A Bit of Sequence Prediction: Lec 2

LINEAR BETTING GAME

For t = 1 to n

- Learner has to place a bet of amount $|\hat{y}_t|$ on either team A or team B (sign of \hat{y}_t tells us which team we bet on)
- Outcome of the round is revealed as $y_t \in \{\pm 1\}$
- Learner looses money $\ell_t = -y_t \cdot \hat{y}_t$

End For

Goal: given $\phi : \{\pm 1\}^n \to \mathbb{R}$ can we guarantee:

$$\sum_{t=1}^{n} (-y_t \cdot \hat{y}_t) \leq \Phi(y_1, \dots, y_n)$$

LINEAR BETTING RESULT

Lemma

For any $\phi: \{\pm 1\}^n \mapsto \mathbb{R}$, there exists a strategy with guarantee that

$$\sum_{t=1}^{n} -(\hat{y}_t \cdot y_t) \leq \Phi(y_1, \dots, y_n)$$

If and only if

$$\mathbb{E}\left[\phi(\epsilon_1,\ldots,\epsilon_n)\right]\geq 0$$

and the strategy achieving this is $\hat{y}_t =$

$$\frac{1}{2}\mathbb{E}\left[\phi(y_1,\ldots,y_{t-1},-1,\epsilon_{t+1},\ldots,\epsilon_n)-\phi(y_1,\ldots,y_{t-1},+1,\epsilon_{t+1},\ldots,\epsilon_n)\right].$$

Proof:

Again the reverse direction is easy just plug in random outcomes. For the other direction is similar to Cover's result proof, only this time we don't need restriction on ϕ since we can place any magnitude bet.

BETTING EXAMPLE

- We are given that *m* teams are playing in pairs *n* matches against each other.
- Assume that the pairs that are going to play for the n rounds are announced in advance as $(i_1, j_1), \ldots, (i_n, j_n)$.
- Benchmark we want to consider is one where, after the fact, we assign scores $w[1], \ldots, w[m]$ to each of the m teams and when teams i, j play, the benchmark makes a bet of w[i] w[j]
- Maximum bet value allowed by the benchmark is some value B
 Goal: Strategy to minimize

$$\operatorname{Reg}_{n} := \sum_{t=1}^{n} -(\hat{y}_{t} \cdot y_{t}) - \min_{w \in \mathbb{R}^{m}: \max_{i,j} w[i] - w[j] \leq B} \sum_{t=1}^{n} (-y_{t} \cdot (w[i_{t}] - w[j_{t}]))$$

BETTING EXAMPLE

Define

$$\phi(y_1, \dots, y_n) = \min_{w \in \mathbb{R}^m : \max_{i,j} w[i] - w[j] \le B} \sum_{t=1}^n \left(-y_t \cdot (w[i_t] - w[j_t]) \right) + C_n$$

• Using the Lemma lets write out C_n

$$C_{n} = -\mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\min_{w \in \mathbb{R}^{m}: \max_{i,j} w[i] - w[j] \leq B} \sum_{t=1}^{n} \left(-\epsilon_{t} \cdot \left(w[i_{t}] - w[j_{t}] \right) \right) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\max_{w \in \mathbb{R}^{m}: \max_{i,j} w[i] - w[j] \leq B} \sum_{t=1}^{n} \left(\epsilon_{t} \cdot \left(w[i_{t}] - w[j_{t}] \right) \right) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\max_{w \in [0,B]^{m}} \sum_{t=1}^{n} \left(\epsilon_{t} \cdot \left(w[i_{t}] - w[j_{t}] \right) \right) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\max_{w \in [0,B]^{m}} \sum_{i=1}^{n} \sum_{t=1}^{n} \epsilon_{t} \cdot w[i] \left(\mathbf{1}\{i_{t}=i\} - \mathbf{1}\{j_{t}=i\} \right) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\sum_{i=1}^{m} \max_{w[i] \in [0,B]} \sum_{t=1}^{n} \epsilon_{t} \cdot w[i] \left(\mathbf{1}\{i_{t}=i\} - \mathbf{1}\{j_{t}=i\} \right) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left[\sum_{i=1}^{m} \max_{w[i] \in [0,B]} \sum_{t=1}^{n} \epsilon_{t} \cdot w[i] \left(\mathbf{1}\{i_{t}=i\} - \mathbf{1}\{j_{t}=i\} \right) \right]$$

BETTING GAME WITH ARBITRARY CONTEXTS

For t = 1 to n

- Context $x_t \in \mathcal{X}$ is provided.
- Learner has to place a bet of amount $|\hat{y}_t|$ on either team A or team B (sign of \hat{y}_t tells us which team we bet on)
- Outcome of the round is revealed as $y_t \in \{\pm 1\}$
- Learner looses money $\ell_t = -y_t \cdot \hat{y}_t$

End For

Goal: given $\phi : \mathcal{X}^n \times \{\pm 1\}^n \mapsto \mathbb{R}$ can we guarantee:

$$\sum_{t=1}^{n} \left(-y_t \cdot \hat{y}_t \right) \leq \Phi(x_1, \dots, x_n, y_1, \dots, y_n)$$

Eg. $x_t = (i_t, j_t)$ teams playing can be chosen arbitrarily as we go.

MEET THE TREES

Definition

An \mathcal{X} valued binary tree is a sequence of manapping $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ where $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$. Here $\mathbf{x}_1 \in \mathcal{X}$ is a constant

$$\mathbf{x}_1 = x_1$$
 $\mathbf{x}_2(+1) = x_3$ $\mathbf{x}_3(+1, -1) = x_6$

ARBITRARY COVARIATES RESULT

Lemma

For any $\phi: \mathcal{X}^n \times \{\pm 1\}^n \mapsto \mathbb{R}$, there exists a strategy with can guarantee that

$$\sum_{t=1}^{n} -(\hat{y}_t \cdot y_t) \leq \Phi(x_1, y_1, \dots, x_n, y_n)$$

If and only if

$$\inf_{\mathbf{x}} \mathbb{E} \left[\phi(\mathbf{x}_1, \mathbf{x}_2(\epsilon_1), \dots, \mathbf{x}_n(\epsilon_1, \dots, \epsilon_{n-1}), \epsilon_1, \dots, \epsilon_n) \right] \geq 0$$

Arbitrary Covariates Result

If we consider the example

$$\phi(x_1,\ldots,x_n,y_1,\ldots,y_n)=\min_{f\in\mathcal{F}}\left\{\sum_{t=1}^n-y_t\cdot f(x_t)\right\}+C_n(\mathcal{F})$$

• In this case, using the lemma we get:

$$C_{n}(\mathcal{F}) = -\mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \left\{ \sum_{t=1}^{n} -\epsilon_{t} \cdot f(\mathbf{x}_{t}(\epsilon_{1}, \dots, \epsilon_{t-1})) \right\} \right]$$

$$= \mathbb{E}_{\epsilon} \left[\max_{f \in \mathcal{F}} \left\{ \sum_{t=1}^{n} \epsilon_{t} \cdot f(\mathbf{x}_{t}(\epsilon_{1}, \dots, \epsilon_{t-1})) \right\} \right] := \operatorname{Rad}_{n}(\mathcal{F})$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{x_1, \dots, x_n} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \epsilon_t f(x_t) \right| \right]$$

Online Supervised Learning

Given: model class $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$, convex L Lipschitz loss $\ell : \mathbb{R} \times \mathcal{Z} \mapsto \mathbb{R}$ For t = 1 to n

- Context $x_t \in \mathcal{X}$ is provided.
- Learner picks prediction $\hat{y}_t \in \mathbb{R}$
- Outcome of the round $z_t \in \mathcal{Z}$ is revealed
- Learner suffers loss $\ell(\hat{y}_t, z_t)$

End For

Goal: minimize regret

$$\operatorname{Reg}_{n}(\mathcal{F}) = \sum_{t=1}^{n} \ell(\hat{y}_{t}, z_{t}) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_{t}), z_{t})$$

Online Supervised Learning: Reduction

$$\operatorname{Reg}_{n}(\mathcal{F}) = \sum_{t=1}^{n} \ell(\hat{y}_{t}, z_{t}) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_{t}), z_{t})$$

$$= \sup_{f \in \mathcal{F}} \sum_{t=1}^{n} (\ell(\hat{y}_{t}, z_{t}) - \ell(f(x_{t}), z_{t}))$$

$$\leq \sup_{f \in \mathcal{F}} \sum_{t=1}^{n} \partial \ell(\hat{y}_{t}, z_{t}) \cdot (\hat{y}_{t} - f(x_{t}))$$

$$= L \sup_{f \in \mathcal{F}} \sum_{t=1}^{n} \mathbb{E}_{b_{t} \sim \frac{1 + \partial \ell(\hat{y}_{t}, z_{t}) / L}{2}} \left[b_{t} \cdot (\hat{y}_{t} - f(x_{t})) \right]$$

$$\leq L \mathbb{E} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^{n} b_{t} \cdot (\hat{y}_{t} - f(x_{t})) \right]$$

$$= L \mathbb{E} \left[\sum_{t=1}^{n} b_{t} \cdot \hat{y}_{t} - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} b_{t} \cdot f(x_{t}) \right]$$

Online Supervised Learning: Reduction

 So online supervised learning with any convex, L-Lipschitz loss we get guarantee that

$$\operatorname{Reg}_n(\mathcal{F}) \leq L \operatorname{Rad}_n(\mathcal{F})$$

• With a more complicated proof technique, one can show the same result but without requiring convexity of loss \(\ell. \)