORK

For t = 1 to n
Learner picks (possibly randomly) ŷt ∈ {±1}
True outcome yt ∈ {±1} is revealed
Learner suffers loss 1{ŷt ≠ yt}

End For

Start simple: Goal, do well compared to majority in hindsight:

Regn = n�
t=1

E [1{ŷt ≠ yt}] − min
b∈{±1}

n�
t=1

1{b ≠ yt}

How well can we do w.r.t. this measure against minimax optimal
strategy?
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What is the strategy?



STRATEGIES THAT FAIL

1 Any deterministic strategy: Eg. majority so far. Why?

2 Randomized Prediction that predicts heads with probability equal
to proportion of heads so far. Why?

3 Think sequence with first n�3 tails and the remaining heads.

So is o(n) regret even possible?



COVER’S RESULT

Lemma (T. Cover’65)
Let � ∶ {±1}n � R be any function s.t., ∀i ∈ [n], and y1, . . . ,yn,

��(y1, . . . ,yi−1,+1,yi+1, . . . ,yn) −�(y1, . . . ,yi−1,−1,yi+1, . . . ,yn)� ≤ 1

then, there exists a randomized strategy such that for any sequence of bits,

n�
t=1

Eŷt∼qt [1{ŷt ≠ yt}] ≤ �(y1, . . . ,yn) if and only if E✏�(✏1, . . . ,✏n) ≥ n
2

and further, the strategy achieving this bound on expected error is given by:

qt = 1
2
+ 1

2
E [�(y1, . . . ,yt−1,−1,✏t+1, . . . ,✏n) −�(y1, . . . ,yt−1,+1,✏t+1, . . . ,✏n)]

where ✏1, . . . ,✏n are Rademacher Random Variables.



IN PLAIN WORDS

For any sequence, expected number of mistakes made by
forecaster ≤ �(sequence) can be achieved.

If and only such a result can be achieved against a random
sequence.

Caveat � needs to satisfy stability condition that changing any
one bit does not change its value by more than 1.
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COVER’S RESULT PROOF

The if direction is trivial.

Only if direction: Plug in qt recursively starting from n

Idea for deriving qt: Solve minimax optimization starting from n
backwards

Why was the condition on � needed?



BIT PREDICTION

Back to goal to minimize:

Reg
n
= n�

t=1
E [1{ŷt ≠ yt}] − min

b∈{±1}
n�

t=1
1{b ≠ yt}

Pick �(y1, . . . ,yn) = minb∈{±1}∑n

t=1 1{b ≠ yt} +Cn

Condition E [�(✏1, . . . ,✏n)] = n

2 yields:

Cn = n

2
−E � min

b∈{±1}
n�

t=1
1{b ≠ ✏t}�

= n

2
− 1

2
E � min

b∈{±1}
n�

t=1
(1 − b ⋅ ✏t)�

= 1
2
E � max

b∈{±1} b ⋅ � n�
t=1

✏t�� = 1
2
E �� n�

t=1
✏t�� ≤

√
n

2



BIT PREDICTION: RADEMACHER COMPLEXITY

Let F ⊂ {±1}n be a set of benchmarks we want to compete with.

Consider the goal of minimizing regret:

Reg
n
(F) = n�

t=1
E [1{ŷt ≠ yt}] −min

f∈F
n�

t=1
1{ft ≠ yt} ,

One can use �(y1, . . . ,yn) = minf∈F ∑n

t=1 1{ft ≠ yt} +Cn(F)
First, � satisfies stability condition (easy to verify)!

Using same steps as previous case we get:

Cn(F) = 1
2
E �max

f∈F
n�

t=1
ft✏t� ≤ O(�n log �F �)



BIT PREDICTION: RADEMACHER COMPLEXITY

The term E �maxf∈F ∑n

t=1 ft✏t� is referred to as Rademacher
Complexity in Statistical Learning Theory (SLT)

In SLT input instances x’s and y’s are drawn iid from fixed
distribution and goal is excess risk.

If we had a priroi x1, . . . ,xn and then allowing adversary to pick
labels y’s as we go, then one can still use Cover’s result usingF = {f (x1), . . . , f (xn) ∶ f ∈ F}
In fact if one has access to unlabeled data/context drawn iid from
fixed distribution, one can still use this result with strategy:

qt = 1
2
+ 1

2
E
�������(x1,y1, . . . ,xt−1yt−1,x

′
t
,−1,x ′

t+1,✏t+1, . . . ,x
′
n
✏n)

−�(x1,y1, . . . ,xt−1yt−1,x
′
t
,+1,x ′

t+1,✏t+1, . . . ,x
′
n
✏n)
������



What if we had context that depended on our past predictions?

Think bit prediction where contexts are past y’s and we want to compete 
with strategies that take these strategies into account. 

Does Cover’s result work as is, if not what cracks?


