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Challenges: Strategic interactions vastly complicate the task of learning

Opportunities:

Require a careful rethinking of algorithm design.



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Opportunities: Require a careful rethinking of algorithm design.

Though it is less well understood, we can build on foundations from game theory and reinforcement learning
to explore and design new algorithmic principles.



Main Question:
How do we design principled algorithms for multi-agent problems?

We will focus on theoretical foundations.



Markov Games

Generalization of a Markov Decision Process introduced by Shapley (1953)

» Action Spaces: Al A, A=A
» State Spaces: S 1=1

» Dynamics: P(s'|s,a1,...,a,)

» Reward functions: R; : S x A —R

» Horizon: H or oo

» Initial state distribution: po




Markov Games

Interaction Protocol:

» Environment samples initial state: sg ~ pg
» For step t=01,2,...

» Each agent plays an action a; , simultaneously as = (@1 ¢, ..-Gn t)

» Agents receive their immediate reward: 75+ = R;(St, at)
» Environment transitions to the next state: syyq1 ~ P(- | s¢, as)




Markov Games

In this overview we will focus mainly on fully observable, tabular Markov Games

Fully observable: joint actions and states observed by all agents
Tabular: Finite State and Action Spaces




Policies

Players strategy spaces are spaces of policies (distributions over actions):

General Policy: Depends on the entire history of play:

I = {m : (S, xA)" "' x8 = Ay}
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Policies

Players strategy spaces are spaces of policies (distributions over actions):

General Policy: Depends on the entire history of play:

I = {m : (S, xA)" "' x8 = Ay}

Non-stationary Markov Policy: Depends only on the current state and time

Hi:{ﬂ'iZR_FXS%AAi}

Stationary Markov Policy: Depends only on the current state

HZ:{TFZS%AAz}



To evaluate the quality of their strategies, we assume that players seek to
maximize their cumulative reward:

Finite Horizon:

H
U, (m’ 7T—z‘) _ 4:777P7,00 E 7°z . Utility of agent 1 depends on the policy of agent 1 as

t—0 well as the policies of all other agents 7_;




Utilities

To evaluate the quality of their strategies, we assume that players seek to
maximize their cumulative reward:

Finite Horizon:

Ui(mi, m—;) = E

Infinite Horizon:

"7T,P,,0()

Ui (T, m—;) =

"7T,P,,O()

Utility of agent 1 depends on the policy of agent 1 as

well as the policies of all other agents 7_;

Utility is discounted cumulative reward
(each player with their own discount factor).



Recap: Markov Games Setup

» Action Spaces: A1, .., An, A=]] A
1=1

» State Spaces: S ' Uiy i) = B ppy | > 7T
» Dynamics: P(s'|s,aq, ..., ) | t=0

» Reward functions: R; : S x A— R
» Horizon: H or oo
» Initial state distribution: Po

Special Cases:

> Single-agent RL
> Two-player Zero-sum (R; = — R,)
» Cooperative (R; = R; Vi,J)



Nash Equilibrium

What are good outcomes for Markov Games?

Nash Eq: Natural solution concept for individually rational agents.

T is Nash if for each playeri: U;(nf,7*.) > U;(m;, 7*,) Vm; €1,

—1



Nash Equilibrium

What are good outcomes for Markov Games?

Nash Eq: Natural solution concept for individually rational agents.

T is Nash if for each playeri: U;(nf,7*.) > U;(m;, 7*,) Vm; €1,

—1

> Each player is at a best-response -> no incentive to unilaterally deviate.
> Always guaranteed to exist in Markov policies in Markov games.

» In non-stationary Markov policies for finite horizon games.

» In stationary Markov policies for infinite horizon games.



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
ii. Value-based algorithms
ili. The role of function approximation

3. Further directions

I. Scalable algorithms for zero-sum games
iI. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

Takeaway: Equilibrium computation (even in normal-form games) is hard.

» Coupling between agents gives rise to non-stationarity and complex dynamics.

» No-regret learning and variational inequality perspectives can help for algorithm design with convergence to
game theoretically meaningful solutions e.g., CCE.

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms
ili. The role of function approximation

3. Further directions

I. Scalable algorithms for zero-sum games
il. New equilibrium concepts
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A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
> No convergence guarantees or no-regret algorithms in general!
> Zero-sum games (and similar) allow for some positive results.

Il. Value-based algorithms
ili. The role of function approximation

3. Further directions

I. Scalable algorithms for zero-sum games
iI. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



Value-Based Approaches

We've seen that no-regret and policy gradient methods don’t generally allow us to develop principled algorithms
for learning in Markov Games.

*They are agnostic to the underlying structure of the problem.
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Value-Based Approaches

We've seen that no-regret and policy gradient methods don’t generally allow us to develop principled algorithms
for learning in Markov Games.

*They are agnostic to the underlying structure of the problem.

> RL (and thus MARL) is fundamentally an optimal control problem
> Are there dynamic programming (value-based) approaches to MARL?

> Let’s start in infinite horizon Markov Games

- _
U(r) = Ex pp, ZVt"“t
=0 i




Single-Agent Warmup

Cumulative reward starting from
state s and action a, and applying

policy  hereafter

Q"(s,a) =

4‘|
“1, P

Z /thZ (St7 at)
L t=0

So — S, — Q




Single-Agent Warmup

Cumulative reward starting from " oo
state s and action a, and applying Q" (s,a) =E; p thRi(st, ay)|so = S, a0 = a
policy  hereafter | t=0

P . . . TR t
Our infinite horizon objective: U(7T) = Lr P oo E Y Tt

Equivalent formulation of infinite- >

horizon problem: U(r) = Usmod™ arom(s) Q7 (s,a)]; d¥ = (1—y) Z%ﬁpr(St = s|m)
/J t=0

Discounted state visitation frequency under x




Single-Agent Warmup

Cumulative reward starting from -
state s and action a, and applying Q" (s,a) =E; p thRZ-(st, at)|so = S,ap = a
policy  hereafter | t=0 _
- _
n t
Our infinite horizon objective: U(W) = Lr P oo Z Y Tt
| t=0 _
Equivalent formulation of infinite- _ _ S~ ,
horizon problem: U(m) = Esagr ann(s)|@7 (s,a)] 5 d™ = (1 — ;) ZV Pr(s; = s|m)
t=0
Bellman’s Principle of Optimality says . . v
that optimal policy must satisfy: Q (S’ a) _ R(S7 a) T 7By |5,a {H?XQ (S y & )}

>

Policy can be recovered as 77 (s) = argmax Q" (s, a)



Single-Agent Warmup

Cumulative reward starting from -
state s and action a, and applying Q" (s,a) =E; p thRi(st, ay)|so = S, a0 = a
policy & hereafter | t=0 _
- o _
P : L TR t
Our infinite horizon objective: U(7T) = Lr P oo E Y Tt
| t=0 _

Equivalent formulation of infinite-

horizon problem: U(r) = Usmod™ arom(s) Q7 (s,a)]; d¥ = (1—y) ZVtPT(St = s|m)
t=0

Bellman’s Principle of Optimality says . . B
that optimal policy must satisfy: Q" (s,a) = R(s,a) +7Ey|s.q {m@XQ (s',a )}

a

So finding O* is enough to solve the RL problem!



Single-Agent Q-learning
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Single-Agent Q-learning

So finding Q* is enough to solve the RL problem:  Q*(s,a) = R(s,a) + 7Ey|s.q [ma;x Q* (s, a’)}

a

Observe that O* is the fixed point of this mapping :

T RSXA Ly RS*A JQ(S’ 0) = R(s,a) + 1Ex [max Q(s'. )

T can be shown to be a contraction mapping in the L norm: [|[7Q — TQ'|lcc < 7/|Q — Q']



Single-Agent Q-learning

So finding Q* is enough to solve the RL problem:  Q*(s,a) = R(s,a) + 7Ey|s.q [ma;x Q* (s, a’)}

a

Observe that O* is the fixed point of this mapping :

T :RS*A 5 RSXA TQ(s,a) = R(s,a) + 1Ey [maxQ(s',a),
T can be shown to be a contraction mapping in the L norm: || 7Q —TQ'|| < 7/Q — Q||

Which immediately suggests a Q-learning algorithm (Watkins 1989):

V(s,a) do: Qiyi(s;a) = (1 = @)Q(s,a) +aTq(s; a)



Single-Agent Q-learning

So finding Q* is enough to solve the RL problem:  Q*(s,a) = R(s,a) + 7Ey|s.q [ma;x Q* (s, a’)}

a

Observe that O* is the fixed point of this mapping :

T :RS*A 5 RSXA TQ(s,a) = R(s,a) + 1Ey [maxQ(s',a),
T can be shown to be a contraction mapping in the L norm: || 7Q —TQ'|| < 7/Q — Q||

Which immediately suggests a Q-learning algorithm (Watkins 1989):

V(s,a) do: Qiyi(s;a) = (1 = @)Q(s,a) +aTq(s; a)

_

Can perform stochastic approximation of theses dynamics when using a stochastic estimator of T



Value-Base Methods in Zero-Sum Games

Can we derive Q-learning algorithms for Infinite-Horizon Zero-Sum Markov Games?



Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

1 2

Introduced by Littman (1994) \j

Building off of work by Shapley (1959) who showed the

existence of Nash eqg. In such games by using a
contraction mapping on a state-value function.

Q*(s,a) = E, [R(s, a) + vy max Q" (s, a/)} Q*(s,a1,a2) = R(s,a1,a2) + YEy/s.0,.0, |minmax 7] Q*(s" )72




Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

Q*(s,a) = E, [R(s, a) + vy max Q" (s, a/)} Q*(s,a1,a2) = R(s,a1,a2) + YEy/s.0,.0, |minmax 7] Q*(s" )72

1 T2

m"(s) = Nash (Q(s), —Q(s)) \j




Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

Q*(s,a1,a2) = R(s,a1,a2) + YE s/ |s.a1,0, | MiNMax WfQ*(s’)WQ

771 7T



Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

Q*(s,a1,a2) = R(s,a1,a2) + YE s/ |s.a1,0, | MiNMax 7'(',{@*(8/)7'('2

771 7T

Like single-agent RL, we can see this as the fixed point of a map H

HQ(s,a1,a2) = R(s,a1,az) + YE ¢/ |s.a1,0, | MiNMax WlTQ(S')Wg

1 T2

Observe: @ = H(Q™)




Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

Q*(s,a1,a2) = R(s,a1,a2) + YE s/ |s.a1,0, | MiNMax WfQ*(s’)WQ

771 7T

Like single-agent RL, we can see this as the fixed point of a map H

HQ(s,a1,a2) = R(s,a1,az) + YE ¢/ |s.a1,0, | MiNMax WlTQ(S')Wg

1 T2

Like in the single-agent setting, this is a contraction mapping in the £Z_ norm

IHQ — HQ'|[oo <[Q — Q|



Value-Base Methods in Zero-Sum Games

Infinite-Horizon Zero-Sum

Q*(s,a1,a2) = R(s,a1,a2) + YE s/ |s.a1,0, | MiNMax WfQ*(s’)WQ

771 7T

Like single-agent RL, we can see this as the fixed point of a map H

HQ(s,a1,a2) = R(s,a1,az) + YE ¢/ |s.a1,0, | MinMax WlTQ(S')Wg

1 T2

Like in the single-agent setting, this is a contraction mapping in the £Z_ norm

Which suggests the following V(s,a) do: Qui1(s,a) = (1 —a)Qu(s,a) + aHQ(s,a)

minimax Q-learning algorithm:
Requires solving a matrix game at _/

every step!



General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale



General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Centralized computation of Nash in Zero-Sum Markov Games

» Initializes Qy, 11 o, 7
» For step t=01,2,...
» For each state s
» Update policy using no-regret learning on matrix game:

m?}§ m%n) m1(8)T Qe (s)ma(s)

7T1,t+1(8) — PAl (7T1,t =+ aQt(S)ﬂ'Q,t(

S mai(s) = Pay (ms — aQf (s)ma




General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Centralized computation of Nash in Zero-Sum Markov Games

» Initializes QO’ 10700
» For step t=0/1,2,...

» For each state s
» Update policy using no-regret learning on matrix game:

m?}§ m%n) m1(8)T Qe (s)ma(s)

m1t41(8) = Pa, (16 + aQi(s)m2,4(5))

e.q. - B Fast timescale a > > f#
T241(8) = P, (T10 — aQy (8)m1,4(5)) Converges quickly to minimax
» Update Q-function: value
\V/(S, a) do: Qi41(s,a) = (1 — 5)@75(37 CL) + B (R(S, ai,az) + 7E3’|s,a [7"'1,75(SI)TQt(S/)WQat(SI)}) SlOW timescale

Update Q-function



General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Centralized computation of Nash in Zero-Sum Markov Games

» Initializes QO’ 10700
» For step t=0/1,2,...

» For each state s
» Update policy using no-regret learning on matrix game:

max min 71 (s)7 Q¢ (s)ma(s) Sanity Check
m1(s) 72(s) Suppose the fast timescale has
T14+1(8) = Pa, (M1 + aQ(s)m2.4(5)) converged: this is exactly
Mminimax-Q

c.d., To,441(8) = Pa, (1,4 — CVQ;—F(S)WU(S))

» Update Q-function:

V(s,a) do: Qir1(s,a) =(1—B)Q+(s,a)+ [ (R(s, ar,az) +vEgsq [7?1,,5(3’)TQt(s’)7T2,t(3’)})




General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Centralized computation of Nash in Zero-Sum Markov Games

» Initializes QO’ 10700
» For step t=0/1,2,...

» For each state s
» Update policy using no-regret learning on matrix game:

Sanity Check
Suppose the fast timescale has
converged: this is exactly

max min Wl(S)TQt(S)ﬂ'Q(S) minimax-Q

7'('1(8) 7'('2(8)

» Update Q-function:

V(s,a) do: Qiy1(s,az,as) = (1 —B)Q¢(s,a1,a2)+ S (R(s, at,a2) +vEs/ 5.4, ,0, |Min maxw{@ﬂs’)m})

T2 1



General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Many papers use this

algorithmic structure:

E.g., Use no-regret learning subroutines
subroutines & analyze full- & analyze sample based algorithms:

information algorithms: [Cai et al. 2023]
[Zhang et al. 2022] [Chen et al. 2023]
[Cen et al. 2022]
[Cen et al. 2023]

E.g., Use no-regret learning



General-Algorithmic |deas for Zero-Sum Markov Games

Unifying idea: Timescale separation

» Solve per-state Matrix Games on a fast timescale
(using e.g., no-regret learning, extra gradient, proximal methods)

» Use solutions in minimax Q-learning on a slow timescale

Many papers use this

algorithmic structure:

E.g., Use no-regret learning subroutines
subroutines & analyze full- & analyze sample based algorithms:

information algorithms: [Cai et al. 2023]
[Zhang et al. 2022] [Chen et al. 2023]

[Cen et al. 2022]
[Cen etal. 2023] Still an ongoing area of research!

E.g., Use no-regret learning



Beyond Zero-Sum Markov Games

Do these ideas extend beyond zero-sum games in infinite horizon Markov Games?

Q*(s,a1,a2) = R(s,a1,a2) + YE 5,01 a5 nglrin max WlTQ*(S’)WQ
1 2




Beyond Zero-Sum Markov Games

Do these ideas extend beyond zero-sum games in infinite horizon Markov Games?

Q*(s,a1,a2) = R(s,a1,a2) + YE 5,01 a5 nglrin max WlTQ*(S’)WQ
1 2

[Hu & Wellman 2003]

Qi (s,a1,...,an) = Fsq[Ri(S,a1,...,a,) + v;Nash; (Q](s"), ..., Q% (s))]

. ~

Fach agent keeps track of their This is the value at Nash given the
Q-function state-dependent matrix game:

o~ |Qi(8,a)] where 7 = Nash Eq




Beyond Zero-Sum Markov Games

Do these ideas extend beyond zero-sum games in infinite horizon Markov Games?

Q*(s,a1,a2) = R(s,a1,a2) + YE 5,01 a5 nglrin max WlTQ*(S’)WQ
1 2

[Hu & Wellman 2003]
Qi (s,a1,...,an) = Fsq[Ri(S,a1,...,a,) + v;Nash; (Q](s"), ..., Q% (s))]

Reduces to minimax Q learning in zero-sum games

Difficulties in general: e.g., equilibrium selection (if there are multiple Nash which to choose?)



Beyond Zero-Sum Markov Games

Do these ideas extend beyond zero-sum games in infinite horizon Markov Games?

Q*(s,a1,a2) = R(s,a1,a2) + YE 5,01 a5 nglrin max WlTQ*(S’)WQ
1 2

[Hu & Wellman 2003]

Qi (s,a1,...,an) = Fsq[Ri(S,a1,...,a,) + v;Nash; (Q](s"), ..., Q% (s))]

Unfortunately this is not a contraction mapping in general

~ -

This is true even replacing Nash with CCE, CE Only known cases where you get contraction is in zero-
sum\competitive games and fully cooperative



Recap:
Value-Based Approaches for Infinite-Horizon Markov Games

» In general, we have no algorithms for infinite horizon Markov games beyond highly structured cases
> .., Zero-sum games, cooperative games

> |In infinite horizon, zero-sum Markov games we can develop algorithms based on top of the framework of
minimax Q-learning.

> Timescale separation
> Solve matrix games in each state on fast timescales, do Q-learning on a slow timescale.
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minimax Q-learning.
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> Solve matrix games in each state on fast timescales, do Q-learning on a slow timescale.

This should not be surprising given the hardness results we saw yesterday!



Recap:

Value-Based Approaches for Infinite-Horizon Markov Games

» In general, we have no algorithms for infinite horizon Markov games beyond highly structured cases
> .., Zero-sum games, cooperative games

> |In infinite horizon, zero-sum Markov games we can develop algorithms based on top of the framework of
minimax Q-learning.

*Main |

> SO

ea: Timescale separation
ve matrix games in each state on fast timescales, do Q-learning on a slow timescale.

This should not be surprising given the hardness results we saw yesterday!

Fortunately, in finite-horizon games, there is more to say



Dynamic Programming Approaches to Nash in Finite-
Horizon Markov Games

» N finite-horizon single-agent problems, the optimal policy can be found via dynamic programming:

Dynamic Programming In Reinforcement Learning

nitialize Qg1 = 0

~orstept=H H—-1,H-2,...1,0
» For each state s,a :

Qi(s,a) < r(s,a) +VEg|s.q [mgx Qir1(s, a)]

Computes the optimal (time-dependent!) Q-functions which we can
use to infer optimal policy:

7 (s,t) = argmax Q;(s, a)



Dynamic Programming Approaches to Nash in Finite-
Horizon Markov Games

» N finite-horizon single-agent problems, the optimal policy can be found via dynamic programming:

Dynamic Programming In Reinforcement Learning

nitialize Qg1 = 0

corstept=H,H—1,H-2,...,.1,0 <+—— Proceed backwards
» For each state s,a :

Qi(s,a) < r(s,a) +VEg|s.q [mgx Qir1(s, a)]

Computes the optimal (time-dependent!) Q-functions which we can
use to infer optimal policy:

7 (s,t) = argmax Q;(s, a)

»No contraction mapping argument needed!



Dynamic Programming Approaches to Nash in Finite-

Horizon Markov Games

» N finite-horizon Markov games the Nash policy can be found via dynamic programming:

Nash Value Iteration

» Initialize, for all agents i: Q; g, 1(s,a,a_) =0,V g =
» Forstept=H H—1,H-2,...1,0

» For each state agent1and all s,a:

Qit(s,ai,a_;) < Ri(s,ai,a—;) + Egs.q [Vitg1(s)]

» For each agent 1 and all s:

(7T>1k7t, oo ﬂ-:,t) — N&Sh(Ql’t(S), cees Qn,t(s))
V;;,t(S) — |t

Solve a matrix game at each

state and ti

me at ho

Keep track o

- state va

120

ue

A

function



Dynamic Programming Approaches to Nash in Finite-
Horizon Markov Games

» N finite-horizon Markov games the Nash policy can be found via dynamic programming:

Nash Value Iteration

» Initialize, for all agents i: Q; g, 1(s,a,a_) =0,V g =

» Forstept=H,H—1,H—2,....1,0 Computes a Nash of a finite-

horizon Markov Game
(by definition)

» For each state agent1and all s,a:

Qit(s,ai,a_;) < Ri(s,ai,a—;) + Egs.q [Vitg1(s)]

» For each agent i and all s: In poly(H,S,A,B) steps given a
(75 4o oot ) = Nash(Qy.4(5), s Que(s)) Nash oracle

Vit(s) ¢ Enx|Qi,¢(5))




Dynamic Programming Approaches to Nash in Finite-
Horizon Markov Games

» N finite-horizon Markov games the Nash policy can be found via dynamic programming:

Nash Value Iteration

» Initialize, for all agents i: Q; g, 1(s,a,a_) =0,V g =

» Forstept=H,H—1,H—2,....1,0 Computes a Nash of a finite-

horizon Markov Game
(by definition)

» For each state agent1and all s,a:

Qit(s,ai,a_;) < Ri(s,ai,a—;) + Egs.q [Vitg1(s)]

» For each agent i and all s: In poly(H,S,A,B) steps given a
(75 4o oot ) = Nash(Qy.4(5), s Que(s)) Nash oracle

Vit(s) ¢ Enx|Qi,¢(5))

Unfortunately this step is
hard in general!




Dynamic Programming Approaches to Nash in Finite-

Horizon Markov Games

» N finite-horizon Markov games a non stationary CCE can be found via dynamic programming:

CCE Value Iteration

» Initialize, for all agents i: Q; g, 1(s,a,a_) =0,V g =
» Forstept=H H—1,H-2,...1,0

» For each state agent1and all s,a:

Qit(s,ai,a_;) < Ri(s,ai,a—;) + Egs.q [Vitg1(s)]

» For each agent 1 and all s:
(7'('1:75, cees 7'(';;75) — CCE(Qljt(S), oo Qn,t(s))
Viit(s) < Exr [Qi,t(5)]

Can be solved via linear
orogramming or no-regret
learning



Dynamic Programming Approaches to Nash in Finite-
Horizon Markov Games

» N finite-horizon Markov games a non stationary CCE can be found via dynamic programming:

CCE Value Iteration

» Initialize, for all agents i: Q; gy (s, a,a_,) =0,V .| =
» Forstenf = H H — 1 Hi 71 (l) | ) Computes a CCE of a finite-
T o horizon Markov Game
» For each state agenttrand all s,a : (by definition)

Qit(s,ai,a_;) < Ri(s,ai,a—;) + Egs.q [Vitg1(s)]

» For each agent i and all s: In poly(H,S,A,B) steps

(7'('1:75, cees 7'(';;75) — CCE(Qljt(S), oo Qn,t(s))
Vit(s) < Err Qi t(s)]




From full information to learning

»So far we have assumed that you know the Markov Game perfectly and only looked at computation

-Agent
»In RL you need to explore to learn : Stat
ale,

1. The dynamics of the environment hosnesl Reward

2. The reward function
Environment |

» Trade-oft exploration (of the environment and reward function) with exploitation to accumulate reward




From full information to learning

»So far we have assumed that you know the Markov Game perfectly and only looked at computation

»INn RL you need to explore to learn :

: . : State,
1. The dynamics of the environment bedtisst Bewar
2. The reward function

Environment |

»INn MARL you need to explore to learn :

1. The dynamics of the environment
2. The reward function

3. How to compete

o L4 || 1 ;A
:ﬁ ik @ = |
\ = T R:: == L
TTa. L"’!F!“;’;T CHEHY
E‘ﬁm‘ﬁ@*ﬁfﬁﬁ*@*




Fxploration in MDPs and Markov Games

» N reinforcement learning there has been a ot of recent progress on how to explore MDPS

random action, with probability € Action State,
»Naive exploration: — ¢-greedy: take Reward

greedy action,  otherwise
Environment |

» Can be shown that in the worst case, this can take an exponential in the
number of samples to learn an optimal policy!




Fxploration in MDPs and Markov Games

» N reinforcement learning there has been a ot of recent progress on how to explore MDPS

random action, with probability €

»Naive exploration: — €-greedy: take { . .
greedy action,  otherwise

» Optimistic exploration: be optimistic pick action with the largest
Upper confidence bound

.

Strategy vields a statistically
optimal way of exploring
bandits and MDPs

Action

Upper Bound [

Confidence
Interval Q(A)

/]

Lower Bound

Environment |

Q(C)

State,
Reward

Q(D)




Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration

L . - - .- H
» Initialize, for all agents i Q; . 1(s,a;,a_) = 0,V, g1 = 0, policies {7; , },2,

» Forstep k = 1,2,... N(.5.a)
s'. s, a

A Y _
» Execute policies, collect rollouts, estimate transition matrix P P(s']s,a) = N (s,a)




Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration

» Initialize, for all agents i: Q; y41(s,a,a_;) = 0,V, g1 = 0, policies {x t}

» Forstep k = 1,2,... N(.5.a)
s'. s, a

» Execute policies, collect rollouts, estimate transition matrix P P(s']s,a) = N(s,a)
rFort=H,H—-1,...,0

» For each state agent 1 and all s,a:

QZ t(S Qg , A ) < R (8 g, 4 7,) + 4:S’N}A7(-|s,a) [‘/;,t_|_1(8/)] + UCB

» For each agent i1 and all s:
(7T>1k’t, cees 7T,,>l;’t) — CCE(Qljt(S), :Qn,t(s))
Vii(s) + b [Qz,t(s)]




Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration
» Initialize, for all agents i: Q; (s, a;,a_;) = 0,V, g = 0, policies {7z t}
» Forstep k = 1,2,...

» Execute policies, collect rollouts, estimate transition matrix P
vFort=H, H—-1,....0

» For each state agent 1 and all s,a:

QZ t(S Qg , A ) < R (8 g, 4 7,) + 418/,\}}5(.'8’&) [‘/;,t_|_1(8/)] + UCB

» For each agent i1 and all s:
(7T>1k’t, cees ﬂ-;;,t) — CCE(Qljt(S), :Qn,t(s))
Vii(s) + b [Qz,t(s)]

Optimistic estimator of Q
High probability over-estimate
given properly chosen UCB

term

.

Normal

concentrat

v chose

N VIa

IoN INeag

ualities



Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration
» Initialize, for all agents i: Q; (s, a;,a_;) = 0,V, g = 0, policies {7z t}
» Forstep k = 1,2,...

» Execute policies, collect rollouts, estimate transition matrix P
vFort=H, H—-1,....0

» For each state agent 1 and all s,a:

Optimistic estimator of Q

Qi t(8,ai,a-i) + Ri(s,a;,a-:) + B _pig 0 [Viar1(s)] + UCB High proba
given pro

» For each agent i1 and all s:

Dility over-estimate

oerly chosen UCB
term

(71450 T ) <= COE(Q1,4(5), -5Qn.1(5)) Gives exploration of Markov

Vii(s) + b [Qi,t (s)]

Game



Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration
» Initialize, for all agents i: Q; (s, a;,a_;) = 0,V, g = 0, policies {7z t}
» Forstep k = 1,2,...

» Execute policies, collect rollouts, estimate transition matrix P
vFort=H, H—-1,....0

» For each state agent 1 and all s,a:

QZ t(S Qg , A ) < R (8 g, 4 7,) + 4:S’N}A7(-|s,a) [‘/;,t_|_1(8/)] + UCB

» For each agent i1 and all s:

(7T>1k,t7 cees 7?5';,15) A CCE(Ql,t(S)a s Qn,t(8)) Using CCE oracle
Vii(s) + b [Qz,t(s)]




Optimistic Value Iteration in Markov Games

Optimistic CCE Value Iteration

» Initialize, for all agents i: Q; y41(s,a,a_;) = 0,V, g1 = 0, policies {x t}

» Forstep k = 1,2,...

» Execute policies, collect rollouts, estimate transition matrix P
vFort=H, H—-1,....0

» For each state agent1and all s,a : This algorithm can be seen as a
1 B / multi-agent extension of UCB-VI
Qit(s,ai,a—;) < Ri(s,ai,a_;) + s/ o P(-|5,a) Vitt1(s’)] +UCB (Azar et al. 2017) from single-

, agent reinforcement learning
» For each agent 1 and all s:

(7T>1k’t, cees ﬂ-:,,t) — CCE(Qljt(S), :Qn,t(s))
e [Qz,t(s)]




Optimistic Value Iteration in Markov Games

Thm: Finite Horizon Zero-Sum Markov Games [Liu et al. 2020]

With high probability, optimistic Value-iteration finds an e-approximate Nash
equilibrium in:

€2

- [ H’S|A||A
0( Ay ] 2|>ep'sodes.

Polynomial-time and polynomial
number of samples required



Optimistic Value Iteration in Markov Games

Thm: Finite Horizon Zero-Sum Markov Games [Liu et al. 2020]

With high probability, optimistic Value-iteration finds an e-approximate Nash
equilibrium in:

€2

- [ H’S|A||A
O( Ay ] 2|>ep'sodes.

They also show an information theoretic lower bound
that learning Nash requires at least:

- [ H>S max{|A,],|A
0( Al | 2‘}>ep'sodes.

€2



Optimistic Value Iteration in Markov Games

Can Extend the Results to CCE in general-sum Markov games!

Thm: Finite Horizon General-Sum Markov Games [Liu et al. 2020]

With high probability, optimistic Value-iteration finds an e-approximate CCE
equilibrium in:

€2

_( H*ST]. 1A,
O l episodes.

Note that optimistic Value-iteration is not no-regret, but
we can still find a non-stationary CCE



Optimistic Value Iteration in Markov Games

Can Extend the Results to CCE in general-sum Markov games!

Thm: Finite Horizon General-Sum Markov Games [Liu et al. 2020]

With high probability, optimistic Value-iteration finds an e-approximate CCE
equilibrium in:

€2

_( H*ST]. 1A,
O l episodes.

They also show an information theoretic lower bound
that learning Nash requires at least:

- [ H’S max; |A.]
O episodes.

€2



Curse-of Multi-Agency

. [ H’S max; |A] ~ H4SH,-|A1‘|
0, . Vs, O . episodes
» 6

Lower bound suggests that we should
oay only for the largest action space

Consider the gap:




Curse-of Multi-Agency

Consider the gap:
4
. [ H°S max; |A,] ~ HSH,-‘Ail
Lower bound: 0, 5 . VS, 0, i episodes
~ ~
Lower bound suggests that we should Optimistic VI pays for the product
pay only for the largest action space Worst case: H A | = A"
i
Exponential dependence ; “Curse of multi-agency”

on number of agents (Analog to curse of dimensionality)



Curse-of Multi-Agency

Consider the gap:
4
. [ H°S max; |A,] ~ HSH,-‘Ail
Lower bound: 0, 5 . VS, 0, i episodes
w ~

Lower bound suggests that we should Optimistic VI pays for the product

pay only for the largest action space Worst case: H A | = A"

i
Exponential dependence ; “Curse of multi-agency”
on number of agents (Analog to curse of dimensionality)

Can we overcome this?



Overcoming the curse of multi-agency

Problem:

The size of the Q-function itself is S X HAi

l

_

Any algorithm based on Q functions has to pay this.



Overcoming the curse of multi-agency

Problem:

The size of the Q-function itself is § X HAi

l

Idea:

We only need to estimate the at a CCE/Nash.

Fast timescale: compute optimistic
Use value using e.g., no-regret learning

timescale separation. . |
Slow timescale: update values using

dynamic programming




Overcoming the curse of multi-agency

Problem:

The size of the Q-function itself is § X HAi

Idea:

We only need to estimate the

Use
timescale separation.

—

l

at a CCE/Nash.

Fast timescale: compute optimistic
value using e.g., no-regret learning

Slow timescale: update va

dynamic programmi

ues using
ng

Crux of idea:
Sample complexity of
no-regret learning in
games scales with

max | A, |
i



Overcoming the curse of multi-agency

, o Crux of idea:
Fast timescale: compute optimistic Sample complexity of
Use value using e.g., no-regret learning ] o
— no-regret learning in

timescale separation. games scales with

Slow timescale: update values using

dynamic programming max | A; ]
l

Use payoff-based (bandit feedback) no-regret learning:
(e.g., Exp3 algorithm, stochastic mirror descent)

max » (7, 0;) — (m, £) < o(T)

Against arbitrary sequences of rewards {1, € RIAl }th()

while only playing actions a, ~ r, at each round and observing r(a,)



V-Learning in Markov Games

V-learning (PoV of agent 1)
» Initialize policies 7Z'l-ot
» For episode k = 1,2,...

» Receive initial state s

rFort =0,1,2,.... H «—— Proceed forwards in time

: k —
» Sample action a; , ~ 7; (s,) , observe reward r, = R{(s,, a,) , next state s, |

» Keep track of number of times each state has been visited:
N(St_|_1) Nu N(St_|_1) + 1




V-Learning in Markov Games

V-learning (PoV of agent 1)
» Initialize policies 7Z'l-ot
» For episode k = 1,2,...

» Receive initial state s
»Fort =0,1.2,....H

: k —
» Sample action a; , ~ 7; (s,) , observe reward r, = R{(s,, a,) , next state s, |

» Keep track of number of times each state has been visited:
N(St_|_1) Nu N(St_|_1) + 1

» Update optimistic value estimate o |
Optimistic estimate of V

Viit(se) < (1 —ap)Vii(se) + ap(re + Vii(si41) + UCB(N(5¢41)) (In high probability with

» Update policy using no-regret learning: carefully chosen UCB)

7'('7];{72_1(875) +— No Regret Step(a@t, Tt -+ %,t(st—l—l) -+ UCB(N(St_|_1), Bk)



V-Learning in Markov Games

V-learning (PoV of agent 1)
» Initialize policies 7Z'l-ot
» For episode k = 1,2,...

» Receive initial state s
»Fort =0,1.2,....H

: k —
» Sample action a; , ~ 7; (s,) , observe reward r, = R{(s,, a,) , next state s, |

» Keep track of number of times each state has been visited:
N(St_|_1) Nu N(St_|_1) + 1

» Update optimistic value estimate

Vt,;,t(St) < (1 — Ckk)‘/;,t(St) -+ Oék(”l"t —+ ‘[i,t(st—l—l) -+ UOB(N(SH_l))

» Update policy using no-regret learning: Adversarial bandit step on

w4 1 (s¢) < No Regret Step(ai¢, 7 + Vit(si41) + UCB(N(s441), Br) fast timescale




V-Learning in Markov Games

V-learning (PoV of agent 1)
v Initialize policies 7 To see why this works,

it .
suppose the fast timescale

» For episode k = 1,2,...
has convergead

» Receive initial state s
»Fort =0,1.2,....H

: k —
» Sample action a; , ~ 7; (s,) , observe reward r, = R{(s,, a,) , next state s, |

» Keep track of number of times each state has been visited:
N(St_|_1) Nu N(St_|_1) + 1

» Update optimistic value estimate

Viit(se) < (1 — ax)Vie(st) + axCCE Value; (Q1,4(St41), -y Qnt(St4+1))

This is just stochastic approximations of the
dynamic programming algorithm




V-Learning in Markov Games

V-learning (PoV of agent 1)

» Initialize policies

0
1,1

» For episode k = 1,2,...

4

4

To see why this works,
suppose the fast timescale
has convergead

Receive initial state s,

ort =0,1,2,....H

» Sample action a; , ~

k —
7; (s;) , observe reward r, = R{(s,, a,) , next state s, |

» Keep track of number of times each state has been visited:

N (s¢41) < N(8¢41) +

» Update optimistic value estimate

1

Viit(se) < (1 — ax)Vie(st) + axCCE Value; (Q1,4(St41), -y Qnt(St4+1))

Note that this a
(Under -

gorithm is independent! P

‘he same caveat thatthe s

ayers can do this separately.

‘ep sizes are synced)



V-Learning in Markov Games

Thm: Finite Horizon General-Sum Markov Games
[Jin et al. 2021]

With high probability, optimistic Value-iteration with Follow-the-Regularized-Leader

(FTRL) as the no-regret learning algorithm finds an e-approximate CCE equilibrium in:

€2

- [ H>S max, |A|
O episodes.

Which overcame the curse of multi-agents
(albeit with a worse dependence on horizon)



V-Learning in Markov Games

Thm: Finite Horizon General-Sum Markov Games
[Jin et al. 2021]

With high probability, optimistic Value-iteration with Follow-the-Regularized-Leader

(FTRL) as the no-regret learning algorithm finds an e-approximate CCE equilibrium in:

€2

- [ H>S max, |A|
O episodes.

Similar result with a slightly worse rate was derived
around the same time by Mao & Basar, 2021 using online
mirror descent instead of FTRL



V-Learning in Markov Games

Thm: Finite Horizon General-Sum Markov Games
[Jin et al. 2021]

With high probability, optimistic Value-iteration with Follow-the-Regularized-Leader

(FTRL) as the no-regret learning algorithm finds an e-approximate CCE equilibrium in:

€2

- [ H>S max, |A|
O episodes.

Fxtended to approximate
correlated eq. by Song et al. 202
by using a no-swap regret algorith




V-Learning in Markov Games

Thm: Finite Horizon General-Sum Markov Games
[Jin et al. 2021]

With high probability, optimistic Value-iteration with Follow-the-Regularized-Leader
(FTRL) as the no-regret learning algorithm finds an e-approximate CCE equilibrium in:

- [ H>S max, |A| |
O > episodes.
€

Still an ongoing area of research!

Faster convergence rates, specific structures (e.g., extensive form games, cooperative
games, zero-sum games), equilibrium selection, multi-objective optimization



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games

Il. Value-based algorithms
>~ Takeaways:
» Q-learning algorithms for infinite horizon zero-sum Markov games, not in general.

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games

il. Value-based algorithms
>~ Takeaways:

» In finite-horizon Markov games, can efficiently learn Nash though you have to be
careful about the curse of multi-agency.

3. Further directions

I. The role of function approximation
il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts




A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games

Il. Value-based algorithms
» Takeaways:

» N both of these cases timescale separation is key to simplity the problem.

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions (Work from my group)

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



Sample efficiency is crucial

So far we have seen that we have algorithms for efficiently learning in tabular
finite-horizon Markov Games ‘%

Meaning it achieves good sample complexities

ik

¢ ﬁ’ AIphaGo o DeepMind T STARRAFT

\/

>107 games of Go 200 years of real-time StarCraft games
>1 month of training time on dedicated servers >1 month of training time on dedicated servers



DeepMind Can Now Beat Us GAMING \ ENTERTAINMENT \ TECH \

at Multiplayer Games, Too Feeble humans prove no match for OpenAl’'s Dota 2

Chess and Go were child’s play. Now A.l. is winning at go d S
capture the flag. Will such skills translate to the real world?

The Al won 7,215 matches against humans, losing only 42 in the process
By Vlad Savov | @vladsavov | Apr 23, 2019, 9:25am EDT

JUNE 8, 2017 « 5 MINUTE READ
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DeepMind Can Now Beat Us GAMING \ ENTERTAINMENT \ TECH \

at Multiplayer Games, Too Feeble humans ( Multi-agent PPO
ess an_d Go were childjs p_la}_/. Now AI is vs:'innim_g at w gOd S (Proximal Policy Optimization)
The Al won 7,215 matches againsk )

WpenAI’s Dota 2

By Vlad Savov | @vladsavov | Apr 23, 2019, 9:25am EDT

( Multi-agent Actor-Critic e
\ &
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Learning in Games

We need scalable algorithms as well:

What makes good learning algorithms in games?

>~ Convergent
last-iterate, ergodic, best iterate convergence to Nash

> Independent learning
agents should not know anything about their opponents utility

> No-regret
agents should be “rational” (e.g., take advantage of naive opponents)
® 00832
»Scalable [ o0
Many real world applications have large state-spaces! /> ‘.ﬁ.‘
3361 states! ‘

AlphaGo

‘ Go




Learning in Games

We need scalable algorithms as well:

What makes good learning algorithms in games?

ST

\-

>~ Convergent
last-iterate, ergodic, best iterate convergence to Nash

> Independent learning
agents should not know anything about their opponents utility

> No-regret
agents should be “rational” (e.g., take advantage of naive opponents)
® 00832
»Scalable [ o0
Many real world applications have large state-spaces! /> ‘.ﬁ.‘
3361 states! ‘

Alp ?'j a 59

‘ oo

This requires using function approximation



Deep RL

TData T Compute + T Complex Models = T Performance




Deep RL

TData -+ T Compute + T Complex Models = T Performance

Does this still hold true when algorithms are used in MARL?




How should we use function approximation in games?

Joint work with Tinashe Handina (Caltech)

Understanding Model Selection in Strategic Environments
NeurlPs 2024




Deep MARL Pipeline

Learner has a menu of policy classes of decreasing expressivity
®;O06,D..D06,




Deep MARL Pipeline

1. Model selection
Learner chooses a policy class




Deep MARL Pipeline

2. Deployment
Learner trains a model in a Markov Game against an
environment. (Model as two player game).

[
i — 1]

Strategic
Environment

L earner

HHEHG% fl(eve) gél]g fe(eve)




ML Deployment Pipeline

3. Equilibrium
Learner & Environment settle into a Nash equilibrium.




ML Deployment Pipeline

Examples:
Multi-agent RL: O is policy class, environment is Markov Game.




Main Question:
Should the learner always choose the most expressive policy

class (®,) if they want the best equilibrium outcome?




Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

1. If the environment is static (£ = {e}) — i.e., single-agent RL: yes

mnin fi(0,e) < nin filb,e) if ©; C O



Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

2. If the environment is adversarial (f,(0,¢) = — f,(0, e)) — i.e., zero-sum Markov Game: yes

enggllrgleaé(fl( ,6) _enelgtrial%{fl< 76) if @z - @1



Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

3. The answer is no even in “well-behaved” general-sum games.



Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

Theorem.

f the game is strongly monotone but the Nash equilibrium (6%, e*) € O, X E'is
not Pareto optimal:

Highly structured games with a unigue Nash equilibrium

There exists a coordinated change that improves upon both players outcomes
(Not true in zero-sum games by definition)




Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

Theorem.

f the game is strongly monotone but the Nash equilibrium (6%, e*) € O, X E'is
not Pareto optimal:

There always exists a unilateral restriction of their action set ®" C 0, such that the
Nash equilibrium (@', ") € ®’ X E yields a better payoff.



Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

Theorem.

f the game is strongly monotone but the Nash equilibrium (6%, e*) € O, X E'is
not Pareto optimal:

There always exists a unilateral restriction of their action set ®" C 0, such that the
Nash equilibrium (@', ") € ®’ X E yields a better payoff.

Proof Idea:
Choosing a model class to optimize over is a form of commitment, which gives you a
first mover advantage




Proof Sketch:
Choosing a model class to optimize over is a form of commitment

bsp = arg min f,(6,5(0)): b(0) = argmin fe(6, ¢)

O+



Proof Sketch:
Choosing a model class to optimize over is a form of commitment

bsp = arg min f,(6,5(0)): b(0) = argmin fe(6, ¢)

O*
By definition: f,(0sg,b(0sk)) < f(67,€7)
since e* = b(6%*) J



Proof Sketch:
Choosing a model class to optimize over is a form of commitment

9>I<
—_—

Construct a new set that

includes ¢ but not 6*




Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

3. The answer is no even in “well-behaved” general-sum games.

Even with infinite data and infinite compute, less expressive model classes can give better
equilibrium outcomes.

Should not be too surprising: game theory is full of such examples! j
e.g., Braess’ Paradox, LQG control, comparative statics...



Main Question:

Should the learner always choose ©, if they want the
best equilibrium outcome?

3. The answer is no even in “well-behaved” general-sum games.

Even with infinite data and infinite compute, less expressive model classes can give better
equilibrium outcomes.



An extreme example in MARL

2 players, n states, 2 actions for each player {0,1}

> Player 2 controls the state transitions
e > — > o000 —» > Player 1 has increasing payoff in
b=1 b=1 b=1 larger states
.................................... >

Increasing



An extreme example in MARL

Player 1's menu of policy classes:
(for ease of visualization consider the 3-simplex )

(1,0,0)

VAN

O1:1—p1 <ms) < pi

@Qzl—ﬁggﬂ(s)

m(s)

AN

D2

@nzl_pn<ﬂ-(3) Spn

0.5 <p; <1 (0,1,0) (0,0,1)



An extreme example in MARL

Player 1's menu of policy classes:
(for ease of visualization consider the 3-simplex )

(1,0,0)

VAN

@121—]51§7T(S)

@Qzl—ﬁggﬂ(s)

D1

m(s)

AN

D2

@nzl_pn<ﬂ-(3) Spn

0.5 <p; <1 (0,1,0) (0,0,1)

> Player 1 has a dominant strategy in every state (a=0).



An extreme example in MARL

Player 1's menu of policy classes:
(for ease of visualization consider the 3-simplex )

(1,0,0)

VAN

@121—]51§7T(S)

@Qzl—ﬁggﬂ(s)

D1

m(s)

AN

D2

@nzl_pn<ﬂ-(3) Spn

(0,0,1)

> Player 1 has a dominant strategy in every state (a=0).
> Their Nash eq strategy in each state for a policy class © is: 7 (s) = (Di, 1 — Ds)



An extreme example in MARL

We construct the payoffs for player 2 such that the following scaling law holds for this game

4.0 A

3.5 1

b=20 b=1( b=10 3.0
2.5
3 .

— 2.01

7))

4y,
- 1.5-

> —_— 0 00 —>

------------------------------------ > 0.5 -
iIncreasing u; 0.0 -

OjS 016 Of7 Ot8 Ot9 ltO
< less expressive P  more expressive —

We see reverse scaling: T expressivity = * performance



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation

> Takeaway:

> Choosing good function approximations in general-sum Markov games is non-trivial.
» Could hurt equilibrium performance by choosing a more expressive class (even in a full-
information regime).

Il. Scalable algorithms for zero-sum games
1. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation

> Takeaway:

» Choosing good function approximations in zero-sum Markov games is similar to RL.
» More expressive models will always help!

il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



Function Approximation in Zero-Sum Markov Games

Can we design principled algorithms that use function approximation in zero-
sum Markov Games?
&

T

SO

What makes good learning algorithms in games?

>~ Convergent
last-iterate, ergodic, best iterate convergence to Nash

> Independent learning
agents should not know anything about their opponents utility

> No-regret
agents should be “rational” (e.g., take advantage of naive opponents)
® 00832
»Scalable [ o0
Many real world applications have large state-spaces! /> ‘.Q’
3361 states! ‘

oo

Alp?ja.(._jp_




But, there’'s no need to reinvent the wheel!

Classical algorithms for learning in games in Economics for independent learning have
strong convergence guarantees:

Smooth Fictitious-Play [Fudenberg & Kreps 1993]

k Independent, last-iterate convergent in finite-
action zero-sum games, no-regret’

» Trembling hand version of Fictitious-Play
Brown 1949]

» Well analyzed (asymptotically) via stochastic approximations
[Hofbauer et al. 2002, Benaim & Hirsch 1999]

Last Iterate Convergence of Generalized Frank Wolfe in Monotone Variational Inequalities, Chen, Mazumdar (Under Submission 2023)



Today:

We develop a payoff-based version of smoothed Fictitious-Play that is:

1. Rational - can take advantage of stationary opponents
2. Independent - requires no knowledge of the opponents’s policy
3. Convergent in the last iterate sense in two-player zero-sum games - not on average

4. Can be adjusted to work with function approximation - retains convergence guarantees with
linear function approximation



Today:

We develop a payoff-based version of smoothed Fictitious-Play that is:

1. Rational - can take advantage of stationary opponents
2. Independent - requires no knowledge of the opponents’s policy
3. Convergent in the last iterate sense in two-player zero-sum games - not on average

4. Can be adjusted to work with function approximation - retains convergence guarantees with
linear function approximation

{\\\\%f % '»4////////));‘ -
Zaiwei Chen Kaiging Zhang Asu Ozdaglar Adam Wierman
(Caltech) (UMD) (MIT) (Caltech)



/ero-Sum Markov Games

nite Action Spaces: A4, As
» Finite (but large) State Spaces: S
» Plavers only observe rewards and states

" oo -

— T& E t
U1(7T177T2) T 4”7T1,7T2,P ’7 It
_t=0 _

UQ(T‘-].)T‘-Q) — {"7T1,7T2,P Z _/Vtrt




A brief look at prior work on infinite horizon zero-sum Markov Games

Other learning dynamics (e.g., gradient-based, policy iteration)

Fictitious-Play, Best-Response Dynamics [Zhang et al. 2019 ,2023],
[Brown 1951] [Jin et al., 2021], [Cen et al., 2022],
Fudenberg & Kreps 1993] [Shamma & Arslan 2004] [Winnicki and Srikant, 2023], ...

Individual Q Learning
[Leslie & Collins 2003, 2005]
[Sayin et al. 2021]

s )

All are missing at least one of the following
» Convergence in Markov Games

» Payoff-Based Independent Learning

» Function Approximation

» Last-lterate Convergence Guarantees

\_ J




Warm-Up: Smooth Fictitious-Play in Matrix Games

Smoothed fictitious-play (SFP). [Fudenberg & Kreps 1993]

Player's approximately best-respond to their opponents empirical history of play

Belief over opponent’s

f strategy

L1 = argmax ! Amgy + Tv(T0)
0




Warm-Up: Smooth Fictitious-Play in Matrix Games

Smoothed fictitious-play (SFP). [Fudenberg & Kreps 1993]

Player's approximately best-respond to their opponents empirical history of play

known payofTs \ antro
f PY

T1 ¢ = arg maic ! Amo t+Tr(m
TE

empirical history of play of opponent

Requires observation of opponents’ actions!
*This is a case with neither bandit or full information feedback but somewhere in between*



Smoothed Fictitious-Play and Bandit Feedback

Implementing SFP requires observation of your opponent’s actions

T, =argmax 7w Amg;+ Tv(7)

TEA cannot observe a,

How should a player learn a

estimate of Az, using only t
own payoffs?

Suppose you do not know A and

N

nelir

133



Smoothed Fictitious-Play and Bandit Feedback

Implementing SFP requires observation of your opponent’s actions

T
X —aremax 7w Amo s+ TUr(T
L, 5 10, 2,t (7) cannot observe a, ,

How should a player learn a

estimate of Az, using only t
own payoffs?

Use Stochastic Approximation (TD-Learning) on Am, — g = 0

Suppose you do not know A and

N

nelir

139



Doubly-Smoothed Best-Response Dynamics

At round f:
Play a1 ~mg Observe 1y <«—Bandit feedback: E [r¢] = [A]a, ;a0
Update vour belief: qyi(a) = qi(a) + ailo=a, (1t — g1(a)) «—TD Learning on fast time-scale
Compute smooth best-response: z;: = arg tax g + Tv(m)
Update strategy: mise1 =Tt — Be(m1e — T1.¢) <«— Update policy on slow time-scale

Main ldea: If ¢: — Ama; on a fast timescale this algorithm mimics best-response dynamics on the slow timescale.

\/- Not a new idea... using multiple timescales to stabilize

Q learning was proposed in [Leslie & Collins 2003]!

Convergent Multiple-Timescales Reinforcement Learning Algorithms in Normal Form Games, Leslie & Collins [2003]

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 140



Doubly-Smoothed Best-Response Dynamics

At round f:
Play are ~ e observe T <«—Bandit feedback: E [r¢] = [A]a, ;a0
Update vour belief: qyi(a) = qi(a) + ailo=a, (1t — g1(a)) «—TD Learning on fast time-scale
Compute smooth best-response: z;: = arg tax g + Tv(m)
Update strategy: mise1 =Tt — Be(m1e — T1.¢) <«— Update policy on slow time-scale

Main ldea: If ¢: — Ama; on a fast timescale this algorithm mimics best-response dynamics on the slow timescale.

We show that this is achievable using a single timescale: ax = C By

Convergent Multiple-Timescales Reinforcement Learning Algorithms in Normal Form Games, Leslie & Collins [2003]
A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 141



Doubly-Smoothed Best-Response Dynamics

This algorithm is:

» Independent

» Payoff-Based

» No Markov Games

» No Function Approximation

Tt

gt+1(a) = qi(a) + @tﬂa:al,t(""t — qi(a))

r1; = argmax 7 q + 1v(n)
’ TEA

T1t+1 — Tt — 5t(7T1,t — ﬂ?l,t)

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (NeurlPS 2023)



| ast-Iterate Convergence of Doubly Smoothed BRD

For a matrix game, define the regularized Nash Gap as:

VT(7T1,7T2) — INaX W{Aﬁ'g — TV(7_T2) — (mm 7_'('?147'('2 —|—7'V(77'1)>

T EA L T1EA
Entropy

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 143



| ast-Iterate Convergence of Doubly Smoothed BRD

For a matrix game, define the regularized Nash Gap as:

V. (71, m) = max m; Aty — Tv(a) — (mlri T Amo + v (T )>
T1E

T EA

f

Theorem. Doubly Smoothed BRD with o = O (

771T7772T

1

t

) and B; = Cay and 7 > 0 satisfies:

-0z

1

)

~

Finite-time last iterate \j k/

convergence with only
Bandit Feedback

L dSl

NS

iterate convergence to Nash

nace of policies achievable

with 7-softmax policies (Nash

dis

ribution).

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)

144



| ast-Iterate Convergence of Doubly Smoothed BRD

For a matrix game, define the regularized Nash Gap as:

Vo (w1, m9) = ;Tngi W{Aﬁ'z — TVv(Tg) — (gnéri 7_7,{14772 + TV(7_71)>
2 1

r N

1
Theorem. Doubly Smoothed BRD with az = O (Z) and B = Cay and 7> 0 satisfies:

. J

Proof sketch:

1. View the fast timescale as constructing a variance-reduced estimator of the player's marginalized
payoffs for use in smoothed Fictitious-Play.
2. Show that smoothed Fictitious-play has last-iterate convergence in the regularized Nash gap.

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 145



| ast-Iterate Convergence of Doubly Smoothed BRD

For a matrix game, define the regularized Nash Gap as:

Vo (w1, m9) = ;Tngi W{Aﬁ'z — TVv(Tg) — (gnéri 7_7,{14#2 + TV(7_71)>
2 1

r

1
Theorem. Doubly Smoothed BRD with o = O (Z) and B = Cay and 7 appropriately
chosen satisfies:

] 1
L [Vo(mi,r,mo,r)] = O (Tl/S)

~

The convergence to the true Nash is much slower due to trade offs in stepsize selection
(but still converges at the fastest known rate for last-iterate convergence with bandit feedback)

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)

146



| ast-lterate Convergence of Doubly Smoothed BRD

For a matrix game, define the regularized Nash Gap as:

Vo (m1,m9) = ;ngi W{Aﬁ'g — TV(Tg) — (gnéri 7_T1TA7T2 -+ TV(ﬁ'l))
2 1

) /1) :
Theorem. Doy - - — - ypriately
chosen satisfi Convergence in Matrix Games but how about MARL?

\ A N Ea == 7] \1’l/5/ g
_ .

The convergence to the true Nash is much slower due to trade offs in stepwise se
(but still converges at the fastest known rate for last-iterate convergence with bandit

ection
feedback)

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)

147




From Matrix to Markov Games

™1 T2

Requires solving a \j

Zero-suim game

Q*(s,a) = Fs 4 [R(S, a) + vy max Q" (s, a’)] Q*(s,a1,a2) = R(s,a1,a2) + vEs|s,4, 0, {miﬂmax T Q*(s' )2

ke in the single-agent setting, the

imal Q-function is a fixed point of a
ntraction mapping in the £__ norm

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



Doubly-Smoothed Best-Response Dynamics in MARL

Main Idea:
Use SBRD to solve—online— a matrix game in each state but adjust payoffs with slowly updatead
estimates of future discounted rewards.

[
iy ¢ ™ 7T1,t('|5t) It St+1
Gt+1(8,a) = qi(s,a) + &tﬂszst,a:au(rt — qi(s,a) +yve(se1)) V(s,a) € S XA

L1t = arginax 7'('th =+ TV(?T) \ future pavOﬁS

TEA

T1t+1 — T1,¢t — 5t(7T1,t+1 — $1,t)

{7T17t_|_1(°|8)th_|_1(8, JVseS ; (t+1) mod K =0
Ut41 — ,
vy otherwise

Min-max value iteration on a slower timescale.

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 149



Doubly-Smoothed Best-Response Dynamics in MARL

[
ar¢ ~ m1.¢(-|S¢) 't St4+1
qt-l—l(sv CL) — qt(87 a) + atHSZStaa:al,t (rt _ Qt(sa CL) T ”YUt(SH—l)) \V/(S, a) cSxA

L1+ = arginax 7Tth + TV(T(') \ future DGYO]CFS

TEA
T1,t4+1 — T1,¢t — ﬁt(ﬂ-l,t—l—l — $1,t)
v {Wl’t+1('|S)TCIt+1(S, )VseS 5 (t+1) mod K =0
t+1 =

v otherwise

Algorithm is independent and payoff-based

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 150



Doubly-Smoothed Best-Response Dynamics in MARL

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

71 T2

N

Captures the distance from “Nash”

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 191



Doubly-Smoothed Best-Response Dynamics in MARL

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

1 T2

Theorem. Suppose there exists a pair of policies (1, 7,) suc
Markov Chain is irreducible and ergodic, then Doubly Smoot

LING(mr, mor)] < O ( 1 )

N that the induced

ned BRD satisfies:

T1/8

L ast iterate convergence No slower than the matrix case.
Due to geometric convergence of value iteration

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)

152



Doubly-Smoothed Best-Response Dynamics in MARL

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

71 T2

Theorem. Suppose there exists a pair of policies (i, 7,) such that the induced
Markov Chain is irreducible and ergodic, then Doubly Smoothed BRD satisfies:

ﬂ 1
o) [NG(WLT,WQ,T)] <0 (Tl/S)

Payoff-based (i.e. bandit feedback), independent algorithm with finite-time iterate-
convergence to Nash equilibrium in zero-sum Markov Games.

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023) 193



Doubly-Smoothed Best-Response Dynamics in MARL

Markov Chain is irreducible and ergodic, then Doubly Smoothed BR

\

Theorem. Suppose there exists a pair of policies (&, &r,) such that the induced

D satisfies:

Proof sketch:

1. Solve matrix game on a fast timescale using the Matrix-game version of the algorithm.

Becomes highly nontrivial due to time inhomogeneous Markovian Noise, and the loss of zero-
sum structure since agents may have different beliefs over future payoffs.

2. Use regularized Nash gap as Lyapunov function for the slow timescale.

3. timescale of value iteration to help stabilize the learning at the fast timescale.

A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)

154



How to incorporate function approximation?

Scalability: algorithms for deep reinforcement learning

Curse of Dimensionality

|

Function Approximation
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How to incorporate function approximation?

Scalability: algorithms for deep reinforcement learning

Key Idea: DQN* can be viewed as smoothed fictitious-play under a basis transform

—

IILY

|

Function Approximation

: . : /;\ A7\ 7]
e/ TN~~~ |\ =




iINncorporating Function Approximation

Suppose we have a respecified functions class parametrized by weights w: {Qw € S X A}

[

target network
ay ¢ ~~ 771,75("875) r't St+1 /

update weights via SGD: w11 =P (wt — V|| Hz2(Qw) — Qu, HQ)

T
9t—|—1 — 915 + Bt (wt—l—l — 6)75) Tt41 — arg gleag T Q9t+1 T TV(T‘-)
T = T W= Wy
Note: B << oy T B8 = 1then we recover vanilla DQN

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



Relationship with Smoothed Fictitious-Play

Suppose we are in a state-less regime and the fast timescales have converged:
v =10 wy = argmin |Hxz(Qw) — Qull?

w

T 2
Ly = alg Ihax s Q7 +7v(m) T = argmax ' Rr? + tv(m)
TE
Qf}utﬂ — Q’}Ut + Bi(Rxy — Qét) 7T§+1 — 77751 + Bi(xy — i)

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



Relationship with Smoothed Fictitious-Play

Suppose we are in a state-less regime and the fast timescales have converged:
v =10 wy = argmin |Hxz(Qw) — Qull?

w

Perform a change of basis: u; = R~1Q;

Ty = argmax WTRR_le + Tv(T) Ly = arg meag WTRW? + v ()
TE 4
R™Qu,,, = R7Qu, + Bz — R71Qy,) Ty = + Bz — m)

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



Relationship with Smoothed Fictitious-Play

Suppose we are in a state-less regime and the fast timescales have converged:
v =10 wy = argmin |Hxz(Qw) — Qull?

w

Perform a change of basis: u; = R™1Q;

T, = argmax - Ru; + Tv(m)

r; = arg max WTRU% + Tv(T) max
TeEA
1 1
! 1 1 i1 =T + DXy — 7
Upypy = Uy T 575(9375 — Ut) t+1 t 575( t t)

Under a change of basis the two algorithms have the same limiting dynamics

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



Finite-11me Last Iterate Convergence

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

71 T2

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



FiNnite-11me Last Iterate Convergence

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

1

T2

Markov Chain is irreducib
function approximation t

e and ergod

nen DQN™ satisfies:

4, [NG(T('LT,T('Q’T)] < 0, (

Theorem. Suppose there exists a pair of policies (i, 7,) such that the induced
ic, and both agents use DQN* with linear

C;YZ;)) o (Cz(

T)K

) £ O(F) + cappron

Convergence of min-max
value iteration

/‘

Convergence of

inner loop

Error due to soft-
max policies

S

Function
approximation error

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



FiNnite-11me Last Iterate Convergence

Consider the Nash-Gap:

NG(mq,my) = max U(wy,m2) — min U(mq, T2)

1

T2

Markov Chain is irreducib
function approximation t

Theorem. Suppose there exists a pair of policies (i, 7,) such that the induced
ic, and both agents use DQN* with linear

e and ergod

nen DQN™ satisfies:

d, [NG(T('LT,T('Q’T)] S O (

c? (7;)> O (CQ(i)K) +O(7) + €approx

J

Independent, payoff-based, algorithm that provably incorporates function approximation
iNn zero-sum Markov Games while having last-iterate convergence

Last Iterate Convergence of Deep Q Networks in Zero-Sum Markov Games with Linear Function Approximation, Chen, Zhang, Mazumdar, Ozdaglar, Wierman (2023)



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
1. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
ii. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
*Takeaway: Small tweaks to the DQN algorithm allow it to have strong
convergence guarantees in zero-sum games under linear function
approximation.

ii. New equilibrium concepts



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts



Learning in Games

How should agents learn in dynamic game theoretic settings?

» Convergent

Is this too much to ask for in

> Independent learnin )
: : general-sum multi-agent RL?

> Individually Rationalizable



Learning in Games

How should agents learn in dynamic game theoretic settings?

Is this too much to ask for in

general-sum multi-agent RL?
» Convergent

» Computational hardness of Nash eq.  * Non-trivial dynamics from no-regret

In finite games algorithms

Independent learni ng [Daskalakis & Papadimitriou ‘09] [Palaiopanos et al 2017]

» Computational hardness of stationary * Curse of multi-agency
> Individually Rationalizable CCE [Bai et al. 20]

[Daskalakis et al. 22, Jin et al. '22]

> Strong conditions for dynamic programming to work in infinite-horizon MARL
[Hu & Wellman ‘03]



Learning in Games

How should agents learn in dynamic game theoretic settings?

Today: Tractable MARL through behavioral economics.
» Convergent

> Independent learning

> Individually Rationalizable

Kishan Panaganti
(Caltech) (Caltech)



Today:

We define a computationally tractable* class of equilibria for all normal form (and finite-
horizon stochastic games) that is

(1). independent of the underlying game structure
(2). can recreate human-play in experimental data.

*The equilibria can be computed through no-regret learning on a related convex game.



Today:

We define a computationally tractable* class of equilibria for all normal form (and finite-
horizon stochastic games) that is

(1). independent of the underlying game structure
(2). can recreate human-play in experimental data.

This arises from assuming:

1. Risk Aversion: Agents are risk-averse to the randomness introduced by their opponents and the
environment.

2. Bounded Rationality: Agents have a systematic failure to perfectly optimize.
(i.e., they optimize over quantal responses)

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Warm-Up: n-player finite-action games

» N players
» Finite Action Spaces: A1, Ao, .... AN

» Each player seeks to maximize their expected payoff over mixed strategies &; € A(H+):

Ui(mi, m—i) = Eqrn | Ri(a)]




Warm-Up: n-player finite-action games

Nash Eq: Natural solution concept for individually rational agents.

X

7 is Nash if for each playeri: U;(wf,7n*.) > U;(m;, 7’ .) Vm € Ay

—1



Warm-Up: n-player finite-action games

Nash Eq: Natural solution concept for individually rational agents.

T is Nash if for each player i U;(mF, m*

) > Uj(my, ™) Vm € A,

(/ —1

Intractable to compute outside of highly structured games (e.g., zero-sum).
| Daskalakis & Papadimitriou 2008]

» Led to focus on: correlated eqg [Moulin & Vial 1978] , coarse correlated eq. [Aumann 1974], ..., smoothed Nash [Daskalakis et al. 2023]
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Nash Eq: Natural solution concept for individually rational agents.

X

7 is Nash if for each playeri: U;(wf,7n*.) > U;(m;, 7’ .) Vm € Ay

—1

Intractable to compute outside of highly structured games (e.g., zero-sum).
| Daskalakis & Papadimitriou 2008]

» Led to focus on: correlated eqg [Moulin & Vial 1978] , coarse correlated eq. [Aumann 1974], ..., smoothed Nash [Daskalakis et al. 2023]

'\

Computationally tractable but still have drawbacks
(e.g., eq. selection, support on dominated strategies)



Warm-Up: n-player finite-action games

Nash Eq: Natural solution concept for individually rational agents.

X

7 is Nash if for each playeri: U;(wf,7n*.) > U;(m;, 7’ .) Vm € Ay

—1

Intractable to compute outside of highly structured games (e.g., zero-sum).
| Daskalakis & Papadimitriou 2008]

Not predictive of human play in games
[Selten 1975], [Myerson 1978],[Mckelvey & Palfrey 1995],|Burchardi & Pencyniski 2012], [Wright & Leighton-Brown 2013]....

»More predictive eq. concepts based around ideas that people fail to perfectly optimize
(but often not computationally tractable in general-sum games)



Beyond Nash Eqg.

A computationally tractable equilibrium concept that arises when agents have natural features of human
decision-making:
1. Risk Aversion 2. Bounded Rationality



Beyond Nash Eq.

A computationally tractable equilibrium concept that arises when agents have natural features of human

decision-making:

1. Risk Aversion 2. Bounded Rationality

Risk averse behavior

GAMES and in generalized matching pennies games
ECOnomic
Behavior Jacob K. Goeree,? Charles A. Holt,> and Thomas R. Palfrey ©*

4 CREED, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
b Department of Economics, University of Virginia, 114 Rouss Hall, Charlottesville, VA 22901, USA
¢ Humanities and Social Sciences, California Institute of Technology, 228-77, Pasadena, CA 91125, USA

Received 15 November 2000

Quantal response alone is not
enough to recreate human-play in
matching pennies.

Risk-aversion is a crucial feature of
human decision-making.

\

Classic finding in behavioral economics
(e.g., [Kahneman & Tversky 1979])



Risk-adjusted Matrix Games

» To introduce risk-aversion into games we make use of a general class of convex risk metrics.

Convex Risk Metric: Sign difference because

Generalization of the expectation p such that satisfies: risk is minimized

1. Monotonicity: If X <Y almost surely, then p(X) > p(Y). /

) —
) + (L =A)p(Y).

2. Translation Invariance: If m € R then p(X +m) = p(X
3. Convezity: For all A € (0,1), p(AX + (1 = N)Y) < A\p(X

E.qg., entropic risk, CVAR, qb-divergence based risk metrics, shortfall risks,...



Risk-adjusted Matrix Games

» Assume that players are risk-averse to their opponent’s randomness in some convex risk-metric.

max U;(m;, 7_;) = max E,w.|R;(a)




Risk-adjusted Matrix Games

» Assume that players are risk-averse to their opponent’s randomness in some convex risk-metric.

erleaii; Uz (7'('2', 7'('_7;) — meai(i 41&N7T[Ri(a)]

Pr_; (R’L (CL@, a—’i))

N

Risk level associated with playing
pure strategy a; for agent



Risk-adjusted Matrix Games

» Assume that players are risk-averse to their opponent’s randomness in some convex risk-metric.

max U;(m;,m_;) = max B~ | Ri(a))

Pr_; (R’L (CL@, a—’i))

W{Iélilz fz(ﬂ'zﬂ'('_z) — W{%lzli tm [,OW_Z(RZ(CL))H

h

Indifferent amongst pure strategies
that vield the same risk level.




Risk-adjusted Matrix Games

» Assume that players are risk-averse to their opponent’s randomness in some convex risk-metric.

max U;(m;,m_;) = max B~ | Ri(a))

Pr_; (R’L (CL@, a—’i))

min f;(m,7—;) = min Er, |px_,(Ri(a))]]

T, €N T, €N

Reduces to well studied risk-averse control ana
risk averse RL paradigms in single-agent settings




Risk-adjusted Matrix Games

» Assume that players are risk-averse to their opponent’s randomness in some convex risk-metric.

max U;(m;,m_;) = max B~ | Ri(a))

erélgz fz(ﬂ-z;ﬂ-— ) — WIZ%IE% Pr_; (‘Eﬂ'i [Rz(a)]) WIZ.%IEZ fz(ﬂ-“w 7’) o W{,Iélgi S, ['OW—Z(R'(CL))H

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Risk-averse Nash equilibria

n - fi(mi, ™) = mi (Eq, [Rs
71-{-%1217; fz(ﬂ'z;ﬂ'—z) 71'{-%127; 107"'—@( 5 [R@(a/)])

Risk-averse Nash Eq: Natural solution concept for individually rational and risk-averse agents.

7" is RNE if for each playeri:  fi(#},7*;) < fi(m, 7*,)  Vm € Ay



Risk-averse Nash equilibria

n - fi(mi, ™) = mi (Eq, [Rs
7-(-{.%1217; fz(ﬂ'z;ﬂ'—z) 71'{-%127; 107"'—@( 5 [Rz(a/)])

Risk-averse Nash Eq: Natural solution concept for individually rational and risk-averse agents.

7" is RNE if for each playeri:  fi(#},7*;) < fi(m, 7*,)  Vm € Ay

~—

Do these always exist and are they
computationally tractable to compute?



Risk-averse Nash equilibria

n - fi(mi, ™) = mi (Eq, [Rs
77{-%1217; fZ(T‘-z)ﬂ-—Z) W{-Iélgi ,Ow_z( 5 [Rz(a/)])

Theorem: Existence of risk-averse Nash eq.
It agents’ risk aversion can be captured by convex risk metrics then a risk-averse Nash
equilibrium exists.

Agents can only be risk averse to their opponents and the environments
(if they are risk averse to their own randomness then this result does not hold [Fiat & Papadimitriou 2010))

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Risk-averse Nash equilibria

n - fi(mi, ™) = mi (Eq, [Rs
71-{-%1217; fz(ﬂ'z;ﬂ'—z) 71'{-%127; 107"'—@( 5 [R@(a/)])

Theorem: Existence of risk-averse Nash eq.
It agents’ risk aversion can be captured by convex risk metrics then a risk-averse Nash
equilibrium exists.

Risk aversion isn’t enough to ensure
1. Computational tractability.
2. The equilibrium is predictive of human-play [Goeree, Holt, Palfrey. 2002], [Goeree, Holt, Palfrey 2003].



Bounded Rationality in Risk-adjusted Matrix Games

» To have computational tractability we optimize over quantal responses.

Quantal Response Function: a quantal response function is a continuous function
o : R" = Ay such that if x>y, 6(y) > o(x)

—€ex |
e 1

1
Z?:]_ e—e:ci

Canonical example is space of softmax policies: oe(x) =




Bounded Rationality in Risk-adjusted Matrix Games

» To have computational tractability we optimize over quantal responses.

Quantal Response Function: a quantal response function is a continuous function
o : R™ = Ay such that if x>y, 6(y) > o(x)

min. fi(ﬂ'i,ﬂ'—i) —> min f(ﬂ-iaﬂ-—i)

T €A T €0 (Ay)

~

Optimize over space of quantal best responses.



Bounded Rationality in Risk-adjusted Matrix Games

» To have computational tractability we optimize over quantal responses.

Quantal Response Function: a quantal response function is a continuous function
o : R™ = Ay such that if x>y, 6(y) > o(x)

min  fi(m, ;) —»  min fi(m, 7o) = pr_, (Ex; [Ri(a)]) + evi(ms)

i €A T €A /

Can be captured with a strictly convex regularizer
€; captures an agents’ degree of bounded rationality.



Bounded Rationality in Risk-adjusted Matrix Games

me%i](ﬂm) film, m=i) = TER, P (B [Ria)]) + eavi(mi)

Risk-averse Quantal Response Eq (RQE): Natural solution concept for risk averse and
individually boundedly rational agents.

m" is RQE if for each player i: f(m;,7%;) < f(mi, 72;) VY € 04(Ay)

Given these definitions, we can show that a class of RQE
Is computationally tractable in all games.

S

Will focus on 2-player for today
paper has n-player results

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

» Using a dual representation theorem, we can write any convex risk metric in a variational form
Follmer & Shied 2002

1
. . 44 ! ) ) ) ) —_— . 4,1 ) . Y ; o . . .
w{%& O (Ex. |R;(a)]) + €v;(m;) W?élgi pz'IIEl%}Ei i 10 (Q)] - D(pi, m—;) + €;v;(m;)

KJ\

Risk metric can be fully defined by a penalty function D that is T; captures agent i's degree of
convex in its first argument. risk aversion.
e.g., when D is the KL divergence we recover the entropic risk

7; = 0 yields risk-neural game

7. — 00 yields security strategy



Computationally Tractability of RQE in Matrix Games

» Using a dual representation theorem, we can write any convex risk metric in a variational form
Follmer & Shied 2002

1
' (E.. [R, v (m;) = mi o o | R D(p;, m—; Vi (T
min pr_, (Er,[Ria)]) + eri(m;) = min max Ee, p, Ri(a)] - (i T—i) + €ivi(m;)

f/\

Risk metric can be fully defined by a penalty function D that is T; captures agent i's degree of
convex in its first argument. risk aversion.
e.g., when D is the KL divergence we recover the entropic risk

7; = 0 yields risk-neural game

T; — 00 yields security strategy

Interpretation: Introduce an adversary for each player that is fully adversarial but is
penalized from deviations from the opponents strateqgy



Computationally Tractability of RQE in Matrix Games

Theorem: Computational Tractability of RQE (2-player)

SUppose. €111 > 1/eamo then resulting RQE can be computed using no-regret learning
on a related 4-player convex game.

e.g., policy gradients,

This result doesn’t depend on the structure of the underlying game! multiplicative weights

Only on players’ relative degrees of risk-aversion/bounded rationality

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Theorem: Computational Tractability of RQE (2-player)

Suppose. €111 > 1/eam then a
on a related 4-player convex ¢

resulting RQE can be computed using no-regret learning
ame.

coe
7,6 =0 :;
Agents are risk-neutral. 'g RQE
", Computationally
l €>TH " tractable
general-sum game where \\
approximating Nash Eq is known
to be hard in general A
NaSh et =
(PPAD)

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Theorem: Computational Tractability of RQE (2-player)

Suppose. €111 > 1/eam then a
N a related 4-player convex ¢

resulting RQE can be computed using no-regret learning
ame.

coe
'; T =00, >0
ne=0 | Player is so risk averse they treat
Agents are risk-neutral. : RQE ye yH
', ] their opponent as adversarial
; Computationally
l €>TH " tractable l
general-sum game where \\ zero-sum game for agent
approximating Nash Eq is known computationally tractable
to be hard in general for any € > 0
NaSh et =
(PPAD)

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Proof sketch:
»Start with 2 player game

. <1:7'(' 7T R
L i o, (Ri(a))]

. {:7'(' 1 R
RN o1 or (Ra2(a))]

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Proof sketch:
»Start with 2 player game
min max E. , [Ri(a)] — iD(pl o) + eqv(my)
T1EA] p1EAS 1P 5] ’
min max [E,, . [Ra(a)] — iD(pg, 1) + eqv(ms)
T EA2 P2 EAY 202 T2

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Proof sketch:

>Lift the game to a 4-player game by introducing adversaries for each player (who are penalized from deviations from opponents).

R 1
min o 21 (a)] — T—lD(pl, To) + €1v(m1)
1
min max E,, , [Ri(a)] — —D(p1,m2) + e1v(m) min —E,, , [Ri(a)] + iD(pl, To) — €av (o)
T1EAL p1EAS 71 P1E€EA2 | T1
1
. 1 . T 4:7T R — D y o
min mac B[R] - SD(m) tev(r) ek, el Rl D) av(n
T2 2 M2 1
- |
732%122 Lo, 2 [RQ(CL)] _ T_QD(p27 7T1) + 62”(7‘-2)

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Proof sketch:

»This four player game is convex and nonlinear but zero-sum.

. ~ 1
771;%121 L71,p1 [Rl (a)] — T_lD(plv 7T2) T €1V(7T1)
_ ) 1
min —Iy, 5, [Rl(a)] + _D(plv 772) _ 62”(7T2)
p1EAS 1
1
1n —I D _
min —Er, 5, [Ra(a)] + —D(ps,m) = erv(m)
. A 1
min ., s, Ra(a)] — —D(p2,m) + eav(me)
ToEANo T2

sing convexity and concavity in opponents’

trategies one can show that CCE coincide with

ash for all parameters in the range

€171 > 1/eam

\

independent of R1and R>!

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Theorem: Computational Tractability of RQE (2-player)

Suppose. e1m > 1/eam then a resulting RQE can be computed using no-regret learning
on a related 4-player convex game.

» Class is independent of reward structure (i.e., applies to all games)
» Arises due to the combination of risk aversion and bounded rationality.

Similar results hold for n-player games and via dynamic
programming In finite-horizon Markov games.

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Computationally Tractability of RQE in Matrix Games

Theorem: Computational Tractability of RQE (2-player)

Suppose. e1m > 1/eam then a resulting RQE can be computed using no-regret learning
on a related 4-player convex game.

Does this class of RQE capture meaningful solutions?
Or is this too restrictive an assumption?

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Fxpressivity of Computationally Tractable RQE

» We [ook at experimental data on human-play in 13 games from [1] and [2].

Table B.1
Experimental design and summary data
Treatment Payoffs Session Location Aggregate data
1n pennies matching (No. subjects)
Game 4 L R 1 Random UVA (10) 036 U, 0.68 L
Safe/Risky U (200, 160) (160, 10) 2 Random UVA (12) 052U, 0.72 L
D (370, 200) (10, 370) 3 Random UVA (10) 0.56 U, 0.56 L
4 Random CIT (12) 053U, 0.72 L
5 Random PCC (12) 042U, 052 L
6 Random PCC (12) 0.43 U, 0.68 L
MPW Game A? L R la Random CIT (12) 0.68 U, 0.32 L
(90, 0) 0, 10) 2b Random CIT (12) 0.62U, 0.24 L
(0, 10) (10,0) 5a Random CIT (12) 0.62U, 0.11 L
6b Random CIT (12) 0.61U, 0.22 L
7a Random CIT (12) 0.64U, 0.23 L
8a Random CIT (12) 0.68 U, 0.24 L
MPW Game B? L R 1b Random CIT (12) 0.57U, 020 L
(90, 0) (0, 40) 2a Random CIT (12) 0.65U, 0.24 L
(0, 40) (10,0) 3a Random CIT (12) 0.61 U, 036 L
4b Random CIT (12) 0.69U, 0.18 L
MPW Game C* L R 3b Random CIT (12) 0.57U, 039 L
(360, 0) (0, 40) 4a Random CIT (12) 0.62U, 0.16 L
(0, 40) (40, 0) 5b Random CIT (12) 059U, 020 L
6a Random CIT (12) 0.59U, 0.27 L

09

08 }.....

Game 1

0.8

Game 2

Game 3

0.6 |rnommnii b

0.5

.............

0.9 boooooeiit

....... 0.8

...................

0.7 ‘
0.6 0.4 : : : 0.6 : : :
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
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1 3 0.9 ; ; 0.8
0.9 |-rommrmbmmm et 1 X: ) SORRRCRN SORR ~~~~~~~~ 1Yy J --------- R PRRt EUPPRE
0.7 | oo b ‘9 ....... 0.6 I - O S A S
0.6 : : : 0.5 : - : 0.4 - |
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[1] Risk averse behavior in generalized matching pennies games Goeree, Holt, Palfrey, Games and Economic Behavior, 2003
[2] Stationary concepts for experimental 2x2-games, Selten & Chmura, American Economic Review, 2008



Fxpressivity of Computationally Tractable RQE

Penalty Function: KL Divergence (Entropic Risk) Penalty Function: Reverse KL Divergence
Regularizer: Log-Barrier Regularizer: Negative Entropy
‘-, 351 @
100 { | -
30 - ® GHP: Game 4
¥ SC:Gamel
80 - ”5 SC: Game 2
® SC:Game3
B SC: Game 4
N \
lc‘\] 604 | 20 - 4 SC:Game5
O 4 : A SC:Game 6
3y = 154 SC: Game 7
40 4 \ A SC: Game 8
' 10 \ SC: Game 9
o SC: Game 10
Ny A D SC: Game 11
20 m ~\‘ 5 - .
~~~~~~~ Y. SC: Game 12
------------ ® 0. E—— e
0.02 0.04 006 0.08 0.10 012 0.14 0.16 00 02 04 06 08 10 12 14

€171 €171

» For each game, we show that there exists an RQE can recreate the peoples’ aggregate play
(to within 3 decimal places).

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



Finite-Horizon Risk-Averse Markov Games

» Finite Action Spaces: A1, A2
» Finite State Spaces: §
» Finite Horizon: H

» Dynamics: P (S | s, ay, az)

» Players are also risk averse to the stochastic transitions (i.e., environmental uncertainties)

U1(7T177T2) — <1j’7‘(’1,7‘(‘2,f) ZRl,t

UQ(T‘-177T2) — <137‘(‘1,7‘(‘2,P ZRQ,t




Finite-Horizon Risk-Averse Markov Games

» Finite Action Spaces: A1, A2
» Finite State Spaces: §
» Finite Horizon: H

» Dynamics: P (S | s, ay, az)

» Players are also risk averse to the stochastic transitions (i.e., environmental uncertainties)

- g -

U1(7T177T2) — <Ij’7‘(’1,7‘(‘2,f) § Rl,t
| t=0 _
- g -

UQ(T‘-177T2) — <137‘(‘1,7‘(‘2,P E RQ,t
| t=0 _

Assume access to a generative model
(i.e., can collect collect i.i.d samples of transitions and rewards to estimate Ri and P)



Approximating RQE in Finite-Horizon Markov Games

Theorem: Approximating (non-stationary) Markov RQE in Markov Games

Suppose «>Y"1/7, then a 5—RQE can be computed in poly(S, H, 5~ ') I I A,
j#i
Our algorithm suffers from the curse of multi-agency!

Open Question: Can we overcome this?

May be hard since the intermediate adversaries action spaces are
essentially the size of the joint action space, which is HAi-

Tractable Equilibrium Computation in Markov Games through Risk Aversion, Eric Mazumdar, Kishan Panaganti, Laixi Shi, (under submission)



- xtensions to Finite-Horizon MARL

Red is risk-averse: 7, = 0.01 Red is risk-averse: 7, = 0.01
Blue is more risk-averse: 7, = (.02 Blue is less risk-averse: 7, = (0.005

Tractable Multi-Agent Reinforcement Learning through Behavioral Economics, Eric Mazumdar, Kishan Panaganti, Laixi Shi, ICLR 2025 (Oral)



A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts
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1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
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A Road Map

1. Normal-form & concave games: equilibrium computation and learning in games

2. Algorithmic structures in Multi-Agent Reinforcement Learning

I. Policy-gradient algorithms in games
il. Value-based algorithms

3. Further directions

I. The role of function approximation
Il. Scalable algorithms for zero-sum games
ii. New equilibrium concepts

> Takeaway:
> Current Work: Showing it gives rise to a computationally feasible eq. In infinite-
horizon Markov Games (CDC 2025), and a set of MARL learning algorithms.




Challenges: Strategic interactions vastly complicate the task of learning

Opportunities:

Require a careful rethinking of algorithm design.
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Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Reinforcement Learning Multi-Agent Reinforcement Learning

Structured non-convex optimization Structured (?) equilibrium computation

)

This is fundamentally hard in general, but notions
ike non stationary CCE are feasible to learn



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Reinforcement Learning Multi-Agent Reinforcement Learning
Structured non-convex optimization Structured (?) equilibrium computation
Stationary environment Coupling between agents introduce non-stationarities in learning

_

Makes proving convergence of algorithms
oarticularly difficult, though timescale
separation is a useful principle in MARL.



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Reinforcement Learning

Structured non-convex optimization
Stationary environment

Role of function approximation is clear

-

Larger, more expressive function classes have
the potential to yield better performance
(Modulo optimization/data)

Multi-Agent Reinforcement Learning

Structured (7) equilibrium computation
Coupling between agents introduce non-stationarities in learning

Choosing a function class is non-trivial

_

Larger, more expressive function classes can
vield worse solutions!



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Opportunities: Require a careful rethinking of algorithm design.

Though it is less well understood, we can build on foundations from game theory and reinforcement learning
to explore and design new algorithmic principles.



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Opportunities: Require a careful rethinking of algorithm design.

Though it is less well understood, we can build on foundations from game theory and reinforcement learning
to explore and design new algorithmic principles.

» Convergence of algorithms
» e.9., stochastic approximation ideas [Sayin et al. 2023], [Chen et al 2024], no -regret learning [Farina et al. 2024], [Cai et al. 2024], ...

» New equilibrium concepts
» e.g., behavioral Econ ideas [Mazumdar et al 2024 ], robust Eq. [Lanzetti et al. 2025], smoothed analysis [Daskalakis, et al 2023]....

» New formulations of Markov games
» e.g., Convex Markov games [Gemp et al. 2024, 2025], Stackelberg Markov Games [Gerstgrasser et al. 2022]....

» Better algorithms with function approximation for zero-sum games.
» e.g., surveys [Wong el at. 2022], [Gemp et al. 2022], stabilizing actor critic algorithms [Foerester et al. 2017, 2018], PPO in games [Yu et al. 2022]....



Challenges: Strategic interactions vastly complicate the task of learning

As we will see, strategic interactions can break our intuition on the behavior of learning algorithms and give
rise to new challenges for algorithm design.

Opportunities: Require a careful rethinking of algorithm design.

Though it is less well understood, we can build on foundations from game theory and reinforcement learning
to explore and design new algorithmic principles.

Many other directions:

» robustness in Markov games

» sim-to-real gaps

» incomplete information games (e.g., partially observed Markov games)
» continuous action/state spaces

» empirical evaluation of algorithms

» training LLM agents for multi-agent problems

» exploring other game theoretic strategies
> ...
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Other Useful Resources:

Simons Institute Bootcamps on Learning in games

Great talks like Chi Jin (Princeton) overview of MARL, Costis Daskalakis (MIT) overview of Eq. Computation,...
https://simons.berkeley.edu/workshops/learning-games-boot-camp

Multi-agent reinforcement learning: A selective overview of theories and algorithms

Kaiging Zhang, Zhuoran Yang, Tamer Basar
https://arxiv.org/pdf/1911.10635

Predictions, Learning, & Games

Nicolo Cesa-Bianchi & Gabor Lugosi
Book on learning in games
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