A Bit of Sequence Prediction: Lec 2




LINEAR BETTING GAME

Fort=1ton

o Learner has to place a bet of amount |i/;| on either team A or team B
(sign of i, tells us which team we bet on)

o Outcome of the round is revealed as y; € {+1}

o Learner looses money {; = —y; - ij;

End For

Goal: given ¢ : {£1}" — R can we guarantee:

tf;(—yt-yoswyl,--.,yn)



LINEAR BETTING RESULT

Lemma

Forany ¢ : {£1}" — R, there exists a strateqy with guarantee that

If and only if

and the strategy achieving this is ij; =
%E [d)(]/l """ yt—l’_17€t+1 1111 61”1) _(I)(yl 1111 yt—11+11€t+1 1111 61’1)]'

Proof:

Again the reverse direction is easy just plug in random outcomes.

For the other direction is similar to Cover’s result proot, only this time
we don’t need restriction on ¢ since we can place any magnitude bet.



BETTING EXAMPLE

@ We are given that m teams are playing in pairs 7 matches against
each other.

@ Assume that the pairs that are going to play for the n rounds are
announced in advance as (i1,71), - . -, (in,Jn)-

@ Benchmark we want to consider is one where, after the fact, we
assign scores w|1],..., w|m] to each of the m teams and when
teams 7, ] play, the benchmark makes a bet of w|i]| — w|/]

@ Maximum bet value allowed by the benchmark is some value B
Goal: Strategy to minimize
n n

Reg, = > —(Ji-yt) - min Z( —yt - (wlit] —wljt]))

F=1 we]R{m:maxi,j [ ZU[] <B



BETTING EXAMPLE

@ Define

G(Y10 -+ Yn) = MiNgermmax; ;wli]-w(j]<B 2te1 (~Yt - (W[it] = wl[jt])) +Cy

@ Using the Lemma lets write out C,

i -Ee,.. [ min i(—a-(w[it]—wm»]

weR™:max; ; wli]-w[j]<B =1

™
|

B |2 3 (e (@] D)

=E¢, o | max Z(e (wli] W[it]))]

we[0,B]™




What if we didn’t know the which pairs play in advance?



BETTING GAME WITH ARBITRARY CONTEXTS

Fort=1ton
o Context x; € X is provided.

o Learner has to place a bet of amount |i/;| on either team A or team B
(sign of i, tells us which team we bet on)
o Outcome of the round is revealed as y; € {+1}
o Learner looses money {; = —y; - 1
End For

Goal: given ¢ : X" x {£1}" » R can we guarantee:

Z;(—}/r?t) < d)(x1 ..... X, Y1, -+ -, }/n)
f=

Eg. x; = (i, ;) teams playing can be chosen arbitrarily as we go.



MEET THE TREES

An X valued binary tree is a sequence of maapping x = (xq, .. ., Xy, )
where x; : {+1}"! — X. Here x; € X is a constant

1 41 —I141-1+41 -1 41

X1 — I1 XQ(—I—l) — I3 Xg(—l—l, —1) — Lg



ARBITRARY COVARIATES RESULT

Lemma

Forany ¢ : X" x{£1}" — R, there exists a strateqy with can guarantee that




ARBITRARY COVARIATES RESULT

@ If we consider the example

d(x1,..., X, Y1, - - -, ;) = min {é —1 -f(xt)}+Cn(]:)

feF

@ In this case, using the lemma we get:

Cn(F) = -E¢ min{i—et f(xe(eq, -, €t—1))}




RADEMACHER COMPLEXITY




RADEMACHER COMPLEXITY

Example : X =[0,1], Y = [-1,1]
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RADEMACHER COMPLEXITY

2 n
Ru(F):= sup Ec|—sup|), ef(x:)

X1, X " fer li=1




RADEMACHER COMPLEXITY

2 n
Ru(F):= sup Ec|—sup|), ef(x:)

X1, X " fer li=1

sequence random signs max correlation



SEQUENTIAL RADEMACHER COMPLEXITY

+1 -

L




SEQUENTIAL RADEMACHER COMPLEXITY
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ONLINE SUPERVISED LEARNING

Given: model class F c R, convex L Lipschitz loss { : R x Z ~ R

Fort=1ton

o Context x; € X is provided.
o Learner picks prediction i/; € R

o Outcome of the round z; € Z is revealed

o Learner suffers loss {(i;, z;)

End For

Goal: minimize regret

Reg, (F) - ée@t,zt) - inf éf(f(xt),zt)



ONLINE SUPERVISED LEARNING: REDUCTION

Reg (F) = Zﬁ(yt zt) — inf Zf(f(xt) Zt)

feF i3

= sup Z (ﬂ(yt, Zt) — K(f(xt), Zt))

feF t=1

<sup 3 0(Fn20) - (71 — F ()

feF t=1
n

= L sup ZEb N1+a€(9t,zt)/L 1Dy - (1 = f(xt))]
fe}_t 1 !

<LE Supzbt (1 f(xt))
feJ:t 1

= LK th ]/t _}n;Z;bt (xt)
f= )



ONLINE SUPERVISED LEARNING: REDUCTION

@ So online supervised learning with any convex, L-Lipschitz loss
we get guarantee that

Reg (F) <L Rad,(F)

@ With a more complicated proot technique, one can show the same
result but without requiring convexity of loss {.



