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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

What is data assimilation?

The art of optimally incorporating

▶ partial and noisy observational data of a

▶ chaotic, nonlinear, complex dynamical system with an

▶ imperfect model (of the data and the system) to get an

▶ estimate and the associated uncertainty for the system state
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▶ Main application:
weather and climate
predictions

▶ Also being used
biology, industrial
applications, etc.

▶ Main challenges: the
complexity of the
system; the
uncertainties in
modelling processes
such as the clouds or
aerosols; computational
challenges
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

Main ingredients - dynamics and observation
and imperfect models for both! (Hidden Markov Model for state estimation)

▶ A dynamical model: given the state xt ∈ Rd at any time t, obtain the state xs at any
later time s > t (could be probabilistic model, a Markov process):

xt = m(xt−1) that is always imperfect1

E.g. xt = velocity, temperature of the atmosphere (on a grid in real or Fourier space, for a PDE solver)

▶ Observations: yt ∈ Rp over a certain time period, t = 1, . . . ,N
yt = h(xt) + ηt that is also imperfect

E.g. yt = temperature and rainfall measurements at a few locations

▶ Observation operator h : Rd → Rp to relate the model variables at time t to observations
at the same time: if the state were xt , the observations without noise would be h(xt)
E.g. How do {velocity, temperature} at a given time relate to {temperature, rainfall} at the same time

▶ Observational uncertainty: ηt accounts for how the real system is represented in the
model (representativeness error) and the instrumental uncertainty
E.g. lack of knowledge of exact conditions for cloud formation and rain (and rain-guage ‘errors’)

1
‘Perfect model’ is an oxymoron anyway!
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

Main ingredients - dynamics and observation
and imperfect models for both! (Hidden Markov Model for state estimation)

▶ A dynamical model: given the state xt ∈ Rd at any time t, obtain the state xs at any
later time s > t (could be probabilistic model, a Markov process):

xt = m(xt−1) Markov with transition density pm(xt |xt−1)

▶ Observations yt ∈ Rp at time t, for t = 1, . . . ,N

yt = h(xt) + ηt with likelihood pη(yt |xt)

▶ We will consider the problem of “estimating” the state xt at some time t given
observations at times 1, 2, . . . ,N.
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

Main ingredients - dynamics and observation
and imperfect models for both! (Hidden Markov Model for state estimation)

▶ A dynamical model: given the state xt ∈ Rd at any time t, obtain the state xs at any
later time s > t (could be probabilistic model, a Markov process):

xt = m(xt−1) Markov with transition kernel pm(xt |xt−1)

▶ Observations yt ∈ Rp at time t, for t = 1, . . . ,N

yt = h(xt) + ηt with likelihood pη(yt |xt)

▶ Main object of interest in data assimilation (basically filtering theory in discrete time,
in the context of the above framework):

pa(xt |y1:t) = posterior distribution of the state xt at time t
given observations y1:t ≡ (y1, . . . , yt) up to time t,

▶ Other problems: Smoothing: p(xt |y1, y2, . . . , yN ) for t < N; Prediction: p(xt |y1, y2, . . . , yN ) for t > N

▶ ‘Deterministic’ (not probabilistic) formulation: inverse problem of finding a function gt such that xt = gt (y1:t )
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

Here is a “picture” of data assimilation
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

And here is a more “standard” one for HMM

X0 X1 · · · Xk Xk+1 · · · XT

Y0 Y1 · · · Yk Yk+1 · · · YT

pm pm pm

pη pη pη pη pη
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

Main ingredients - some details about the “HMM” we confront

▶ A dynamical model: given the state x(t) ∈ Rd at any time t, gives the state x(s) at any
later time s > t: Lorenz-63, Lorenz-96, etc. (for synthetic data studies, d = 3 or d = 40
etc.) or general circulation models (for ocean / atmosphere / coupled d = 107 or
d = 104)

▶ Observations y1 ∈ Rp at time ti , for i = 1, . . . ,T (typically p ≪ d)

▶ Observations are partial (with gaps), noisy, discrete in time

▶ Observation operator h : Rd → Rp to relate the model variables at time t with
observations at the same time: if the state were x(t), the observations without noise
would be h(x(t))

▶ Observational “errors”: need to account for the difference between how the real system is
represented in the model (representativeness error) and the instrumental uncertainty
(noise)
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

How do we represent uncertainty? Using probabilities!

If and only if two random variables are correlated, information about one gives some
information about the other

mean of
p(x|y=3)
is ~= 1.0

That’s it: that is data assimilation! jupyter notebook: https://tinyurl.com/37c46z6f
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Section 1 - Mathematical formulation of data assimilation : DSPOM II: ICTS-TIFR :

So what is the big deal!? Time dependence....

we should really be watching a movie of the probability densities of the Markov process (xt , yt)

images from DART http://www.image.ucar.edu/DAReS/images/AssimAnim.gif

▶ A more general mathematical description with transition kernels e.g

https://web.math.princeton.edu/~rvan/orf557/hmm080728.pdf

▶ For Monte Carlo approximations, Feynman–Kac models and McKean approaches to data
assimilation e.g. books by del Moral “Interacting particle systems” and Reich, Cotter “probabilistic forecasting...”
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

Outline

Mathematical formulation of data assimilation

Motivation and earth science context

Kalman and particle filters
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

The earth is a complex, high-dimensional, chaotic, dynamical system
Atmosphere, oceans, solar radiation, volcanoes, marine biology, ice and snow, clouds, precipitation, evaporation,
land, rivers, lakes, CO2, CH4, vegetation, agriculture, ecosystems, human activities
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And there is just one earth!
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

A few random(!) questions

▶ When is the first total solar eclipse in India after 2100?

▶ When will be the next two (or 20) perihelia of Halley’s comet? (2061, 2134, ...)

▶ How many times in the next hour will a double pendulum reach the apogee? What will be
the angle of a double pendulum after 5 min., 10 min., ...? (... video ...)

▶ Breaking waves – which wave will reach you?

▶ What will be the min/max temperatures in five largest cities in India, tomorrow,
day-after, over the next month?

▶ What will be the major stock exchange indices tomorrow?

▶ What will be the number of cars that will enter the golden gate bridge in next 30 minutes?

▶ Who will be the prime minister of India in 2030?

▶ How many nuclei from a given piece of U235 will decay in next 10 minutes? ...
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

How do we predict weather? (Or forecast floods?)#

Three main ingredients (for most complex systems):

▶ The main, relevant scientific theories are fluid dynamics, electrodynamics,
thermodynamics, biogeochemistry, etc. for the fluid flow, phase transitions, etc.

▶ Models are either derived from the scientific theories (e.g. quasi-geostrophic equations,
radiative balance models), or phenomenological (e.g. ice, groundwater).

▶ Since the models, and arguably the system, are chaotic (unlike, say, the solar system on
∼1000-year scale), we need accurate initial conditions and uncertainty estimates.

▶ These require use of observational data of the earth system, and increasingly huge
quantities of model simulation data: this is the data assimilation problem.

Theories
∗←→ Models

Data Assimilation←−−−−−−−−−−−→ Data

* For detailed discussion: “How the laws of physics lie?” by Nancy Cartwright

# “The quiet revolution of numerical weather prediction,” by Peter Bauer, Alan Thorpe, Gilbert Brunet; doi:10.1038/nature14956
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

Chaos necessitates probability and data!

Lorenz ODE: ẋ = σ(y − x); ẏ = x(ρ− z)− y ; ż = xy − βz (or even the solar system)

▶ Almost every trajectory “looks” the same and has the same statistics (ergodicity)

▶ But trajectories diverge away from each other exponentially (positive Lyapunov exponent)

Consequences:

▶ Deterministic predictions (beyond t ∼ O(1/λ), where λ is the largest Lyapunov exponent) are impossible2

▶ Probabilistic predictions (with uncertainty smaller than the long-term statistics) require “frequent” observations

jupyter notebook: https://tinyurl.com/47djm3x7
2
For the solar system, uncertainties multiply by a factor of 10 every 10 My. doi:10.1073/pnas.1813901116 (Fascinating history from Poincaré, ..., to Laskar)
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

Drowning in the ocean of observational and simulation data

Simulation data: e.g. reanalysis of the past century climate / weather, or climate predictions
of the future (usually lower resolution), is limited by
▶ computing and storage one is willing to utilize,
▶ ‘fidelity’ of the models, and
▶ data assimilation methodology used to generate the reanalysis.

Several such datasets are available:
▶ E.g. climatedataguide.ucar.edu/climate-data/era5-atmospheric-reanalysis:

‘hourly data, 31 km resolution on 137 levels’: this translates to around 18M grid points
per hour, so ∼ 1GB per day, for 40 years, so ∼ 20− 100TB of data from one ‘model’

▶ There are around ∼ 20 (or more?) such datasets
▶ Similar quantities of data from other models such as those in IPCC reports

Observational data: largest quantity is satellite data,
which is necessarily only for the atmosphere and ocean
surface; Deep ocean observations is a major challenge

▶ E.g. https://climatedataguide.ucar.edu/
climate-data/advanced_search lists around 35
satellite datasets, and 6 ‘in-situ’ datasets!

▶ Quantity is around two-three orders of magnitude
smaller than the simulation data

▶ ‘Retrieving’ various atmospheric / ocean variables
from ‘raw’ satellite measurements is a challenging
inverse problem in itself From Ghil, Lucarini, The physics of climate

variability and climate change, RMP, v.92,

p.035002-1 (2020)
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

Data assimilation is a estimation problem.

Estimation of state, in time, repetitively.

▶ Breaking waves – which wave will reach you? (insurance)

▶ What will be the min/max temperatures in five largest cities in India, tomorrow,
day-after, over the next month? (planning)

▶ What will be the average temperature in Bangalore, month by month, in 2050, or up to
2050? (design)

A few characteristics of data assimilation problems:

▶ Good physical theories, but not necessarily good models

▶ Systems are nonlinear and chaotic (usually deterministic)

▶ Multiscale – temporal and spatial – dynamics
▶ Observations of the system are

▶ noisy
▶ partial (sparse)
▶ discrete in time
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Section 2 - Motivation and earth science context : DSPOM II: ICTS-TIFR :

What is data assimilation? “Data science for chaotic dynamical systems”

The art of optimally incorporating

▶ partial and noisy observational data of a

▶ chaotic, nonlinear, complex dynamical system with an

▶ imperfect model (of the data and the system) to get an

▶ estimate and the associated uncertainty for the system state
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▶ Main application:
weather and climate
predictions

▶ Also being used
biology, industrial
applications, etc.

▶ Main challenges: the
complexity of the
system; the
uncertainties in
modelling processes
such as the clouds or
aerosols; computational
challenges

Amit Apte (IISER Pune, India) Data Assimilation: theory and practice ( apte@iiserpune.ac.in ) p. 21 / 33



Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Outline

Mathematical formulation of data assimilation

Motivation and earth science context

Kalman and particle filters

Summary
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Recall the “picture” of data assimilation

8MQI

XVYI
XVENIGXSV]

SFWIVZEXMSRW

L��SFW�
JYRGXMSR

SFW��IVVSV

IRWIQFPI
JSVIGEWX

YTHEXIH
IRWIQFPI

EVVS[W�MRHMGEXI�HEXE
EWWMQMPEXMSR�TVSGIWW SFW�

WTEGI

WXEXI
WTEGI

Amit Apte (IISER Pune, India) Data Assimilation: theory and practice ( apte@iiserpune.ac.in ) p. 23 / 33



Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Conditional density satisfies a recurrence relation
Dynamics on the space of probability distributions

pa(xt−1|y1:t−1)
forecast−−−−−−−→

or prediction
pf (xt |y1:t−1)

update−−−−−−→
or analysis

pa(xt |y1:t)

▶ “prediction” uses Markov transition density (i.e. dynamical model) pm(xt |xt−1)

pf (xt |y1:t−1) =

∫
pa(xt−1|y1:t−1) · pm(xt |xt−1)dxt−1

▶ “update” uses the likelihood pη(yt |xt) and Bayes theorem

pa(xt |y1:t−1, yt) ∝ pf (xt |y1:t−1) · pη(yt |xt)

Thus we obtain the following recurrence relation for the posterior distribution

pa(xt |y1:t) ∝
[∫

pa(xt−1|y1:t−1) · pm(xt |xt−1)dxt−1

]
· pη(yt |xt)
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Two-step process for obtaining the filtering density
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Kalman filter: a “two moment” representation
The ‘simple harmonic oscillator’ of filtering theory: We only need mean and covariance for linear, Gaussian case

▶ Suppose ‘everything’ is linear, Gaussian: the Markov model pm(xt |xt−1); The observation
operator h(x) = Hx ; The initial distribution for x0 and the observation noise ηt

▶ Kalman filter gives a recursion relation for the mean and covariance:
pa(xt |y1:t) ∼ N (xat ,C

a
t ) and pf (xt+1|y1:t) ∼ N (x ft+1,C

f
t+1):

▶ “Update step” given by

xat = x ft + K (yt − Hx ft ) and C a
t = (I − KH)C f

t

▶ Here K = P f
t H

T (HP f
t H

T + R)−1 is the Kalman gain matrix
▶ “Prediction step” given by

x ft+1 = Mxat and C f
t+1 = MC a

t M
T

jupyter notebook: https://tinyurl.com/2aj7wz2y

▶ But what do we do when Ct is 10
6 × 106 dimensional? Ensemble Kalman filter is the

Monte Carlo version of this filter.
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Ensemble (Monte Carlo) approximation of the recursion
Recall

▶ “prediction” pf (xt |y1:t−1) =
∫
pa(xt−1|y1:t−1) · pm(xt |xt−1)dxt−1

▶ “update” pa(xt |y1:t−1, yt) ∝ pf (xt |y1:t−1) · pη(yt |xt)

Monte Carlo approximation (think of ‘weighted histogram’!):

pa/f (xt |...) ≈
∑N

i=1 w
a/f
t,i δ(xt − x

a/f
t,i ) using weighted sample

{
(w

a/f
t,i , x

a/f
t,i )

}N

i=1

Two important classes of methods:

▶ Ensemble Kalman filter (EnKF): is all about the states ‘x ’ (with w
a/f
t,i = 1/N)! Key step:

xat,i = x ft,i + K (y it − Hx ft,i )

▶ Particle filter (PF): is all about the weights ‘w ’ ! Key step:

wa
t,i ∝ w f

t,ipη(yt |x ft,i )
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Particle filter: a “weighted sample” representation

Recall

▶ “prediction” pf (xt |y1:t−1) =
∫
pa(xt−1|y1:t−1) · pm(xt |xt−1)dxt−1

▶ “update” pa(xt |y1:t−1, yt) ∝ pf (xt |y1:t−1) · pη(yt |xt)

▶ PF summary: (w a
t−1,i , x

a
t−1,i )

forecast x−−−−−−−→
unchanged w

(w f
t,i = w a

t−1,i , x
f
t,i )

unchanged x−−−−−−−→
reweighted w

(w a
t,i , x

f
t,i = x f

t,i )

▶ if x ft,i is a sample from an “importance sampling density” q(xt |xat−1,i , . . . ):

x ft,i ∼ q(xt |xat−1,i , . . . ) e.g. could be pm(xt |xat−1,i )

▶ then the weighted sample {wa
t,i , x

f
t,i}Ni=1 approximates the posterior at time t if we choose

wa
t,i ∝ wa

t−1,i ·
pm(x ft,i |xat−1,i ) · pη(yt |x ft,i )

q(x ft,i |xat−1,i , . . . )

“Resample if necessary” (because ‘many’ w a
t,i may become very small)
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Ensemble Kalman filter: a “two moment” representation
Recall

▶ “prediction” pf (xt |y1:t−1) =
∫
pa(xt−1|y1:t−1) · pm(xt |xt−1)dxt−1

▶ “update” pa(xt |y1:t−1, yt) ∝ pf (xt |y1:t−1) · pη(yt |xt)

▶ EnKF summary (wi = 1/N): (xa
t−1,i )

forecast x−−−−−−−→
unchanged w

(x f
t,i )

‘shift’ x using KF−−−−−−−−−→
unchanged w

(xa
t,i )

▶ x ft,i is a sample from a Markov transition density pm(xt |xat−1,i )

x ft,i ∼ pm(xt |xat−1,i )

▶ Update step is like a ‘weighted linear combination of forecast and observations’

xat,i = x ft,i + K (y it − Hx ft,i ) = (I − KH)x ft,i + Ky it

▶ K = P̂ f
t H

T (HP̂ f
t H

T + R)−1 uses sample covariance P̂ f
t .

▶ Commonly used version: square-root filters with localization and inflation jupyter
notebook: https://tinyurl.com/yeykzvbp
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Contrasting the properties of particle and Kalman filters

On one hand,

▶ Particle filter has sampling errors (∼ C/
√
N), but the errors (C ) grow exponentially with

the dimension of the state space (“curse of dimensionality”)3,

▶ but it does not have any restrictions about the dynamics being linear.

On the other hand,

▶ Ensemble Kalman filter is obviously designed for linear systems - for sufficiently nonlinear
systems, it fails to represent the true posterior distribution, (examples below)4

▶ but it seems to work well5 even in high dimensional systems with very small ensembles
(N ∼ 100 for systems with d ∼ 106!)

3e.g. Rebeschini and van Handel, Can local particle filters beat the curse of dimensionality?,
Ann.Appl.Probab., V.25 (2015), p.2809

4e.g. Apte, Jones, The impact of nonlinearity in Lagrangian data as- similation, Nonlin.Proc.Geo. v.20
(2013) p.329

5“seems to capture the truth” but how about the true posterior?
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Section 3 - Kalman and particle filters : DSPOM II: ICTS-TIFR :

Curse of dimensionality for particle filters

▶ If πf
N is the particle filter approximation with N particles of the exact filtering distribution

π for a D-dimensional problem, the error is

∥πf
N − π∥ ∼ eαD√

N

▶ If we divide the system into blocks such that the dynamics is approximately local within
each block, the above result can be improved6 to

∥πf
N − π∥ ∼ eαd√

N
+ e−βr

where r is the radius of the “local block” and d is its dimension. (e.g. discretization of
n-dimensional PDE will give d ∼ rn.)

6P. Rebeschini, R. van Handel, “Can local particle filters beat the curse of dimensionality?”
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Section 4 - Summary : DSPOM II: ICTS-TIFR :

Data assimilation is the art of optimally incorporating

▶ partial and noisy observational data of a

▶ chaotic, nonlinear, complex dynamical system with an

▶ imperfect model (of data noise and system dynamics) to get an

▶ estimate and the associated uncertainty for the system state

——————————————————————————————–
Main challenges:

▶ Curse of dimensionality: sampling methods need exponentially large number of samples
(computational challenges)

▶ complex dynamical system: require innovative approaches, such as localization and
inflation (conceptual challenges), and theoretical guarantees (mathematical challenges)

▶ state estimation and uncertainty quantification: several new approaches, such as
multi-level Monte Carlo, interacting particle systems
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