
A Bit of Sequence Prediction: Lec 2



LINEAR BETTING GAME

For t = 1 to n

Learner has to place a bet of amount �ŷt� on either team A or team B
(sign of ŷt tells us which team we bet on)

Outcome of the round is revealed as yt ∈ {±1}
Learner looses money `t = −yt ⋅ ŷt

End For

Goal: given � ∶ {±1}n � R can we guarantee:

n�
t=1
(−yt ⋅ ŷt) ≤ �(y1, . . . ,yn)



LINEAR BETTING RESULT

Lemma
For any � ∶ {±1}n � R, there exists a strategy with guarantee that

n�
t=1
−(ŷt ⋅ yt) ≤ �(y1, . . . ,yn)

If and only if

E [�(✏1, . . . ,✏n)] ≥ 0

and the strategy achieving this is ŷt =
1
2E [�(y1, . . . ,yt−1,−1,✏t+1, . . . ,✏n) −�(y1, . . . ,yt−1,+1,✏t+1, . . . ,✏n)].
Proof:

Again the reverse direction is easy just plug in random outcomes.
For the other direction is similar to Cover’s result proof, only this time
we don’t need restriction on � since we can place any magnitude bet.



BETTING EXAMPLE

We are given that m teams are playing in pairs n matches against
each other.

Assume that the pairs that are going to play for the n rounds are
announced in advance as (i1, j1), . . . , (in, jn).
Benchmark we want to consider is one where, after the fact, we
assign scores w[1], . . . ,w[m] to each of the m teams and when
teams i, j play, the benchmark makes a bet of w[i] −w[j]
Maximum bet value allowed by the benchmark is some value B

Goal: Strategy to minimize

Reg
n
∶= n�

t=1
−(ŷt ⋅ yt) − min

w∈Rm∶maxi,j w[i]−w[j]≤B

n�
t=1
(−yt ⋅ (w[it] −w[jt]))



BETTING EXAMPLE

Define
�(y1, . . . ,yn) = minw∈Rm∶maxi,j w[i]−w[j]≤B∑n

t=1 (−yt ⋅ (w[it] −w[jt]))+Cn

Using the Lemma lets write out Cn

Cn = −E✏1,...,✏n
� min

w∈Rm∶maxi,j w[i]−w[j]≤B

n�
t=1
(−✏t ⋅ (w[it] −w[jt]))�

= E✏1,...,✏n
� max

w∈Rm∶maxi,j w[i]−w[j]≤B

n�
t=1
(✏t ⋅ (w[it] −w[jt]))�

= E✏1,...,✏n
� max

w∈[0,B]m
n�

t=1
(✏t ⋅ (w[it] −w[jt]))�

= E✏1,...,✏n
� max

w∈[0,B]m
m�

i=1

n�
t=1

✏t ⋅w[i] (1{it = i} − 1{jt = i})�
= E✏1,...,✏n

� m�
i=1

max
w[i]∈[0,B]

n�
t=1

✏t ⋅w[i] (1{it = i} − 1{jt = i})�
= B E✏1,...,✏n

� m�
i=1

max� ni�
t=1

✏t,0�� ≤ B

2

m�
i=1

√
ni ≤ B

2
√

mn



What if we didn’t know the which pairs play in advance?



BETTING GAME WITH ARBITRARY CONTEXTS

For t = 1 to n

Context xt ∈ X is provided.
Learner has to place a bet of amount �ŷt� on either team A or team B
(sign of ŷt tells us which team we bet on)

Outcome of the round is revealed as yt ∈ {±1}
Learner looses money `t = −yt ⋅ ŷt

End For

Goal: given � ∶ X n × {±1}n � R can we guarantee:

n�
t=1
(−yt ⋅ ŷt) ≤ �(x1, . . . ,xn,y1, . . . ,yn)

Eg. xt = (it, jt) teams playing can be chosen arbitrarily as we go.



MEET THE TREES

Definition
An X valued binary tree is a sequence of maapping x = (x1, . . . ,xn)
where xt ∶ {±1}t−1 � X . Here x1 ∈ X is a constant
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ARBITRARY COVARIATES RESULT

Lemma
For any � ∶ X n × {±1}n � R, there exists a strategy with can guarantee that

n�
t=1
−(ŷt ⋅ yt) ≤ �(x1,y1, . . . ,xn,yn)

If and only if

inf
x
E [�(x1,x2(✏1), . . . ,xn(✏1, . . . ,✏n−1),✏1, . . . ,✏n)] ≥ 0



ARBITRARY COVARIATES RESULT

If we consider the example

�(x1, . . . ,xn,y1, . . . ,yn) = min
f∈F �

n�
t=1
−yt ⋅ f (xt)� +Cn(F)

In this case, using the lemma we get:

Cn(F) = −E✏ �min
f∈F �

n�
t=1
−✏t ⋅ f (xt(✏1, . . . ,✏t−1))��

= E✏ �max
f∈F �

n�
t=1

✏t ⋅ f (xt(✏1, . . . ,✏t−1))�� ∶= Radn(F)



RADEMACHER COMPLEXITY

Rn(F) ∶= sup
x1,...,xn

E✏

������
2
n

sup
f∈F �

n�
t=1

✏tf (xt)�
������
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2
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SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity:

Rn(F) ∶= sup
x

E✏

������
2
n

sup
f∈F �

n�
t=1

✏tf (xt(✏1∶t−1))�
������

where x = (x1, . . . ,xn) is X -valued tree. (each xt ∶ {±1}t−1 � X )

Theorem

For any class of predictors F ⊆ [−1,1]X ,

F is online learnable (ie. Vn(F)→ 0) if and only ifRn(F)→ 0

For `(ŷ,y) = �ŷ − y�, 1
2RT(F) ≤ VT(F) ≤ 2RT(F)
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ONLINE SUPERVISED LEARNING

Given: model class F ⊂ RX , convex L Lipschitz loss ` ∶ R ×Z � R
For t = 1 to n

Context xt ∈ X is provided.
Learner picks prediction ŷt ∈ R
Outcome of the round zt ∈ Z is revealed

Learner suffers loss `(ŷt, zt)
End For

Goal: minimize regret

Reg
n
(F) = n�

t=1
`(ŷt, zt) − inf

f∈F
n�

t=1
`(f (xt), zt)



ONLINE SUPERVISED LEARNING: REDUCTION

Reg
n
(F) = n�

t=1
`(ŷt, zt) − inf

f∈F
n�

t=1
`(f (xt), zt)

= sup
f∈F

n�
t=1
(`(ŷt, zt) − `(f (xt), zt))

≤ sup
f∈F

n�
t=1

@`(ŷt, zt) ⋅ (ŷt − f (xt))
= L sup

f∈F
n�

t=1
E

bt∼ 1+@`(ŷt,zt)�L
2

[bt ⋅ (ŷt − f (xt))]
≤ LE

�����supf∈F
n�

t=1
bt ⋅ (ŷt − f (xt))�����

= LE � n�
t=1

bt ⋅ ŷt − inf
f∈F

n�
t=1

bt ⋅ f (xt)�



ONLINE SUPERVISED LEARNING: REDUCTION

So online supervised learning with any convex, L-Lipschitz loss
we get guarantee that

Reg
n
(F) ≤ L Radn(F)

With a more complicated proof technique, one can show the same
result but without requiring convexity of loss `.


